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Abstract
The method of stable random projections is useful for efficiently approximating
the lα distance (0 < α ≤ 2) in high dimension and it is naturally suitable for data
streams. In this paper, we propose to use only the signs of the projected data and
we analyze the probability of collision (i.e., when the two signs differ). Interest-
ingly, when α = 1 (i.e., Cauchy random projections), we show that the probability
of collision can be accurately approximated as functions of the chi-square (χ2)
similarity. In text and vision applications, the χ2 similarity is a popular measure
when the features are generated from histograms (which are a typical example of
data streams). Experiments confirm that the proposed method is promising for
large-scale learning applications. The full paper is available at arXiv:1308.1009.

There are many future research problems. For example, when α → 0, the collision
probability is a function of the resemblance (of the binary-quantized data). This
provides an effective mechanism for resemblance estimation in data streams.

1 Introduction
High-dimensional representations have become very popular in modern applications of machine
learning, computer vision, and information retrieval. For example, Winner of 2009 PASCAL image
classification challenge used millions of features [29]. [1, 30] described applications with billion or
trillion features. The use of high-dimensional data often achieves good accuracies at the cost of a
significant increase in computations, storage, and energy consumptions.

Consider two data vectors (e.g., two images) u, v ∈ RD. A basic task is to compute their distance
or similarity. For example, the correlation (ρ2) and lα distance (dα) are commonly used:

ρ2(u, v) =

∑D
i=1 uivi√∑D

i=1 u
2
i

∑D
i=1 v

2
i

, dα(u, v) =
D∑
i=1

|ui − vi|α (1)

In this study, we are particularly interested in the χ2 similarity, denoted by ρχ2 :

ρχ2 =
D∑
i=1

2uivi
ui + vi

, where ui ≥ 0, vi ≥ 0,
D∑
i=1

ui =
D∑
i=1

vi = 1 (2)

The chi-square similarity is closely related to the chi-square distance dχ2 :

dχ2 =
D∑
i=1

(ui − vi)
2

ui + vi
=

D∑
i=1

(ui + vi)−
D∑
i=1

4uivi
ui + vi

= 2− 2ρχ2 (3)

The chi-square similarity is an instance of the Hilbertian metrics, which are defined over probability
space [10] and suitable for data generated from histograms. Histogram-based features (e.g., bag-
of-word or bag-of-visual-word models) are extremely popular in computer vision, natural language
processing (NLP), and information retrieval. Empirical studies have demonstrated the superiority of
the χ2 distance over l2 or l1 distances for image and text classification tasks [4, 10, 13, 2, 28, 27, 26].

The method of normal random projections (i.e., α-stable projections with α = 2) has become
popular in machine learning (e.g., [7]) for reducing the data dimensions and data sizes, to facilitate
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efficient computations of the l2 distances and correlations. More generally, the method of stable
random projections [11, 17] provides an efficient algorithm to compute the lα distances (0 < α ≤ 2).
In this paper, we propose to use only the signs of the projected data after applying stable projections.

1.1 Stable Random Projections and Sign (1-Bit) Stable Random Projections
Consider two high-dimensional data vectors u, v ∈ RD. The basic idea of stable random projections
is to multiply u and v by a random matrix R ∈ RD×k: x = uR ∈ Rk, y = vR ∈ Rk, where entries
of R are i.i.d. samples from a symmetric α-stable distribution with unit scale. By properties of
stable distributions, xj − yj follows a symmetric α-stable distribution with scale dα. Hence, the
task of computing dα boils down to estimating the scale dα from k i.i.d. samples. In this paper, we
propose to store only the signs of projected data and we study the probability of collision:

Pα = Pr (sign(xj) ̸= sign(yj)) (4)

Using only the signs (i.e., 1 bit) has significant advantages for applications in search and learning.
When α = 2, this probability can be analytically evaluated [9] (or via a simple geometric argument):

P2 = Pr (sign(xj) ̸= sign(yj)) =
1

π
cos−1 ρ2 (5)

which is an important result known as sim-hash [5]. For α < 2, the collision probability is an
open problem. When the data are nonnegative, this paper (Theorem 1) will prove a bound of Pα

for general 0 < α ≤ 2. The bound is exact at α = 2 and becomes less sharp as α moves away
from 2. Furthermore, for α = 1 and nonnegative data, we have the interesting observation that the
probability P1 can be well approximated as functions of the χ2 similarity ρχ2 .

1.2 The Advantages of Sign Stable Random Projections
1. There is a significant saving in storage space by using only 1 bit instead of (e.g.,) 64 bits.
2. This scheme leads to an efficient linear algorithm (e.g., linear SVM). For example, a nega-

tive sign can be coded as “01” and a positive sign as “10” (i.e., a vector of length 2). With
k projections, we concatenate k short vectors to form a vector of length 2k. This idea is
inspired by b-bit minwise hashing [20], which was designed for binary sparse data.

3. This scheme also leads to an efficient near neighbor search algorithm [8, 12]. We can code
a negative sign by “0” and positive sign by “1” and concatenate k such bits to form a hash
table of 2k buckets. In the query phase, one only searches for similar vectors in one bucket.

1.3 Data Stream Computations
Stable random projections are naturally suitable for data streams. In modern applications, massive
datasets are often generated in a streaming fashion, which are difficult to transmit and store [22], as
the processing is done on the fly in one-pass of the data. In the standard turnstile model [22], a data
stream can be viewed as high-dimensional vector with the entry values changing over time.

Here, we denote a stream at time t by u
(t)
i , i = 1 to D. At time t, a stream element (it, It)

arrives and updates the it-th coordinate as u
(t)
it

= u
(t−1)
it

+ It. Clearly, the turnstile data stream
model is particularly suitable for describing histograms and it is also a standard model for network
traffic summarization and monitoring [31]. Because this stream model is linear, methods based on
linear projections (i.e., matrix-vector multiplications) can naturally handle streaming data of this
sort. Basically, entries of the projection matrix R ∈ RD×k are (re)generated as needed using
pseudo-random number techniques [23]. As (it, It) arrives, only the entries in the it-th row, i.e.,
rit,j , j = 1 to k, are (re)generated and the projected data are updated as x(t)

j = x
(t−1)
j + It × ritj .

Recall that, in the definition of χ2 similarity, the data are assumed to be normalized (summing to
1). For nonnegative streams, the sum can be computed error-free by using merely one counter:∑D

i=1 u
(t)
i =

∑t
s=1 Is. Thus we can still use, without loss of generality, the sum-to-one assump-

tion, even in the streaming environment. This fact was recently exploited by another data stream
algorithm named Compressed Counting (CC) [18] for estimating the Shannon entropy of streams.

Because the use of the χ2 similarity is popular in (e.g.,) computer vision, recently there are other
proposals for estimating the χ2 similarity. For example, [15] proposed a nice technique to approxi-
mate ρχ2 by first expanding the data from D dimensions to (e.g.,) 5 ∼ 10×D dimensions through
a nonlinear transformation and then applying normal random projections on the expanded data. The
nonlinear transformation makes their method not applicable to data streams, unlike our proposal.
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For notational simplicity, we will drop the superscript (t) for the rest of the paper.

2 An Experimental Study of Chi-Square Kernels
We provide an experimental study to validate the use of χ2 similarity. Here, the “χ2-kernel” is
defined as K(u, v) = ρχ2 and the “acos-χ2-kernel” as K(u, v) = 1 − 1

π cos−1 ρχ2 . With a slight
abuse of terminology, we call both “χ2 kernel” when it is clear in the context.

We use the “precomputed kernel” functionality in LIBSVM on two datasets: (i) UCI-PEMS, with
267 training examples and 173 testing examples in 138,672 dimensions; (ii) MNIST-small, a subset
of the popular MNIST dataset, with 10,000 training examples and 10,000 testing examples.

The results are shown in Figure 1. To compare these two types of χ2 kernels with “linear” kernel,
we also test the same data using LIBLINEAR [6] after normalizing the data to have unit Euclidian
norm, i.e., we basically use ρ2. For both LIBSVM and LIBLINEAR, we use l2-regularization with
a regularization parameter C and we report the test errors for a wide range of C values.
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Figure 1: Classification accuracies. C is the l2-regularization parameter. We use LIBLINEAR
for “linear” (i.e., ρ2) kernel and LIBSVM “precomputed kernel” for two types of χ2 kernels (“χ2-
kernel” and “acos-χ2-kernel”). For UCI-PEMS, the χ2-kernel has better performance than the linear
kernel and acos-χ2-kernel. For MNIST-Small, both χ2 kernels noticeably outperform linear kernel.
Note that MNIST-small used the original MNIST test set and merely 1/6 of the original training set.

Here, we should state that it is not the intention of this paper to use these two small examples
to conclude the advantage of χ2 kernels over linear kernel. We simply use them to validate our
proposed method, which is general-purpose and is not limited to data generated from histograms.

3 Sign Stable Random Projections and the Collision Probability Bound
We apply stable random projections on two vectors u, v ∈ RD: x =

∑D
i=1 uiri, y =

∑D
i=1 viri,

ri ∼ S(α, 1), i.i.d. Here Z ∼ S(α, γ) denotes a symmetric α-stable distribution with scale γ,
whose characteristic function [24] is E

(
e
√
−1Zt

)
= e−γ|t|α . By properties of stable distributions,

we know x−y ∼ S
(
α,
∑D

i=1 |ui − vi|α
)

. Applications including linear learning and near neighbor
search will benefit from sign α-stable random projections. When α = 2 (i.e. normal), the collision
probability Pr (sign(x) ̸= sign(y)) is known [5, 9]. For α < 2, it is a difficult probability problem.
This section provides a bound of Pr (sign(x) ̸= sign(y)), which is fairly accurate for α close to 2.

3.1 Collision Probability Bound
In this paper, we focus on nonnegative data (as common in practice). We present our first theorem.

Theorem 1 When the data are nonnegative, i.e., ui ≥ 0, vi ≥ 0, we have

Pr (sign(x) ̸= sign(y)) ≤ 1

π
cos−1 ρα, where ρα =

 ∑D
i=1 u

α/2
i v

α/2
i√∑D

i=1 u
α
i

∑D
i=1 v

α
i

2/α

� (6)

For α = 2, this bound is exact [5, 9]. In fact the result for α = 2 leads to the following Lemma:

Lemma 1 The kernel defined as K(u, v) = 1− 1
π cos−1 ρ2 is positive definite (PD).

Proof: The indicator function 1 {sign(x) = sign(y)} can be written as an inner product (hence PD)
and Pr (sign(x) = sign(y)) = E (1 {sign(x) = sign(y)}) = 1− 1

π cos−1 ρ2. �
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3.2 A Simulation Study to Verify the Bound of the Collision Probability
We generate the original data u and v by sampling from a bivariate t-distribution, which has two
parameters: the correlation and the number of degrees of freedom (which is taken to be 1 in our
experiments). We use a full range of the correlation parameter from 0 to 1 (spaced at 0.01). To
generate positive data, we simply take the absolute values of the generated data. Then we fix the
data as our original data (like u and v), apply sign stable random projections, and report the empirical
collision probabilities (after 105 repetitions).

Figure 2 presents the simulated collision probability Pr (sign(x) ̸= sign(y)) for D = 100 and α ∈
{1.5, 1.2, 1.0, 0.5}. In each panel, the dashed curve is the theoretical upper bound 1

π cos−1 ρα, and
the solid curve is the simulated collision probability. Note that it is expected that the simulated data
can not cover the entire range of ρα values, especially as α → 0.
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Figure 2: Dense Data and D = 100. Simulated collision probability Pr (sign(x) ̸= sign(y)) for
sign stable random projections. In each panel, the dashed curve is the upper bound 1

π cos−1 ρα.

Figure 2 verifies the theoretical upper bound 1
π cos−1 ρα. When α ≥ 1.5, this upper bound is fairly

sharp. However, when α ≤ 1, the bound is not tight, especially for small α. Also, the curves of the
empirical collision probabilities are not smooth (in terms of ρα).

Real-world high-dimensional datasets are often sparse. To verify the theoretical upper bound of
the collision probability on sparse data, we also simulate sparse data by randomly making 50% of
the generated data as used in Figure 2 be zero. With sparse data, it is even more obvious that the
theoretical upper bound 1

π cos−1 ρα is not sharp when α ≤ 1, as shown in Figure 3.
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Figure 3: Sparse Data and D = 100. Simulated collision probability Pr (sign(x) ̸= sign(y)) for
sign stable random projection. The upper bound is not tight especially when α ≤ 1.

In summary, the collision probability bound: Pr (sign(x) ̸= sign(y)) ≤ 1
π cos−1 ρα is fairly sharp

when α is close to 2 (e.g., α ≥ 1.5). However, for α ≤ 1, a better approximation is needed.

4 α = 1 and Chi-Square (χ2) Similarity
In this section, we focus on nonnegative data (ui ≥ 0, vi ≥ 0) and α = 1. This case is important in
practice. For example, we can view the data (ui, vi) as empirical probabilities, which are common
when data are generated from histograms (as popular in NLP and vision) [4, 10, 13, 2, 28, 27, 26].

In this context, we always normalize the data, i.e.,
∑D

i=1 ui =
∑D

i=1 vi = 1. Theorem 1 implies

Pr (sign(x) ̸= sign(y)) ≤ 1

π
cos−1 ρ1, where ρ1 =

(
D∑
i=1

u
1/2
i v

1/2
i

)2

(7)

While the bound is not tight, interestingly, the collision probability can be related to the χ2 similarity.

Recall the definitions of the chi-square distance dχ2 =
∑D

i=1
(ui−vi)

2

ui+vi
and the chi-square similarity

ρχ2 = 1− 1
2dχ2 =

∑D
i=1

2uivi
ui+vi

. In this context, we should view 0
0 = 0.

4



Lemma 2 Assume ui ≥ 0, vi ≥ 0,
∑D

i=1 ui = 1,
∑D

i=1 vi = 1. Then

ρχ2 =
D∑
i=1

2uivi
ui + vi

≥ ρ1 =

(
D∑
i=1

u
1/2
i v

1/2
i

)2

� (8)

It is known that the χ2-kernel is PD [10]. Consequently, we know the acos-χ2-kernel is also PD.

Lemma 3 The kernel defined as K(u, v) = 1− 1
π cos−1 ρχ2 is positive definite (PD). �

The remaining question is how to connect Cauchy random projections with the χ2 similarity.

5 Two Approximations of Collision Probability for Sign Cauchy Projections
It is a difficult problem to derive the collision probability of sign Cauchy projections if we would
like to express the probability only in terms of certain summary statistics (e.g., some distance). Our
first observation is that the collision probability can be well approximated using the χ2 similarity:

Pr (sign(x) ̸= sign(y)) ≈ Pχ2(1) =
1

π
cos−1

(
ρχ2

)
(9)

Figure 4 shows this approximation is better than 1
π cos−1 (ρ1). Particularly, in sparse data, the

approximation 1
π cos−1

(
ρχ2

)
is very accurate (except when ρχ2 is close to 1), while the bound

1
π cos−1 (ρ1) is not sharp (and the curve is not smooth in ρ1).
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Figure 4: The dashed curve is 1
π cos−1 (ρ), where ρ can be ρ1 or ρχ2 depending on the context. In

each panel, the two solid curves are the empirical collision probabilities in terms of ρ1 (labeled by
“1”) or ρχ2 (labeled by “χ2). It is clear that the proposed approximation 1

π cos−1 ρχ2 in (9) is more
tight than the upper bound 1

π cos−1 ρ1, especially so in sparse data.

Our second (and less obvious) approximation is the following integral:

Pr (sign(x) ̸= sign(y)) ≈ Pχ2(2) =
1

2
− 2

π2

∫ π/2

0

tan−1

(
ρχ2

2− 2ρχ2

tan t

)
dt (10)

Figure 5 illustrates that, for dense data, the second approximation (10) is more accurate than the
first (9). The second approximation (10) is also accurate for sparse data. Both approximations,
Pχ2(1) and Pχ2(2), are monotone functions of ρχ2 . In practice, we often do not need the ρχ2 values
explicitly because it often suffices if the collision probability is a monotone function of the similarity.

5.1 Binary Data
Interestingly, when the data are binary (before normalization), we can compute the collision prob-
ability exactly, which allows us to analytically assess the accuracy of the approximations. In fact,
this case inspired us to propose the second approximation (10), which is otherwise not intuitive.

For convenience, we define a = |Ia|, b = |Ib|, c = |Ic|, where
Ia = {i|ui > 0, vi = 0}, Ib = {i|vi > 0, ui = 0}, Ic = {i|ui > 0, vi > 0}, (11)

Assume binary data (before normalization, i.e., sum to one). That is,

ui =
1

|Ia|+ |Ic|
=

1

a+ c
, ∀i ∈ Ia ∪ Ic, vi =

1

|Ib|+ |Ic|
=

1

b+ c
, ∀i ∈ Ib ∪ Ic (12)

The chi-square similarity ρχ2 becomes ρχ2 =
∑D

i=1
2uivi

ui+vi
= 2c

a+b+2c and hence
ρχ2

2−2ρχ2
= c

a+b .
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Figure 5: Comparison of two approximations: χ2(1) based on (9) and χ2(2) based on (10). The
solid curves (empirical probabilities expressed in terms of ρχ2 ) are the same solid curves labeled
“χ2” in Figure 4. The left panel shows that the second approximation (10) is more accurate in dense
data. The right panel illustrate that both approximations are accurate in sparse data. (9) is slightly
more accurate at small ρχ2 and (10) is more accurate at ρχ2 close to 1.

Theorem 2 Assume binary data. When α = 1, the exact collision probability is

Pr (sign(x) ̸= sign(y)) =
1

2
− 2

π2
E
{
tan−1

( c
a
|R|
)
tan−1

(c
b
|R|
)}

(13)

where R is a standard Cauchy random variable. �

When a = 0 or b = 0, we have E
{
tan−1

(
c
a |R|

)
tan−1

(
c
b |R|

)}
= π

2E
{
tan−1

(
c

a+b |R|
)}

. This
observation inspires us to propose the approximation (10):

Pχ2(2) =
1

2
− 1

π
E

{
tan−1

(
c

a+ b
|R|
)}

=
1

2
− 2

π2

∫ π/2

0

tan−1

(
c

a+ b
tan t

)
dt

To validate this approximation for binary data, we study the difference between (13) and (10), i.e.,

Z(a/c, b/c) = Err = Pr (sign(x) ̸= sign(y))− Pχ2(2)

=− 2

π2
E

{
tan−1

(
1

a/c
|R|
)
tan−1

(
1

b/c
|R|
)}

+
1

π
E

{
tan−1

(
1

a/c+ b/c
|R|
)}

(14)

(14) can be easily computed by simulations. Figure 6 confirms that the errors are larger than zero
and very small . The maximum error is smaller than 0.0192, as proved in Lemma 4.
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Figure 6: Left panel: contour plot for the error Z(a/c, b/c) in (14). The maximum error (which is
< 0.0192) occurs along the diagonal line. Right panel: the diagonal curve of Z(a/c, b/c).

Lemma 4 The error defined in (14) ranges between 0 and Z(t∗):

0 ≤ Z(a/c, b/c) ≤ Z(t∗) =

∫ ∞

0

{
− 2

π2

(
tan−1

( r

t∗

))2
+

1

π
tan−1

( r

2t∗

)} 2

π

1

1 + r2
dr (15)

where t∗ = 2.77935 is the solution to 1
t2−1 log

2t
1+t =

log(2t)
(2t)2−1 . Numerically, Z(t∗) = 0.01919. �
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5.2 An Experiment Based on 3.6 Million English Word Pairs
To further validate the two χ2 approximations (in non-binary data), we experiment with a word
occurrences dataset (which is an example of histogram data) from a chunk of D = 216 web crawl
documents. There are in total 2,702 words, i.e., 2,702 vectors and 3,649,051 word pairs. The entries
of a vector are the occurrences of the word. This is a typical sparse, non-binary dataset. Interestingly,
the errors of the collision probabilities based on two χ2 approximations are still very small. To report
the results, we apply sign Cauchy random projections 107 times to evaluate the approximation errors
of (9) and (10). The results, as presented in Figure 7, again confirm that the upper bound 1

π cos−1 ρ1
is not tight and both χ2 approximations, Pχ2(1) and Pχ2(2), are accurate.
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Figure 7: Empirical collision probabilities for 3.6 million English word pairs. In the left panel,
we plot the empirical collision probabilities against ρ1 (lower, green if color is available) and ρχ2

(higher, red). The curves confirm that the bound 1
π cos−1 ρ1 is not tight (and the curve is not smooth).

We plot the two χ2 approximations as dashed curves which largely match the empirical probabilities
plotted against ρχ2 , confirming that the χ2 approximations are good. For smaller ρχ2 values, the
first approximation Pχ2(1) is slightly more accurate. For larger ρχ2 values, the second approximation
Pχ2(2) is more accurate. In the right panel, we plot the errors for both Pχ2(1) and Pχ2(2).

6 Sign Cauchy Random Projections for Classification
Our method provides an effective strategy for classification. For each (high-dimensional) data vec-
tor, using k sign Cauchy projections, we encode a negative sign as “01” and a positive as “10” (i.e.,
a vector of length 2) and concatenate k short vectors to form a new feature vector of length 2k. We
then feed the new data into a linear classifier (e.g., LIBLINEAR). Interestingly, this linear classifier
approximates a nonlinear kernel classifier based on acos-χ2-kernel: K(u, v) = 1− 1

π cos−1 ρχ2 . See
Figure 8 for the experiments on the same two datasets in Figure 1: UCI-PEMS and MNIST-Small.
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Figure 8: The two dashed (red if color is available) curves are the classification results obtained
using “acos-χ2-kernel” via the “precomputed kernel” functionality in LIBSVM. The solid (black)
curves are the accuracies using k sign Cauchy projections and LIBLINEAR. The results confirm
that the linear kernel from sign Cauchy projections can approximate the nonlinear acos-χ2-kernel.

Figure 1 has already shown that, for the UCI-PEMS dataset, the χ2-kernel (ρχ2 ) can produce notice-
ably better classification results than the acos-χ2-kernel (1 − 1

π cos−1 ρχ2 ). Although our method
does not directly approximate ρχ2 , we can still estimate ρχ2 by assuming the collision probability
is exactly Pr (sign(x) ̸= sign(y)) = 1

π cos−1 ρχ2 and then we can feed the estimated ρχ2 values
into LIBSVM “precomputed kernel” for classification. Figure 9 verifies that this method can also
approximate the χ2 kernel with enough projections.
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Figure 9: Nonlinear kernels. The dashed curves are the classification results obtained using χ2-
kernel and LIBSVM “precomputed kernel” functionality. We apply k sign Cauchy projections and
estimate ρχ2 assuming the collision probability is exactly 1

π cos−1 ρχ2 and then feed the estimated
ρχ2 into LIBSVM again using the “precomputed kernel” functionality.

7 Conclusion
The use of χ2 similarity is widespread in machine learning, especially when features are generated
from histograms, as common in natural language processing and computer vision. Many prior stud-
ies [4, 10, 13, 2, 28, 27, 26] have shown the advantage of using χ2 similarity compared to other
measures such as l2 distance. However, for large-scale applications with ultra-high-dimensional
datasets, using χ2 similarity becomes challenging for practical reasons. Simply storing (and maneu-
vering) all the high-dimensional features would be difficult if there are a large number of observa-
tions. Computing all pairwise χ2 similarities can be time-consuming and in fact we usually can not
materialize an all-pairwise similarity matrix even if there are merely 106 data points. Furthermore,
the χ2 similarity is nonlinear, making it difficult to take advantage of modern linear algorithms
which are known to be very efficient, e.g., [14, 25, 6, 3]. When data are generated in a streaming
fashion, computing χ2 similarities without storing the original data will be even more challenging.

The method of α-stable random projections (0 < α ≤ 2) [11, 17] is popular for efficiently com-
puting the lα distances in massive (streaming) data. We propose sign stable random projections by
storing only the signs (i.e., 1-bit) of the projected data. Obviously, the saving in storage would be
a significant advantage. Also, these bits offer the indexing capability which allows efficient search.
For example, we can build hash tables using the bits to achieve sublinear time near neighbor search
(although this paper does not focus on near neighbor search). We can also build efficient linear
classifiers using these bits, for large-scale high-dimensional machine learning applications.

A crucial task in analyzing sign stable random projections is to study the probability of collision (i.e.,
when the two signs differ). We derive a theoretical bound of the collision probability which is exact
when α = 2. The bound is fairly sharp for α close to 2. For α = 1 (i.e., Cauchy random projec-
tions), we find the χ2 approximation is significantly more accurate. In addition, for binary data, we
analytically show that the errors from using the χ2 approximation are less than 0.0192. Experiments
on real and simulated data confirm that our proposed χ2 approximations are very accurate.

We are enthusiastic about the practicality of sign stable projections in learning and search applica-
tions. The previous idea of using the signs from normal random projections has been widely adopted
in practice, for approximating correlations. Given the widespread use of the χ2 similarity and the
simplicity of our method, we expect the proposed method will be adopted by practitioners.

Future research Many interesting future research topics can be studied. (i) The processing cost
of conducting stable random projections can be dramatically reduced by very sparse stable random
projections [16]. This will make our proposed method even more practical. (ii) We can try to utilize
more than just 1-bit of the projected data, i.e., we can study the general coding problem [19]. (iii)
Another interesting research would be to study the use of sign stable projections for sparse signal
recovery (Compressed Sensing) with stable distributions [21]. (iv) When α → 0, the collision
probability becomes Pr (sign(x) ̸= sign(y)) = 1

2 − 1
2Resemblance, which provides an elegant

mechanism for computing resemblance (of the binary-quantized data) in sparse data streams.
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