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Abstract

The Markov chain is a convenient tool to represent the dynamics of complex sys-
tems such as traffic and social systems, where probabilistic transition takes place
between internal states. A Markov chain is characterized by initial-state proba-
bilities and a state-transition probability matrix. In the traditional setting, a major
goal is to study properties of a Markov chain when those probabilities are known.
This paper tackles an inverse version of the problem: we find those probabilities
from partial observations at a limited number of states. The observations include
the frequency of visiting a state and the rate of reaching a state from another. Prac-
tical examples of this task include traffic monitoring systems in cities, where we
need to infer the traffic volume on single link on a road network from a limited
number of observation points. We formulate this task as a regularized optimiza-
tion problem, which is efficiently solved using the notion of natural gradient. Us-
ing synthetic and real-world data sets including city traffic monitoring data, we
demonstrate the effectiveness of our method.

1 Introduction

The Markov chain is a standard model for analyzing the dynamics of stochastic systems, including
economic systems [29], traffic systems [11], social systems [12], and ecosystems [6]. There is a large
body of the literature on the problem of analyzing the properties a Markov chain given its initial
distribution and a matrix of transition probabilities [21, 26]. For example, there exist established
methods for analyzing the stationary distribution and the mixing time of a Markov chain [23, 16].
In these traditional settings, the initial distribution and the transition-probability matrix are given a
priori or directly estimated.

Unfortunately, it is often impractical to directly measure or estimate the parameters (i.e., the initial
distribution and the transition-probability matrix) of the Markov chain that models a particular sys-
tem under consideration. For example, one can analyze a traffic system [27, 24], including how the
vehicles are distributed across a city, by modeling the dynamics of vehicles as a Markov chain [11].
It is, however, difficult to directly measure the fraction of the vehicles that turns right or left at every
intersection.

The inverse problem of a Markov chain that we address in this paper is an inverse version of the
traditional problem of analyzing a Markov chain with given input parameters. Namely, our goal is
to estimate the parameters of a Markov chain from partial observations of the corresponding system.
In the context of the traffic system, for example, we seek to find the parameters of a Markov chain,
given the traffic volumes at stationary observation points and/or the rate of vehicles moving between
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Figure 1: An inverse Markov chain problem. The traffic volume on every road is inferred from
traffic volumes at limited observation points and/or the rates of vehicles transitioning between these
points.

these points. Such statistics can be reliably estimated from observations with web-cameras [27],
automatic number plate recognition devices [10], or radio-frequency identification (RFID) [25],
whose availability is however limited to a small number of observation points in general (see Figure
1). By estimating the parameters of a Markov chain and analyzing its stationary probability, one can
infer the traffic volumes at unobserved points.

The primary contribution of this paper is the first methodology for solving the inverse problem of
a Markov chain when only the observation at a limited number of stationary observation points are
given. Specifically, we assume that the frequency of visiting a state and/or the rate of reaching a
state from another are given for a small number of states. We formulate the inverse problem of a
Markov chain as a regularized optimization problem. Then we can efficiently find a solution to the
inverse problem of a Markov chain based on the notion of natural gradient [3].

The inverse problem of a Markov chain has been addressed in the literature [9, 28, 31], but the
existing methods assume that sample paths of the Markov chain are available. Related work of
inverse reinforcement learning [20, 1, 32] also assumes that sample paths are available. In the
context of the traffic system, the sample paths corresponds to probe-car data (i.e., sequence of GPS
points). However, the probe-car data is expensive and rarely available in public. Even when it is
available, it is often limited to vehicles of a particular type such as taxis or in a particular region. On
the other hand, stationary observation data is often less expensive and more obtainable. For instance,
web-camera images are available even in developing countries such as Kenya [2].

The rest of this paper is organized as follows. In Section 2, preliminaries are introduced. In Section
3, we formulate an inverse problem of a Markov chain as a regularized optimization problem. A
method for efficiently solving the inverse problem of a Markov chain is proposed in Section 4. An
example of implementation is provided in Section 5. Section 6 evaluates the proposed method with
both artificial and real-world data sets including the one from traffic monitoring in a city.

2 Preliminaries

A discrete-time Markov chain [26, 21] is a stochastic process, X = (X0, X1, . . . ), where Xt

is a random variable representing the state at time t ∈ Z≥0. A Markov chain is defined by
the triplet {X , pI, pT}, where X = {1, . . . , |X |} is a finite set of states, where |X | ≥ 2 is
the number of states. The function, pI : X → [0, 1], specifies the initial-state probability, i.e.,
pI(x) ≜ Pr(X0 = x), and pT : X × X → [0, 1] specifies the state transition probability from x to
x′, i.e., pT(x′ | x) ≜ Pr(Xt+1 = x′ | Xt = x), ∀t ∈ Z≥0. Note the state transition is conditionally
independent of the past states given the current state, which is called the Markov property.

Any Markov chain can be converted into another Markov chain, called a Markov chain with restart,
by modifying the transition probability. There, the initial-state probability stays unchanged, but the
state transition probability is modified into p such that

p(x′ | x) ≜ βpT(x
′ | x) + (1− β)pI(x

′), (1)

where β ∈ [0, 1) is a continuation rate of the Markov chain1. In the limit of β → 1, this Markov
chain with restart is equivalent to the original Markov chain. In the following, we refer to p as the
(total) transition probability, while pT as a partial transition (or p-transition) probability.

1The rate β can depend on the current state x so that β can be replaced with β(x) throughout the paper. For
readability, we assume β is a constant.
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Our main targeted applications are (massive) multi-agent systems such as traffic systems. So, restart-
ing a chain means that an agent’s origin of a trip is decided by the initial distribution, and the trip
ends at each time-step with probability 1− β.

We model the initial probability and p-transition probability with parameters ν ∈ Rd1 andω ∈ Rd2 ,
respectively, where d1 and d2 are the numbers of those parameters. So we will denote those as pIν
and pTω , respectively, and the total transition probability as pθ, where θ is the total model parameter,
θ ≜ [ν⊤,ω⊤, β̃]⊤ ∈ Rd where d = d1+d2+1 and β̃ ≜ ς−1(β) with the inverse of sigmoid function
ς−1. That is, Eq. (1) is rewritten as

pθ(x
′ | x) ≜ βpTω(x

′ | x) + (1− β)pIν(x
′). (2)

The Markov chain with restart can be represented as M(θ) ≜ {X , pIν , pTω, β}.

Also we make the following assumptions that are standard for the study of Markov chains and their
variants [26, 7].

Assumption 1 The Markov chain M(θ) for any θ ∈ Rd is ergodic (irreducible and aperiodic).

Assumption 2 The initial probability pIν and p-transition probability pTω are differentiable every-
where with respect to θ ∈ Rd.2

Under Assumption 1, there exists a unique stationary probability, πθ(·), which satisfies the balance
equation:

πθ(x
′) =

∑
x∈X p(x

′ | x)πθ(x), ∀x′ ∈ X , (3)

This stationary probability is equal to the limiting distribution and independent of the initial state:
πθ(x

′) = limt→∞ Pr(Xt=x
′ | X0=x, M(θ)), ∀x∈X . Assumption 2 indicates that the transition

probability pθ is also differentiable for any state pair (x, x′) ∈ X × X with respect to any θ ∈ Rd.

Finally we define hitting probabilities for a Markov chain of indefinite-horizon. The Markov chain
is represented as M̃(θ) = {X , pTω, β}, which evolves according to the p-transition probability pTω ,
not to pθ, and terminates with a probability 1− β at every step. The hitting probability of a state x′
given x is defined as

hθ(x
′ | x) ≜ Pr(x′ ∈ X̃ | X0 = x, M̃(θ)), (4)

where X̃ = (X̃0, . . . , X̃T ) is a sample path of M̃(θ) until the stopping time, T .

3 Inverse Markov Chain Problem

Here we formulate an inverse problem of the Markov chain M(θ). In the inverse problem, the model
family M ∈ {M(θ) |θ ∈ Rd}, which may be subject to a transition structure as in the road network,
is known or given a priori, but the model parameter θ is unknown. In Section 3.1, we define inputs
of the problem, which are associated with functions of the Markov chain. Objective functions for
the inverse problem are discussed in Section 3.2.

3.1 Problem setting

The input and output of our inverse problem of the Markov chain is as follows.

• Inputs are the values measured at a portion of states x ∈ Xo, where Xo ⊂ X and usually |Xo| ≪
|X |. The measured values include the frequency of visiting a state, f(x), x ∈ Xo. In addition,
the rate of reaching a state from another, g(x, x′), might also be given for (x, x′) ∈ Xo × Xo,
where g(x, x) is equal to 1.
In the context of traffic monitoring, f(x) denotes the number of vehicles that went through an
observation point, x; g(x, x′) denotes the number of vehicles that went through x and x′ in this
order divided by f(x).

• Output is the estimated parameter θ of the Markov chain M(θ), which specifies the total-
transition probability function pθ in Eq. (2).

2We assume ∂
∂θi

log pIν(x) = 0 when pIν(x) = 0, and an analogous assumption applies to pTω .
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The first step of our formulation is to relate f and g to the Markov chain. Specifically, we assume
that the observed f is proportional to the true stationary probability of the Markov chain:

π∗(x) = cf(x), x ∈ Xo, (5)
where c is an unknown constant to satisfy the normalization condition. We further assume that the
observed reaching rate is equal to the true hitting probability of the Markov chain:

h∗(x′ | x) = g(x, x′), (x, x′) ∈ Xo ×Xo. (6)

3.2 Objective function

Our objective is to find the parameter θ∗ such that πθ∗ and hθ∗ well approximate π∗ and h∗ in
Eqs. (5) and (6). We use the following objective function to be minimized,

L(θ) ≜ γLd(θ) + (1− γ)Lh(θ) + λR(θ), (7)
where Ld and Lh are cost functions with respect to the quality of the approximation of π∗ and h∗,
respectively. These are specified in the following subsections. The function R(θ) is the regular-
ization term of θ, such as ||θ||22 or ||θ||1. The parameters γ ∈ [0, 1] and λ ≥ 0 balance these cost
functions and the regularization term, which will be optimized by cross-validation. Altogether, our
problem is to find the parameter, θ∗ = argminθ∈Rd L(θ).

3.2.1 Cost function for stationary probability function

Because the constant c in Eq. (5) is unknown, for example, we cannot minimize a squared error
such as

∑
x∈Xo

(π∗(x)− πθ(x))
2. Thus, we need to derive an alternative cost function of πθ that is

independent of c.

For Ld(θ), one natural choice might be a Kullback-Leibler (KL) divergence,

LKL
d (θ) ≜

∑
x∈Xo

π∗(x) log
π∗(x)

πθ(x)
= −c

∑
x∈Xo

f(x) log πθ(x) + o,

where o is a term independent of θ. The minimizer of LKL
d (θ) is independent of c. However,

minimization of LKL
d will lead to a biased estimate. This is because LKL

d will be decreased by
increasing

∑
x∈Xo

πθ(x) when the ratios πθ(x)/πθ(x′), ∀x, x′ ∈ Xo are unchanged. This implies
that, because of

∑
x∈Xo

πθ(x) +
∑

x∈(X\Xo)
πθ(x) = 1, minimizing LKL

d has an unwanted side-
effect of overvaluing

∑
x∈Xo

πθ(x) and undervaluing
∑

x∈(X\Xo)
πθ(x).

Here we propose an alternative form of Ld that can avoid this side-effect. It uses a logarithmic ratio
of the stationary probabilities such that

Ld(θ) ≜
1

2

∑
i∈Xo

∑
j∈Xo

(
log

π∗(i)

π∗(j)
− log

πθ(i)

πθ(j)

)2

=
1

2

∑
i∈Xo

∑
j∈Xo

(
log

f(i)

f(j)
− log

πθ(i)

πθ(j)

)2

(8)

The log-ratio of probabilities represents difference of information contents between these probabil-
ities in the sense of information theory [17]. Thus this function can be regarded as a sum of squared
error between π∗(x) and πθ(x) over x ∈ Xo with respect to relative information contents. In a
different point of view, Eq. (8) follows from maximizing the likelihood of θ under the assumption
that the observation “log f(i) − log f(j)” has a Gaussian white noise N (0, ϵ2). This assumption
is satisfied when f(i) has a log-normal distribution, LN (µi, (ϵ/

√
2)2), independently for each i,

where µi is the true location parameter, and the median of f(i) is equal to eµi .

3.2.2 Cost function for hitting probability function

Unlike Ld(θ), there are several options for Lh(θ). Examples of this cost function include a mean
squared error and mean absolute error. Here we use the following standard squared errors in the log
space, based on Eq. (6),

Lh(θ) ≜
1

2

∑
i∈Xo

∑
j∈Xo

(
log g(i, j)− log hθ(j | i)

)2
. (9)

Eq. (9) follows from maximizing the likelihood of θ under the assumption that the observation
log g(i, j) has a Gaussian white noise, as with the case of Ld(θ).
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4 Gradient-based Approach

Let us consider (local) minimization of the objective function L(θ) in Eq. (7). We adopt a gradient-
descent approach for the problem, where the parameter θ is optimized by the following iteration,
with the notation ∇θL(θ) ≜ [∂L(θ)/∂θ1, . . . , ∂L(θ)/∂θd]

⊤,

θt+1 = θt − ηtG
−1
θt

{γ∇θLd(θt) + (1− γ)∇θLh(θt) + λ∇θR(θt)} , (10)

where ηt > 0 is an updating rate. The matrix Gθt ∈ Rd×d, called the metric of the parameter θ, is
an arbitrary bounded positive definite matrix. When Gθt is set to the identity matrix of size d, Id,
the update formula in Eq. (10) becomes an ordinary gradient descent. However, since the tangent
space at a point of a manifold representing M(θ) is generally different from an orthonormal space
with respect to θ [4], one can apply the idea of natural gradient [3] to the metric Gθ, expecting to
make the procedure more efficient. This is described in Section 4.1.

The gradients of Ld and Lh in Eq. (10) are given as

∇θLd(θ) =
∑
i∈Xo

∑
j∈Xo

(
log

f(i)

f(j)
− log

πθ(i)

πθ(j)

) (
∇θ log πθ(j)−∇θ log πθ(i)

)
,

∇θLh(θ) =
∑
i∈Xo

∑
j∈Xo

(
log g(i, j)− log hθ(j | i)

)
∇θ log hθ(j | i).

In order to implement the update rule of Eq. (10), we need to compute the gradient of the logarithmic
stationary probability ∇θ log πθ, the hitting probability hθ, and its gradient ∇θ hθ. In Sections 4.2,
we will describe how to compute them, which will turn out to be quite non-trivial.

4.1 Natural gradient

Usually, a parametric family of Markov chains, Mθ ≜ {M(θ) | θ ∈ Rd}, forms a manifold struc-
ture with respect to the parameter θ under information divergences such as a KL divergence, instead
of the Euclidean structure. Thus the ordinary gradient, Eq. (10) with Gθ = Id, does not properly
reflect the differences in the sensitivities and the correlations between the elements of θ. Accord-
ingly, the ordinary gradient is generally different from the steepest direction on the manifold, and
the optimization process with the ordinary gradient often becomes unstable or falls into a learning
plateau [5].

For efficient learning, we consider an appropriate Gθ based on the notion of the natural gradient
(NG) [5]. The NG represents the steepest descent direction of a function b(θ) in a Riemannian
space3 by −R−1

θ ∇θb(θ) when the Riemannian space is defined by the metric matrixRθ. An appro-
priate Riemannian metric on a statistical model, Y , having parameters, θ, is known to be its Fisher
information matrix (FIM):4∑

y Pr(Y=y |θ)∇θ log Pr(Y=y |θ)∇θ log Pr(Y=y |θ)⊤.

In our case, the joint probability, pθ(x′|x)πθ(x) for x, x′ ∈ X , fully specifies M(θ) at the steady
state, due to the Markovian property. Thus we propose to use the followingGθ in the update rule of
Eq. (10),

Gθ = Fθ + σId, (11)

where Fθ is the FIM of pθ(x′|x)πθ(x),

Fθ ≜
∑
x∈X

πθ(x)

(
∇θ log πθ(x)∇θ log πθ(x)

⊤ +
∑
x′∈X

pθ(x
′|x)∇θ log pθ(x

′|x)∇θ log pθ(x
′|x)⊤

)
.

The second term with σ ≥ 0 in Eq. (11) will be needed to makeGθ positive definite.
3A parameter space is a Riemannian space if the parameter θ ∈ Rd is on a Riemannian manifold defined

by a positive definite matrix called a Riemannian metric matrix Rθ ∈ Rd×d. The squared length of a small
incremental vector ∆θ connecting θ to θ +∆θ in a Riemannian space is given by ∥∆θ∥2Rθ

= ∆θ⊤Rθ∆θ.
4The FIM is the unique metric matrix of the second-order Taylor expansion of the KL divergence, that is,∑

y Pr(Y=y |θ) log Pr(Y=y|θ)
Pr(Y=y|θ+∆θ)

≃ 1
2
∥∆θ∥2Fθ

.
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4.2 Computing the gradient

To derive an expression for computing ∇θ log πθ, we use the following notations for a vector and
a matrix: πθ ≜ [πθ(1), . . . , πθ(|X |)]⊤ and (Pθ)x,x′ ≜ pθ(x

′|x). Then the logarithmic stationary
probability gradients with respect to θi is given by

∂

∂θi
logπθ ≜ ∇θi logπθ = Diag(πθ)

−1(Id − P⊤
θ + πθ1

⊤
d )

−1(∇θiP
⊤
θ )πθ, (12)

where Diag(a) is a diagonal matrix whose diagonal elements consist of a vector a, loga is the
element-wise logarithm of a, and 1d denotes a column-vector of size d, whose elements are all 1.
In the remainder of this section, we prove Eq. (12) by using the following proposition.
Proposition 1 ([7]) If A ∈ Rd×d satisfies limK→∞AK = 0, then the inverse of (I − A) exists,
and (I −A)−1 = limK→∞

∑K
k=0A

k.

Equation (3) is rewritten as πθ = P⊤
θ πθ. Note that πθ is equal to a normalized eigenvector

of P⊤
θ whose eigenvalue is 1. By taking a partial differential of Eq. (3) with respect to θi,

Diag(πθ)∇θi logπθ = (∇θiP
⊤
θ )πθ + P⊤

θ Diag(πθ)∇θi logπθ is obtained. Though we get the
following linear simultaneous equation of ∇θi logπθ,

(Id − P⊤
θ )Diag(πθ)∇θi logπθ = (∇θiP

⊤
θ )πθ, (13)

the inverse of (Id−P⊤
θ )Diag(πθ) does not exist. It comes from the fact (Id−P⊤

θ )Diag(πθ)1d = 0.
So we add a term including 1⊤dDiag(πθ)∇θi logπθ = 1⊤d∇θiπθ = ∇θi{1⊤dπθ} = 0 to Eq. (13),
such that (Id−P⊤

θ +πθ1
⊤
d )Diag(πθ)∇θi logπθ = (∇θiP

⊤
θ )πθ. The inverse of (Id−P⊤

θ +πθ1
⊤
d )

exists, because of Proposition 1 and the fact limk→∞(P⊤
θ −πθ1

⊤
d )

k = limk→∞P
⊤k
θ −πθ1

⊤
d = 0.

The inverse of Diag(πθ) also exists, because πθ(x) is positive for any x ∈ X under Assumption 1.
Hence we get Eq. (12).

To derive expressions for computing hθ and ∇θ log hθ, we use the following notations: hθ(x) ≜
[hθ(x | 1), . . . , hθ(x | |X |)]⊤ for the hitting probabilities in Eq. (4) and (PTθ)x,x′≜ pTω(x

′ |x) for
p-transition probabilities in Eq. (1). The hitting probabilities and those gradients with respect to θi
can be computed as the following closed forms,

hθ(x) = (I|X | − βP
\x
Tθ )

−1ex|X |, (14)

∇θi loghθ(x) = βDiag(hθ(x))
−1(I|X | − βP

\x
Tθ )

−1(∇θiP
\x
θ )hθ(x), (15)

where ex|X | denotes a column-vector of size |X |, where x’th element is 1 and all of the other elements

are zero. The matrix P \x
Tθ is defined as (I|X | − ex|X |e

x⊤
|X|)PTθ. We will derive Eqs. (14) and (15) as

follows. The hitting probabilities in Eq. (4) can be represented as the following recursive form,

hθ(x
′ |x) =

{
1 if x′ = x

β
∑

y∈X pTω(y |x)hθ(x′ | y) otherwise.

This equation can be represented with the matrix notation as hθ(x) = e
x
|X | + βP

\x
Tθhθ(x). Because

the inverse of (I|X | − βP
\x
Tθ ) exists by Proposition 1 and limk→∞(βP

\x
Tθ )

k = 0, we get Eq. (14).
In a similar way, one can prove Eq. (15).

5 Implementation

For implementing the proposed method, parametric models of the initial probability pIν and the p-
transition probability pTω in Eq. (1) need to be specified. We provide intuitive models based on the
logit function [8].

The initial probability is modeled as
pIν(x) ≜

exp(sI(x;ν))∑
y∈X exp(sI(y;ν))

, (16)

where sI(x;ν) is a state score function with its parameter ν ≜ [ν loc⊤,νglo⊤]⊤ ∈ Rd1 consisting of
a local parameter ν loc ∈ R|X | and a global parameter νglo ∈ Rd1−|X|. It is defined as

sI(x;ν) ≜ νlocx + ϕI(x)
⊤νglo, (17)
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where ϕI(x) ∈ Rd1−|X| is a feature vector of a state x. In the case of the road network, a state
corresponds to a road segment. Then ϕI(x) may, for example [18], be defined with the indicators of
whether there are particular types of buildings near the road segment, x. We refer to the first term
and the second term of the right-hand side in Eq. (17) as a local preference and a global preference,
respectively. If a simpler model is preferred, either of them would be omitted.

Similarly, a p-transition probability model with the parameter ω≜ [ωloc⊤,ωglo⊤
1 ,ωglo⊤

2 ]⊤ is given as

pTω(x
′|x) ≜

{
exp(sT(x, x

′;ω))
/∑

y∈Xx
exp(sT(x, y;ω)), if (x, x′) ∈ X × Xx,

0 otherwise,
(18)

where Xx is a set of states connected from x, and sT(x, x′;ω) is a state-to-state score function. It is
defined as

sT(x, x
′;ω) ≜ ωloc

(x,x′) + ϕT(x
′)⊤ωglo

1 +ψ(x, x′)⊤ωglo
2 , (x, x′) ∈ X × Xx,

where ωloc
(x,x′) is the element of ωloc (∈ R

∑
x∈X |Xx|) corresponding to transition from x to x′, and

ϕT(x) and ψ(x, x′) are feature vectors. For the road network, ϕT(x) may be defined based on
the type of the road segment, x, and ψ(x, x′) may be defined based on the angle between x and
x′. Those linear combinations with the global parameters, ωglo

1 and ωglo
2 , can represent drivers’

preferences such as how much the drivers prefer major roads or straight routes to others.

Note that the pIν(x) and pTω(x
′|x) presented in this section can be differentiated analytically.

Hence, Fθ in Eq. (11), ∇θi logπθ in Eq. (12), and ∇θihθ in Eq. (15) can be computed efficiently.

6 Experiments

6.1 Experiment on synthetic data

To study the sensitivities of the performance of our algorithm to the ratio of observable states, we
applied it to randomly synthesized inverse problems of 100-state Markov chains with a varying
number of observable states, |Xo| ∈ {5, 10, 20, 35, 50, 70, 90}. The linkages between states were
randomly generated in the same way as [19]. The values of pI and pT are determined in two stages.
First, the basic initial probabilities, pIν , and the basic transition probabilities, pTω , were determined
based on Eqs. (16) and (18), where every element of ν, ω, ϕI(x), ϕT(x), and ψT(x, x

′) was drawn
independently from the normal distribution N (0, 12). Then we added noises to pIν and pTω, which
are ideal for our algorithm, by using the Dirichlet distribution Dir, such that pI = 0.7pIν + 0.3σ
with σ ∼ Dir(0.3×1|X |). Then we sampled the visiting frequencies f(x) and the hitting rates
g(x, x′) for every x, x′ ∈ Xo from this synthesized Markov chain.

We used Eqs. (16) and (18) for the models and Eq. (7) for the objective of our method. In
Eq. (7), we set γ = 0.1 and R(θ) = ∥θ∥22, and λ was determined with a cross-validation. We
evaluated the quality of our solution with the relative mean absolute error (RMAE), RMAE =

1
|X\Xo|

∑
x∈X\Xo

|f(x)−ĉπθ(x)|
max{f(x), 1} , where ĉ is a scaling value given by ĉ = 1/|Xo|

∑
x∈Xo

f(x). As
a baseline method, we use Nadaraya-Watson kernel regression (NWKR) [8] whose kernel is com-
puted based on the number of hops in the minimum path between two states. Note that the NWKR
could not use g(x, x′) as an input, because this is a regression problem of f(x). Hence, for a fair
comparison, we also applied a variant of our method that does not use g(x, x′).

Figure 2 (A) shows the mean and standard deviation of the RMAEs. The proposed method gives
clearly better performance than the NWKR. This is mainly due to the fact that the NWKR assumes
that all propagations of the observation from a link to another connected link are equally weighted.
In contrast, our method incorporates such weight in the transition probabilities.

6.2 Experiment on real-world traffic data

We tested our method through a city-wide traffic-monitoring task as shown in Fig. 1. The goal is to
estimate the traffic volume along an arbitrary road segment (or link of a network), given observed
traffic volumes on a limited number of the links, where a link corresponds to the state x of M(θ), and
the traffic volume along x corresponds to f(x) of Eq. (5). The traffic volumes along the observable
links were reliably estimated from real-world web-camera images captured in Nairobi, Kenya [2,
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Figure 2: (A) Comparison of RMAE for the synthetic task between our methods and the NWKR
(baseline method). (B) Traffic volumes for a city center map in Nairobi, Kenya, I: Web-camera
observations (colored), II: Estimated traffic volumes by our method. (C) Comparison between the
NWKR and our method for the real traffic-volume prediction problem.

15], while we did not use the hitting rate g(x, x′) here because of its unavailability. Note that this task
is similar to network tomography [27, 30] or link-cost prediction [32, 14]. However, unlike network
tomography, we need to infer all of the link traffics instead of source-destination demands. Unlike
link-cost prediction, our inputs are stationary observations instead of trajectories. Again, we use the
NMKR as the baseline method. The road network and the web-camera observations are shown in
Fig. 2 (B)-I. While the total number of links was 1, 497, the number of links with observations was
only 52 (about 3.5%). We used the parametric models in Section 5, where ϕT(x) ∈ [−1, 1] was set
based on the road category of x such that primary roads have a higher value than secondary roads
[22], and ψ(x, x′) ∈ [−1, 1] was the cosine of the angle between x and x′. However, we omitted the
terms of ϕI(x) in Eq. (17).

Figure 2 (B)-II shows an example of our results, where the red and yellow roads are most congested
while the traffic on the blue roads is flowing smoothly. The congested roads from our analysis
are consistent with those from a local traffic survey report [13]. Figure 2 (C) shows comparison
between predicted and observed travel volumes. In the figures, the 45o line corresponds to perfect
agreement between the actual and predicted values. To evaluate accuracy, we employed the leave-
one-out cross-validation. We can see that the proposed method gives a good performance. This is
rather surprising, because the rate of observation links is very limited to only 3.5 percent.

7 Conclusion

We have defined a novel inverse problem of a Markov chain, where we infer the probabilities about
the initial states and the transitions, using a limited amount of information that we can obtain by
observing the Markov chain at a small number of states. We have proposed an effective objective
function for this problem as well as an algorithm based on natural gradient.

Using real-world data, we have demonstrated that our approach is useful for a traffic monitoring
system that monitors the traffic volume at limited number of locations. From this observation the
Markov chain model is inferred, which in turn can be used to deduce the traffic volume at any
location. Surprisingly, even when the observations are made at only several percent of the locations,
the proposed method can successfully infer the traffic volume at unobserved locations.

Further analysis of the proposed method is necessary to better understand its property and effec-
tiveness. In particular, our future work includes an analysis of model identifiability and empirical
studies with other applications, such as logistics and economic system modeling.
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