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Abstract

Overcomplete latent representations have been very popular for unsupervised fea-
ture learning in recent years. In this paper, we specify which overcomplete mod-
els can be identified given observable moments of a certain order. We consider
probabilistic admixture or topic models in the overcomplete regime, where the
number of latent topics can greatly exceed the size of the observed word vocabu-
lary. While general overcomplete topic models are not identifiable, we establish
generic identifiability under a constraint, referred to as fopic persistence. Our suf-
ficient conditions for identifiability involve a novel set of “higher order” expan-
sion conditions on the fopic-word matrix or the population structure of the model.
This set of higher-order expansion conditions allow for overcomplete models, and
require the existence of a perfect matching from latent topics to higher order ob-
served words. We establish that random structured topic models are identifiable
w.h.p. in the overcomplete regime. Our identifiability results allow for general
(non-degenerate) distributions for modeling the topic proportions, and thus, we
can handle arbitrarily correlated topics in our framework. Our identifiability re-
sults imply uniqueness of a class of tensor decompositions with structured sparsity
which is contained in the class of Tucker decompositions, but is more general than
the Candecomp/Parafac (CP) decomposition.

Keywords: Overcomplete representation, admixture models, generic identifiability, tensor decom-
position.

1 Introduction

A probabilistic framework for incorporating features posits latent or hidden variables that can pro-
vide a good explanation to the observed data. Overcomplete probabilistic models can incorporate a
much larger number of latent variables compared to the observed dimensionality. In this paper, we
characterize the conditions under which overcomplete latent variable models can be identified from
their observed moments.

For any parametric statistical model, identifiability is a fundamental question of whether the model
parameters can be uniquely recovered given the observed statistics. Identifiability is crucial in a
number of applications where the latent variables are the quantities of interest, e.g. inferring diseases



(latent variables) through symptoms (observations), inferring communities (latent variables) via the
interactions among the actors in a social network (observations), and so on. Moreover, identifiability
can be relevant even in predictive settings, where feature learning is employed for some higher
level task such as classification. For instance, non-identifiability can lead to the presence of non-
isolated local optima for optimization-based learning methods, and this can affect their convergence
properties, e.g. see [1].

In this paper, we characterize identifiability for a popular class of latent variable models, known
as the admixture or topic models [2,3]. These are hierarchical mixture models, which incorporate
the presence of multiple latent states (i.e. topics) in documents consisting of a tuple of observed
variables (i.e. words). In this paper, we characterize conditions under which the topic models are
identified through their observed moments in the overcomplete regime. To this end, we introduce
an additional constraint on the model, referred to as topic persistence. Intuitively, this captures the
“locality” effect among the observed words, and goes beyond the usual “bag-of-words” or exchange-
able topic models. Such local dependencies among observations abound in applications such as text,
images and speech, and can lead to more faithful representation. In addition, we establish that the
presence of topic persistence is central to obtaining model identifiability in the overcomplete regime,
and we provide an in-depth analysis of this phenomenon in this paper.

1.1 Summary of Results

In this paper, we provide conditions for generic' model identifiability of overcomplete topic models
given observable moments of a certain order (i.e., a certain number of words in each document). We
introduce a novel constraint, referred to as topic persistence, and analyze its effect on identifiability.
We establish identifiability in the presence of a novel combinatorial object, named as perfect n-gram
matching, in the bipartite graph from topics to words (observed variables). Finally, we prove that
random models satisfy these criteria, and are thus identifiable in the overcomplete regime.

Persistent Topic Model: We first introduce the n-persistent topic model, where the parameter n
determines the so-called persistence level of a common topic in a sequence of n successive words, as
seen in Figure 1. The n-persistent model reduces to the popular “bag-of-words” model, whenn = 1,
and to the single topic model (i.e. only one topic in each document) when n — co. Intuitively, topic
persistence aids identifiability since we have multiple views of the common hidden topic generating
a sequence of successive words. We establish that the bag-of-words model (with n = 1) is too
non-informative about the topics to be identifiable in the overcomplete regime. On the other hand,
n-persistent overcomplete topic models with n > 2 are generically identifiable, and we provide a
set of transparent conditions for identifiability.

Deterministic Conditions for Identifiability:
Our sufficient conditions for identifiability are in
the form of expansion conditions from the latent
topic space to the observed word space. In the
overcomplete regime, there are more topics than
words, and thus it is impossible to have expansion
from topics to words. Instead, we impose a novel
expansion constraint from topics to “higher order”
words, which allows us to handle overcomplete = Tn  Tnp Tan TErnt  T2rn
models. We establish that this condition translates
to the presence of a novel combinatgrial object, persistent topic model. 2rn number of words
rff‘ferrf.:d to as perfect -gram matchlﬁg » on the (views) are shown for some integer r > 1. A sin-
bipartite g.raph from topics to wordg, which encodps gle topic y;, j € [2r], is chosen for each n succes-
the .s.parsuy .pattern. .of .the .toplc.-wor.d Matrix.  sive views {Z(j_1ynt1s---» T(G—1)ntn }-
Intuitively, this condition implies “diversity” of the

word support for different topics which leads to

identifiability. In addition, we present tradeoffs between the topic and word space dimensionality,
topic persistence level, the order of the observed moments at hand, the maximum degree of any

Figure 1: Hierarchical structure of the n-

'A model is generically identifiable, if all the parameters in the parameter space are identifiable, almost
surely. Refer to Definition 1 for more discussion.



topic in the bipartite graph, and the Kruskal rank [4] of the topic-word matrix, for identifiability
to hold. We also provide the discussion that how ¢;-based optimization program can recover the
model under additional constraints.

Identifiability of Random Structured Topic Models: We explicitly characterize the regime of
identifiability for the random setting, where each topic ¢ is randomly supported on a set of d; words,
i.e. the bipartite graph is a random graph. For this random model with ¢ topics, p-dimensional word
vocabulary, and topic persistence level n, when ¢ = O(p") and O(log p) < d; < ©(p'/™), for all
topics 4, the topic-word matrix is identifiable from 2n™ order observed moments with high probabil-
ity. Furthermore, we establish that the size condition ¢ = O(p"™) for identifiability is tight.

Implications on Uniqueness of Overcomplete Tucker and CP Tensor Decompositions: We
establish that identifiability of an overcomplete topic model is equivalent to uniqueness of the ob-
served moment tensor (of a certain order) decomposition. Our identifiability results for persistent
topic models imply uniqueness of a structured class of tensor decompositions, which is contained in
the class of Tucker decompositions, but is more general than the candecomp/parafac (CP) decom-
position [5]. This sub-class of Tucker decompositions involves structured sparsity and symmetry
constraints on the core tensor, and sparsity constraints on the inverse factors of the decomposi-
tion.

Detailed discussion on overview of techniques and related works are provided in the long ver-
sion [12].

2 Model

Notations: The set {1,2,...,n} is denoted by [n] := {1,2,...,n}. The cardinality of set .S is
denoted by |S|. For any vector u (or matrix U), the support denoted by Supp(u) corresponds to the
location of its non-zero entries. For a vector u € R?, Diag(u) € R?*? is the diagonal matrix with
w on its main diagonal. The column space of a matrix A is denoted by Col(A). Operators “®” and
“@®” refer to Kronecker and Khatri-Rao products [6], respectively.

2.1 Persistent topic model

An admixture model specifies a g-dimensional vector of topic proportions h € A1 = {u €
R? : u; > 0,>.7 ,u; = 1} which generates the observed variables z; € RP through vectors
ai,...,aq € RP. This collection of vectors a;,i € [g], is referred to as the population structure or
topic-word matrix [7]. For instance, a; represents the conditional distribution of words given topic
i. The latent variable & is a ¢ dimensional random vector h := [h1,...,h,] T known as proportion
vector. A prior distribution P(h) over the probability simplex A?~! characterizes the prior joint
distribution over the latent variables (topics) h;, @ € [g].

The n-persistent topic model has a three-level multi-view hierarchy in Figure 1. In this model, a
common hidden topic is persistent for a sequence of n words {=(;_1)n41, - - » T(j—1)ntn }»J € [27].
Note that the random observed variables (words) are exchangeable within groups of size n, where n
is the persistence level, but are not globally exchangeable.

We now describe a linear representation for the n-persistent topic model, on lines of [9], but with
extensions to incorporate persistence. Each random variable y;,j € [2r], is a discrete-valued g-
dimensional random variable encoded by the basis vectors ¢;, i € [q], where e; is the i-th basis
vector in R? with the i-th entry equal to 1 and all the others equal to zero. When y; = ¢; € RY,
then the topic of j-th group of words is 7. Given proportion vector h € RY, topics y;,j € [2r], are
independently drawn according to the conditional expectation E [yj |h] = h,j € [2r], or equivalently

Pr[yj = ei|h} = h;,j € [2r],i € [q].

Each observed variable x; for [ € [2rn], is a discrete-valued p-dimensional random variable (word)
where p is the size of vocabulary. Again, we assume that variables z;, are encoded by the basis
vectors ex, k € [p], such that x; = e, € RP when the I-th word in the document is k. Given the



corresponding topic y;,j € [2r], words x;,] € [2rn], are independently drawn according to the
conditional expectation

E(2(_1yn+kly; = €] = ai, i € [q],j € [27], k € [n],

where vectors a; € RP, ¢ € [g], are the conditional probability distribution vectors. The matrix
A = [ai|az]---|ag] € RP*Y collecting these vectors is called population structure or topic-word
matrix.

The (2rn)-th order moment of observed variables x;,1 € [2rn], for some integer » > 1, is defined
as (in the matrix form)

rn

MQTTI(I) =K [(Il RT2® - xrn)(xrnJrl R Trpy2 @ - & xzrn)T] S RanXp . (1)

For the n-persistent topic model with 2rn number of observations (words) x;, ! € [2rn], the corre-
sponding moment is denoted by Mz(fi(:v)

In this paper, we consider the problem of identifiability when exact moments are available.

Given Mz(fi(x), what are the sufficient conditions under which the population structure A =

[a1]az] - - - |aq] € RP*9 is identifiable? This is answered in Section 3.

3 Sufficient Conditions for Generic Identifiability

In this section, the identifiability result for the n-persistent topic model with access to (2n)-th order
observed moment is provided. First, sufficient deterministic conditions on the population structure
A are provided for identifiability in Theorem 1. Next, the deterministic analysis is specialized to a
random structured model in Theorem 2.

We now make the notion of identifiability precise. As defined in literature, (strict) identifiability
means that the population structure A can be uniquely recovered up to permutation and scaling for
all A € RP*4. Instead, we consider a more relaxed notion of identifiability, known as generic
identifiability.

Definition 1 (Generic identifiability). We refer to a matrix A € RP*? as generic, with a fixed
sparsity pattern when the nonzero entries of A are drawn from a distribution which is absolutely
continuous with respect to Lebesgue measure>. For a given sparsity pattern, the class of population
structure matrices is said to be generically identifiable [10], if all the non-identifiable matrices form
a set of Lebesgue measure zero.

The (2r)-th order moment of hidden variables h € R, denoted by Ms,-(h), is defined as

7 times 7 times

Mo, (h) == E[(h@ S@h) (h®~-~®hﬂ e RY x4, @)

Condition 1 (Non-degeneracy). The (2r)-th order moment of hidden variables h € RY, defined in
equation (2), is full rank (non-degeneracy of hidden nodes).

Note that there is no hope of distinguishing distinct hidden nodes without this non-degeneracy as-
sumption. We do not impose any other assumption on hidden variables and can incorporate arbitrar-
ily correlated topics.

Furthermore, we can only hope to identify the population structure A up to scaling and permutation.
Therefore, we can identify A up to a canonical form defined as:

Definition 2 (Canonical form). Population structure A is said to be in canonical form if all of its
columns have unit norm.

3.1 Deterministic Conditions for Generic Identifiability

Before providing the main result, a generalized notion of (perfect) matching for bipartite graphs is
defined. We subsequently impose these conditions on the bipartite graph from topics to words which
encodes the sparsity pattern of population structure A.

2 As an equivalent definition, if the non-zero entries of an arbitrary sparse matrix are independently perturbed
with noise drawn from a continuous distribution to generate A, then A is called generic.



Generalized matching for bipartite graphs: A bipartite graph with two disjoint vertex sets Y
and X and an edge set E between them is denoted by G(Y, X; E'). Given the bi-adjacency matrix
A, the notation G(Y, X; A) is also used to denote a bipartite graph. Here, the rows and columns of
matrix A € RIXI*IY are respectively indexed by X and Y vertex sets. Furthermore, for any subset
S CY, the set of neighbors of vertices in .S with respect to A is denoted by N4(.5).

Definition 3 ((Perfect) n-gram matching). A n-gram matching M for a bipartite graph G(Y, X ; E)
is a subset of edges M C E which satisfies the following conditions. First, for any 7 € Y, we
have [Ny (j)| < n. Second, for any ji,ja € Y,j1 # ja, we have min{|Nns(j1)|, | Nar(52)|} >
|Na (1) 0 Nar(52) -

A perfect n-gram matching or Y -saturating n-gram matching for the bipartite graph G(Y, X; E) is
a n-gram matching M in which each vertex in Y is the end-point of exactly n edges in M.

In words, in a n-gram matching M, each vertex j € Y is at most the end-point of n edges in M and
for any pair of vertices in Y (j1, jo € Y, j1 # j2), there exists at least one non-common neighbor in
set X for each of them (j; and j2).

Note that 1-gram matching is the same as regular matching for bipartite graphs.

Remark 1 (Necessary size bound). Consider a bipartite graph G(Y, X; E) with |Y| = q and
| X | = p which has a perfect n-gram matching. Note that there are (Z ) n-combinations on X side
and each combination can at most have one neighbor (a node in'Y which is connected to all nodes
in the combination) through the matching, and therefore we necessarily have q < (5 )

Identifiability conditions based on existence of perfect n-gram matching in topic-word graph:
Now, we are ready to propose the identifiability conditions and result.

Condition 2 (Perfect n-gram matching on A). The bipartite graph G(Vy,, V,,; A) between hidden
and observed variables, has a perfect n-gram matching.

The above condition implies that the sparsity pattern of matrix A is appropriately scattered in the
mapping from hidden to observed variables to be identifiable. Intuitively, it means that every hidden
node can be distinguished from another hidden node by its unique set of neighbors under the corre-
sponding n-gram matching.

Furthermore, condition 2 is the key to be able to propose identifiability in the overcomplete regime.
As stated in the size bound in Remark 1, for n > 2, the number of hidden variables can be more
than the number of observed variables and we can still have perfect n-gram matching.

Definition 4 (Kruskal rank, [11]). The Kruskal rank or the krank of matrix A is defined as the
maximum number k such that every subset of k columns of A is linearly independent.

Condition 3 (Krank condition on A). The Kruskal rank of matrix A satisfies the bound krank(A) >
dmax(A)™, where dyax(A) is the maximum node degree of any column of A.

In the overcomplete regime, it is not possible for A to be full column rank and krank(A) < |V,,| = q.
However, note that a large enough krank ensures that appropriate sized subsets of columns of A are
linearly independent. For instance, when krank(A) > 1, any two columns cannot be collinear and
the above condition rules out the collinear case for identifiability. In the above condition, we see
that a larger krank can incorporate denser connections between topics and words.

The main identifiability result under a fixed graph structure is stated in the following theorem for
n > 2, where n is the topic persistence level.

Theorem 1 (Generic identifiability under deterministic topic-word graph structure). Let Mé?)l(x)
in equation (1) be the (2rn)-th order observed moment of the n-persistent topic model, for some
integer v > 1. If the model satisfies conditions 1, 2 and 3, then, for any n > 2, all the columns of

population structure A are generically identifiable from M;}l(m) Furthermore, the (2r)-th order

moment of the hidden variables, denoted by Ma,.(h), is also generically identifiable.

The theorem is proved in Appendix A of the long version [12]. It is seen that the population structure
A is identifiable, given any observed moment of order at least 2n. Increasing the order of observed
moment results in identifying higher order moments of the hidden variables.

The above theorem does not cover the case of n = 1. This is the usual bag-of-words admixture
model. Identifiability of this model has been studied earlier [13], and we recall it below.

Remark 2 (Bag-of-words admixture model, [13]). Given (2r)-th order observed moments with
r > 1, the structure of the popular bag-of-words admixture model and the (2r)-th order moment of



hidden variables are identifiable, when A is full column rank and the following expansion condition
holds [13]

|NA(S)| Z |S| +dmax(A)7 VS g th |S| Z 2. (3)

Our result for n > 2 in Theorem 1, provides identifiability in the overcomplete regime with weaker
matching condition 2 and krank condition 3. The matching condition 2 is weaker than the above
expansion condition which is based on the perfect matching and hence, does not allow overcomplete
models. Furthermore, the above result for the bag-of-words admixture model requires full column
rank of A which is more stringent than our krank condition 3.

Remark 3 (Recovery using ¢; optimization). It turns out that our conditions for identifiability imply

that the columns of the n-gram matrix> A®", are the sparsest vectors in Col (MQ(Z) (:v)) having a

tensor rank of one. See Appendix A in the long version [12]. This implies recovery of the columns
of A through exhaustive search, which is not efficient. Efficient {1-based recovery algorithms have
been analyzed in [13, 14] for the undercomplete case (n = 1). They can be employed here for
recovery from higher order moments as well. Exploiting additional structure present in A", for
n > 1, such as rank-1 test devices proposed in [15] are interesting avenues for future investigation.

3.2 Analysis Under Random Topic-Word Graph Structures

In this section, we specialize the identifiability result to the random case. This result is based on more
transparent conditions on the size and the degree of the random bipartite graph G(V},, V,,; A). We
consider the random model where in the bipartite graph G(V;, V,; A), eachnode i € V}, is randomly
connected to d; different nodes in set V,. Note that this is a heterogeneous degree model.
Condition 4 (Size condition). The random bipartite graph G(Vy,, V,; A) with |Vi,| = ¢,|Vs| = p,
and A € RP*4, satisfies the size condition q < (c%)nfor some constant 0 < ¢ < 1.

This size condition is required to establish that the random bipartite graph has a perfect n-gram
matching (and hence satisfies deterministic condition 2). It is shown that the necessary size con-
straint ¢ = O(p™) stated in Remark 1, is achieved in the random case. Thus, the above constraint
allows for the overcomplete regime, where g > p for n > 2, and is tight.

Condition 5 (Degree condition). In the random bipartite graph G(Vy,, Vo; A) with |Vi| = ¢, |V,| =
p, and A € RP*9, the degree d; of nodes i € V}, satisfies the lower and upper bounds d;, >
max{1 + Slogp, alogp} for some constants 3 > ﬁ, o > max{2n2 (ﬁ log % + 1), Qﬂn}, and

dmax < (Cp)%-

Intuitively, the lower bound on the degree is required to show that the corresponding bipartite graph
G(Vp, V,; A) has sufficient number of random edges to ensure that it has perfect n-gram match-
ing with high probability. The upper bound on the degree is mainly required to satisfy the krank
condition 3, where dyax(A)" < krank(A).

It is important to see that, for n > 2, the above condition on degree covers a range of models from
sparse to intermediate regimes and it is reasonable in a number of applications that each topic does
not generate a very large number of words.

Probability rate constants: The probability rate of success in the following random identifiability
result is specified by constants 5’ > 0and v = v; + 2 > O as

B = —Blogc—n+1, “4)
2
_ n—1 C (& [5,4’1) 5
= o e ), 5)
cn—leZ

= 77 6
7= A 6y (6)

. . —Blogl/c n—1_2 ,
where §; and J; are some constants satisfying 82(%) < 41 < 1and “3° p P <8<

1.

AT = AO - O A,
————

n times



(a) Single topic model (b) Bag-of-words admixture model
(infinite-persistent topic model) (1-persistent topic model)

Figure 2: Hierarchical structure of the single topic model and bag-of-words admixture model shown for 2m
number of words (views).

Theorem 2 (Random identifiability). Let M.") () in equation (1) be the (2rn)-th order observed
moment of the n-persistent topic model for some integer v > 1. If the model with random population

structure A satisfies conditions 1, 4 and 5, then whp (with probability at least 1 —~yp~? ' for constants
B' > 0and~ > 0, specified in (4)-(6)), for any n > 2, all the columns of population structure A are

identifiable from MQ(?,)Z (x). Furthermore, the (2r)-th order moment of hidden variables, denoted by
Mo, (h), is also identifiable, whp.

The theorem is proved in Appendix B of the long version [12]. Similar to the deterministic analysis,
it is seen that the population structure A is identifiable given any observed moment with order at
least 2n. Increasing the order of observed moment results in identifying higher order moments of
the hidden variables.

The above identifiability theorem only covers for n > 2 and the n = 1 case is addressed in the
following remark.

Remark 4 (Bag-of-words admixture model). The identifiability result for the random bag-of-words
admixture model is comparable to the result in [14 ], which considers exact recovery of sparsely-used
dictionaries. They assume that Y = DX is given for some unknown arbitrary dictionary D € R7*4
and unknown random sparse coefficient matrix X € RI*P. They establish that if D € RI*? js
full rank and the random sparse coefficient matrix X € RI*P follows the Bernoulli-subgaussian
model with size constraint p > Cqlog q and degree constraint O(log q) < E[d] < O(qloggq), then
the model is identifiable, whp. Comparing the size and degree constraints, our identifiability result
for n > 2 requires more stringent upper bound on the degree (d = O(p'/™)), while more relaxed
condition on the size (¢ = O(p™)) which allows to identifiability in the overcomplete regime.
Remark 5 (The size condition is tight). The size bound ¢ = O(p™) in the above theorem achieves
the necessary condition that ¢ < (Z) = O(p") (see Remark 1), and is therefore tight. The sufficiency
is argued in Theorem 3 of the long version [12 ], where we show that the matching condition 2 holds
under the above size and degree conditions 4 and 5.

4 Why Persistence Helps in Identifiability of Overcomplete Models?

In this section, we provide the moment characterization of the 2-persistent topic model. Then, we
provide a discussion and comparison on why persistence helps in providing identifiability in the
overcomplete regime. The moment characterization and detailed tensor analysis is provided in the
long version [12].

The single topic model (n — o0) is shown in Figure 2a and the bag-of-words admixture model
(n = 1) is shown in Figure 2b. In order to have a fair comparison among these different models, we
fix the number of observed variables to 4 (case m = 2) and vary the persistence level. Consider three
different models: 2-persistent topic model, single topic model and bag-of-words admixture model
(1-persistent topic model). From moment characterization results provided in the long version [12],
we have the following moment forms for each of these models.

For the 2-persistent topic model with 4 words (r = 1,n = 2), we have

MP(z)=(Ae AE[MT (A6 A)T. @)



For the single topic model with 4 words, we have

M (z) = (A® A) Diag (E[h]) (A® A)T, (8)
And for the bag-of-words-admixture model with 4 words (r = 2, n = 1), we have
MP(z) = (A0 AE[(h@h)(hoh) (A A)T. 9)

Note that for the single topic model in (8), the Khatri-Rao product matrix A ©® A € RP*X4 has
the same as the number of columns (i.e. the latent dimensionality) of the original matrix A, while
the number of rows (i.e. the observed dimensionality) is increased. Thus, the Khatri-Rao product
“expands” the effect of hidden variables to higher order observed variables, which is the key towards
identifying overcomplete models. In other words, the original overcomplete representation becomes
determined due to the ‘expansion effect’ of the Khatri-Rao product structure of the higher order
observed moments.

On the other hand, in the bag-of-words admixture model in (9), this interesting ‘expansion property’

does not occur, and we have the Kronecker product A ® A € RPZX‘IZ, in place of the Khatri-Rao
products. The Kronecker product operation increases both the number of the columns (i.e. latent
dimensionality) and the number of rows (i.e. observed dimensionality), which implies that higher
order moments do not help in identifying overcomplete models.

Finally, Contrasting equation (7) with (8) and (9), we find that the 2-persistent model retains the
desirable property of possessing Khatri-Rao products, while being more general than the form for
single topic model in (8). This key property enables us to establish identifiability of topic models
with finite persistence levels.

Remark 6 (Relationship to tensor decompositions). In the long version of this work [12], we es-
tablish that the tensor representation of our model is a special case of the Tucker representation,
but more general than the symmetric CP representation [6]. Therefore, our identifiability results
also imply uniqueness of a class of tensor decompositions with structured sparsity which is con-
tained in the class of Tucker decompositions, but is more general than the Candecomp/Parafac (CP)
decomposition.

5 Proof sketch

The moment of n-persistent topic model with 2n words is derived as Méz)(x) =
(A°™)E[hhT] (A9™) " see [12]. When hidden variables are non-degenerate and A®™ is full col-
umn rank, we have Col(MQ(Z) (z)) = Col(A®"). Therefore, the problem of recovering A from
MS™ (2) reduces to finding A®™ in Col(A®™). Then, under the expansion condition*

’NAgnt (S)] > |S] + duax (A°"), VS C Vi, |S] > krank(4),

we establish that, matrix A is identifiable from Col(AG"). This identifiability claim is proved

by showing that the columns of A®™ are the sparsest and rank-1 (in the tensor form) vectors in
Col (AQ") under the sufficient expansion and genericity conditions.

Then, it is established that, sufficient combinatorial conditions on matrix A (conditions 2 and 3)
ensure that the expansion and rank conditions on A®™ are satisfied. This is shown by proving that
the existence of perfect n-gram matching on A results in the existence of perfect matching on A®™.
For further discussion on proof techniques, see the long version [12].
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