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Abstract

In this paper we describe how MAP inference can be used to sample efficiently
from Gibbs distributions. Specifically, we provide means for drawing either ap-
proximate or unbiased samples from Gibbs’ distributions by introducing low di-
mensional perturbations and solving the corresponding MAP assignments. Our
approach also leads to new ways to derive lower bounds on partition functions.
We demonstrate empirically that our method excels in the typical “high signal -
high coupling” regime. The setting results in ragged energy landscapes that are
challenging for alternative approaches to sampling and/or lower bounds.

1 Introduction

Inference in complex models drives much of the research in machine learning applications, from
computer vision, natural language processing, to computational biology. Examples include scene
understanding, parsing, or protein design. The inference problem in such cases involves finding
likely structures, whether objects, parsers, or molecular arrangements. Each structure corresponds
to an assignment of values to random variables and the likelihood of an assignment is based on
defining potential functions in a Gibbs distribution. Usually, it is feasible to find only the most
likely or maximum a-posteriori (MAP) assignment (structure) rather than sampling from the full
Gibbs distribution. Substantial effort has gone into developing algorithms for recovering MAP as-
signments, either based on specific structural restrictions such as super-modularity [2] or by devising
cutting-planes based methods on linear programming relaxations [19, 24]. However, MAP inference
is limited when there are other likely assignments.

Our work seeks to leverage MAP inference so as to sample efficiently from the full Gibbs distribu-
tion. Specifically, we aim to draw either approximate or unbiased samples from Gibbs distributions
by introducing low dimensional perturbations in the potential functions and solving the correspond-
ing MAP assignments. Connections between random MAP perturbations and Gibbs distributions
have been explored before. Recently [17, 21] defined probability models that are based on low
dimensional perturbations, and empirically tied them to Gibbs distributions. [5] augmented these
results by providing bounds on the partition function in terms of random MAP perturbations.

In this work we build on these results to construct an efficient sampler for the Gibbs distribution, also
deriving new lower bounds on the partition function. Our approach excels in regimes where there
are several but not exponentially many prominent assignments. In such ragged energy landscapes
classical methods for the Gibbs distribution such as Gibbs sampling and Markov chain Monte Carlo
methods, remain computationally expensive [3, 25].

2 Background

Statistical inference problems involve reasoning about the states of discrete variables whose con-
figurations (assignments of values) specify the discrete structures of interest. We assume that the
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models are parameterized by real valued potentials θ(x) = θ(x1, ..., xn) < ∞ defined over a dis-
crete product space X = X1 × · · · ×Xn. The effective domain is implicitly defined through θ(x)
via exclusions θ(x) = −∞ whenever x 6∈ dom(θ). The real valued potential functions are mapped
to the probability scale via the Gibbs’ distribution:

p(x1, ..., xn) =
1

Z
exp(θ(x1, ..., xn)), where Z =

∑
x1,...,xn

exp(θ(x1, ..., xn)). (1)

The normalization constantZ is called the partition function. The feasibility of using the distribution
for prediction, including sampling from it, is inherently tied to the ability to evaluate the partition
function, i.e., the ability to sum over the discrete structures being modeled. In general, such counting
problems are often hard, in #P.

A slightly easier problem is that of finding the most likely assignment of values to variables, also
known as the maximum a-posterior (MAP) prediction.

(MAP) arg max
x1,...,yn

θ(x1, ..., xn) (2)

Recent advances in optimization theory have been translated to successful algorithms for solving
such MAP problems in many cases of practical interest. Although the MAP prediction problem is
still NP-hard in general, it is often simpler than sampling from the Gibbs distribution.

Our approach is based on representations of the Gibbs distribution and the partition function using
extreme value statistics of linearly perturbed potential functions. Let {γ(x)}x∈X be a collection of
random variables with zero mean, and consider random potential functions of the form θ(x) +γ(x).
Analytic expressions for the statistics of a randomized MAP predictor, x̂ ∈ argmaxx{θ(x) + γ(x)},
can be derived for general discrete sets, whenever independent and identically distributed (i.i.d.)
random perturbations are applied for every assignment x ∈ X . Specifically, when the random
perturbations follow the Gumbel distribution (cf. [12]), we obtain the following result.
Theorem 1. ([4], see also [17, 5]) Let {γ(x)}x∈X be a collection of i.i.d. random variables,
each following the Gumbel distribution with zero mean, whose cumulative distribution function is
F (t) = exp(− exp(−(t+ c))), where c is the Euler constant. Then

logZ = Eγ

[
max
x∈X
{θ(x) + γ(x)}

]
.

1

Z
exp(θ(x̂)) = Pγ

[
x̂ ∈ arg max

x∈X
{θ(x) + γ(x)}

]
.

The max-stability of the Gumbel distribution provides a straight forward approach to generate un-
biased samples from the Gibbs distribution as well as to approximate the partition function by a
sample mean of random MAP perturbation. Assume we sample j = 1, ...,m independent predic-
tions maxx{θ(x) + γj(x)}, then every maximal argument is an unbiased sample from the Gibbs
distribution. Moreover, the randomized MAP predictions maxx{θ(x)+γj(x)} are independent and
follow the Gumbel distribution, whose variance is π2/6. Therefore Chebyshev’s inequality dictates,
for every t,m

Prγ

[∣∣∣ 1

m

m∑
j=1

max
x
{θ(x) + γj(x)} − logZ

∣∣∣ ≥ ε] ≤ π

6mε2
(3)

In general each x = (x1, ..., xn) represents an assignment to n variables. Theorem 1 suggests to
introduce an independent perturbation γ(x) for each such n−dimensional assignment x ∈ X . The
complexity of inference and learning in this setting would be exponential in n. In our work we
propose to investigate low dimensional random perturbations as the main tool to efficiently (approx-
imate) sampling from the Gibbs distribution.

3 Probable approximate samples from the Gibbs distribution

Sampling from the Gibbs distribution is inherently tied to estimating the partition function. Markov
properties that simplify the distribution also decompose the computation of the partition function.
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For example, assume a graphical model with potential functions associated with subsets of variables
α ⊂ {1, ..., n} so that θ(x) =

∑
α∈A θα(xα). Assume that the subsets are disjoint except for

their common intersection β = ∩α∈A. This separation implies that the partition function can be
computed in lower dimensional pieces

Z =
∑
xβ

∏
α∈A

( ∑
xα\xβ

exp(θα(xα))
)

As a result, the computation is exponential only in the size of the subsets α ∈ A. Thus,
we can also estimate the partition function with lower dimensional random MAP perturbations,
Eγ [maxxα\xβ{θα(xα) + γα(xα)}]. The random perturbation are now required only for each as-
signment of values to the variables within the subsets α ∈ A rather than the set of all variables.

We approximate such partition functions with low dimensional perturbations and their averages. The
overall computation is cast in a single MAP problem using an extended representation of potential
functions by replicating variables.
Lemma 1. Let A be subsets of variables that are separated by their joint intersection β = ∩α∈Aα.
We create multiple copies of xα, namely x̂α = (xα,jα)jα=1,...,mα , and define the extended poten-
tial function θ̂α(x̂α) =

∑mα
jα=1 θα(xα,jα)/mα. We also define the extended perturbation model

γ̂α(x̂α) =
∑mα
jα=1 γα,jα(xα,jα)/mα, where each γα,jα(xα,jα) is independent and distributed ac-

cording to the Gumbel distribution with zero mean. Then, for every xβ , with probability at least
1−

∑
α∈A

π2

6mαε2∣∣∣max
x̂\xβ

{∑
α∈A

θ̂α(x̂α) +
∑
α∈A

γ̂α(x̂α)
}
−
∑
α∈A

log
( ∑
xα\xβ

exp(θα(xα))
)∣∣∣ ≤ ε|A|

Proof: Equation (3) implies that for every xβ with probability at most π2/6mαε
2 holds∣∣∣ 1

mα

mα∑
jα=1

max
xα\xβ

{θα(xα) + γα,jα(xα)} − log
( ∑
xα\xβ

exp(θα(xα))
)∣∣∣ ≤ ε.

To compute the sampled average with a single max-operation we introduce the mul-
tiple copies x̂α = (xα,jα)jα=1,...,mα thus

∑mα
jα=1 maxxα\xβ{θα(xα) + γα,jα(xα)} =

maxxα,jα\xβ
∑m
j=1{θα(xα,jα) + γα,jα(xα,jα)}. By the union bound it holds for every α ∈ A

simultaneously with probability at least 1 −
∑
α∈A π

2/6mαε
2. Since xβ is fixed for every α ∈ A

the maximizations are done independently across subsets in x̂ \ xβ , where x̂ is the concatenation of
all x̂α, and∑
α∈A

max
x̂α\xβ

mα∑
jα=1

{
θα(xα,jα) + γα,jα(xα,jα)

}
= max

x̂\xβ

mα∑
jα=1

{∑
α∈A

θα(xα,jα) +
∑
α∈A

γα,jα(xα,jα)
}
.

The proof then follows from the triangle inequality. �

Whenever the graphical model has no cycles we can iteratively apply the separation properties with-
out increasing the computational complexity of perturbations. Thus we may randomly perturb the
subsets of potentials in the graph. For notational simplicity we describe our approximate sampling
scheme for pairwise interactions α = (i, j) although it holds for general graphical models without
cycles:
Theorem 2. Let θ(x) =

∑
i∈V θi(xi) +

∑
i,j∈E θi,j(xi, xj) be a graphical model with-

out cycles, and let p(x) be the Gibbs distribution defined in Equation (1). Let θ̂(x) =∑mi
ki=1 θ(x1,k1

, ..., xn,kn)/
∏
imi, and γ̂i,j(xi, xj) =

∑mi,mj
ki,kj=1 γi,j,ki,kj (xi,ki , xj,kj )/mimj

where each perturbation is independent and distributed according to the Gumbel distribution with
zero mean. Then, for every edge (r, s) while mr = ms = 1 (i.e., they have no multiple copies) there
holds with probability at least 1−

∑n
i=1 π

2c/6miε
2, where c = maxi |Xi|∣∣∣ log

(
Pγ

[
xr, xs ∈ arg max

x̂

{
θ̂(x) +

∑
i,j∈E

γ̂i,j(xi, xj)
}])
− log

( ∑
x\xr,xs

p(x)
)∣∣∣ ≤ εn
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Proof: Theorem 1 implies that we sample (xr, xs) approximately from the Gibbs distribution
marginal probabilities with a max-operation, if we approximate

∑
x\{xr,xs} exp(θ(x)). Using graph

separation (or equivalently the Markov property) it suffices to approximate the partial partition func-
tion over the disjoint subtrees Tr, Ts that originate from r, s respectively. Lemma 1 describes this
case for a directed tree with a single parent. We use this by induction on the parents on these directed
trees, noticing that graph separation guarantees: the statistics of Lemma 1 hold uniformly for every
assignment of the parent’s non-descendants as well; the optimal assignments in Lemma 1 are chosen
independently for every child for every assignment of the parent’s non-descendants label. �

Our approximated sampling procedure expands the graphical model, creating layers of the original
graph, while connecting edges between vertices in the different layers if an edge exists in the original
graph. We use graph separations (Markov properties) to guarantee that the number of added layers
is polynomial in n, while we approach arbitrarily close to the Gibbs distribution. This construction
preserves the structure of the original graph, in particular, whenever the original graph has no cycles,
the expanded graph does not have cycles as well. In the experiments we show that this probability
model approximates well the Gibbs distribution for graphical models with many cycles.

4 Unbiased sampling using sequential bounds on the partition function

In the following we describe how to use random MAP perturbations to generate unbiased samples
from the Gibbs distribution. Sampling from the Gibbs distribution is inherently tied to estimating the
partition function. Assume we could have compute the partition function exactly, then we could have
sample from the Gibbs distribution sequentially: for every dimension we sample xi with probabil-
ity which is proportional to

∑
xi+1,...,xn

exp(θ(x)). Unfortunately, approximations to the partition
function, as described in Section 3, cannot provide a sequential procedure that would generate un-
biased samples from the full Gibbs distribution. Instead, we construct a family of self-reducible
upper bounds which imitate the partition function behavior, namely bound the summation over its
exponentiations. These upper bounds extend the one in [5] when restricted to local perturbations.
Lemma 2. Let {γi(xi)} be a collection of i.i.d. random variables, each following the Gumbel
distribution with zero mean. Then for every j = 1, ..., n and every x1, ..., xj−1 holds∑
xj

exp
(
Eγ

[
max

xj+1,...,xn
{θ(x) +

n∑
i=j+1

γi(xi)}
])
≤ exp

(
Eγ

[
max

xj ,...,xn
{θ(x) +

n∑
i=j

γi(xi)}
])

In particular, for j = n holds
∑
xn

exp(θ(x)) = exp
(
Eγn(xn)

[
maxxj ,...,xn{θ(x) + γn(xn)}

])
.

Proof: The result is an application of the expectation-optimization interpretation of the partition
function in Theorem 1. The left hand side equals to Eγj

[
maxxj Eγj+1,...,γn

[
maxxj+1,...,xn{θ(x)+∑n

i=j γi(xi)
}]]

, while the right hand side is attained by alternating the maximization with respect
to xj with the expectation of γj+1, ..., γn. The proof then follows by taking the exponent.�

We use these upper bounds for every dimension i = 1, ..., n to sample from a probability distribution
that follows a summation over exponential functions, with a discrepancy that is described by the
upper bound. This is formalized below in Algorithm 1

Algorithm 1 Unbiased sampling from Gibbs distribution using randomized prediction
Iterate over j = 1, ..., n, while keeping fixed x1, ..., xj−1. Set

1. pj(xj) =
exp
(
Eγ

[
maxxj+1,...,xn

{θ(x)+
∑n
i=j+1 γi(xi)}

])
exp
(
Eγ

[
maxxj,...,xn{θ(x)+

∑n
i=j γi(xi)}

]) .

2. pj(r) = 1−
∑
xj
p(xj)

3. Sample an element according to pj(·). If r is sampled then reject and restart with j = 1.
Otherwise, fix the sampled element xj and continue the iterations.

Output: x1, ..., xn

When we reject the discrepancy, the probability we accept a configuration x is the product of prob-
abilities in all rounds. Since these upper bounds are self-reducible, i.e., for every dimension i we
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are using the same quantities that were computed in the previous dimensions 1, ..., i − 1, we are
sampling an accepted configuration proportionally to exp(θ(x)), the full Gibbs distribution.

Theorem 3. Let p(x) be the Gibbs distribution, defined in Equation (1) and let {γi(xi)} be a col-
lection of i.i.d. random variables following the Gumbel distribution with zero mean. Then whenever
Algorithm 1 accepts, it produces a configuration (x1, ..., xn) according to the Gibbs distribution

P
[
Algorithm 1 outputs x

∣∣ Algorithm 1 accepts
]

= p(x).

Proof: The probability of sampling a configuration (x1, ..., xn) without rejecting is

n∏
j=1

exp
(
Eγ
[

max
xj+1,...,xn

{θ(x) +
∑n
i=j+1 γi(xi)}

])
exp

(
Eγ
[

max
xj ,...,xn

{θ(x) +
∑n
i=j γi(xi)}

]) =
exp(θ(x))

exp
(
Eγ
[

max
x1,...,xn

{θ(x) +
∑n
i=1 γi(xi)}

]) .
The probability of sampling without rejecting is thus the sum of this probability over all configura-
tion, i.e., P

[
Algorithm 1 accepts

]
= Z

/
exp

(
Eγ
[

maxx1,...,xn{θ(x) +
∑n
i=1 γi(xi)}

])
. Therefore

conditioned on accepting a configuration, it is produced according to the Gibbs distribution. �.

Acceptance/rejection follows the geometric distribution, therefore the sampling procedure rejects
k times with probability (1 − P [Algorithm 1 accepts])k. The running time of our Gibbs sampler
is determined by the average number of rejections 1/P [Algorithm 1 accepts]. Interestingly, this
average is the quality of the partition upper bound presented in [5]. To augment this result we
investigate in the next section efficiently computable lower bounds to the partition function, that are
based on random MAP perturbations. These lower bounds provide a way to efficiently determine the
computational complexity for sampling from the Gibbs distribution for a given potential function.

5 Lower bounds on the partition function

The realization of the partition function as expectation-optimization pair in Theorem 1 provides
efficiently computable lower bounds on the partition function. Intuitively, these bounds correspond
to moving expectations (or summations) inside the maximization operations. In the following we
present two lower bounds that are derived along these lines, the first holds in expectation and the
second holds in probability.

Corollary 1. Consider a family of subsets α ∈ A and let xα be a set of variables {xi}i∈α restricted
to the indexes in α. Assume that the random variables γα(xα) are i.i.d. according to the Gumbel
distribution with zero mean, for every α, xα. Then

∀α ∈ A logZ ≥ Eγ
[

max
x

{
θ(x) + γα(xα)

}]
.

In particular, logZ ≥ Eγ
[

maxx
{
θ(x) + 1

|A|
∑
α∈A γα(xα)

}]
.

Proof: Let ᾱ = {1, ..., n} \ α then Z =
∑
xα

∑
xᾱ

exp(θ(x)) ≥
∑
xα

maxxᾱ exp(θ(x)). The first
result is derived by swapping the maximization with the exponent, and applying Theorem 1. The
second result is attained while averaging these lower bounds logZ ≥

∑
α∈A

1
|A|Eγ [maxx{θ(x) +

γα(xα)}], and by moving the summation inside the maximization operation. �

The expected lower bound requires to invoke a MAP solver multiple times. Although this expecta-
tion may be estimated with a single MAP execution, the variance of this random MAP prediction
is around

√
n. We suggest to recursively use Lemma 1 to lower bound the partition function with a

single MAP operation in probability.

Corollary 2. Let θ(x) be a potential function over x = (x1, ..., xn). We create multi-
ple copies of xi, namely xi,ki for ki = 1, ...,mi, and define the extended potential function
θ̂(x) =

∑mi
ki=1 θ(x1,k1

, ..., xn,kn)/
∏
mi. We define the extended perturbation model γ̂i(xi) =∑mi

ki=1 γi,ki(xi,ki)/mi where each perturbation is independent and distributed according to the
Gumbel distribution with zero mean. Then, with probability at least 1 −

∑n
i=1 π

2|dom(θ)|/6miε
2

holds logZ ≥ maxx̂{θ̂(x) +
∑n
i=1 γ̂i(xi)} − εn
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lower bounds unbiased samplesr complexity approximate sampler

Figure 1: Left: comparing our expected lower and probable lower bounds with structured mean-field and
belief propagation on attractive models with high signal and varying coupling strength. Middle: estimating
our unbiased sampling procedure complexity on spin glass models of varying sizes. Right: Comparing our
approximate sampling procedure on attractive models with high signal.

Proof: We estimate the expectation-optimization value of the log-partition function iteratively for
every dimension, while replacing each expectation with its sampled average, as described in Lemma
1. Our result holds for every potential function, thus the statistics in each recursion hold uniformly
for every x with probability at least 1− π2|dom(θ)|/6miε

2. We then move the averages inside the
maximization operation, thus lower bounding the εn−approximation of the partition function. �

The probable lower bound that we provide does not assume graph separations thus the statistical
guarantees are worse than the ones presented in the approximation scheme of Theorem 2. Also,
since we are seeking for lower bound, we are able relax our optimization requirements and thus to
use vertex based random perturbations γi(xi). This is an important difference that makes this lower
bound widely applicable and very efficient.

6 Experiments

We evaluated our approach on spin glass models θ(x) =
∑
i∈V θixi +

∑
(i,j)∈E θi,jxixj . where

xi ∈ {−1, 1}. Each spin has a local field parameter θi, sampled uniformly from [−1, 1]. The
spins interact in a grid shaped graphical model with couplings θi,j , sampled uniformly from [0, c].
Whenever the coupling parameters are positive the model is called attractive as adjacent variables
give higher values to positively correlated configurations. Attractive models are computationally
appealing as their MAP predictions can be computed efficiently by the graph-cut algorithm [2].

We begin by evaluating our lower bounds, presented in Section 5, on 10 × 10 spin glass models.
Corollary 1 presents a lower bound that holds in expectation. We evaluated these lower bounds
while perturbing the local potentials with γi(xi). Corollary 2 presents a lower bound that holds
in probability and requires only a single MAP prediction on an expanded model. We evaluate the
probable bound by expanding the model to 1000× 1000 grids, ignoring the discrepancy ε. For both
the expected lower bound and the probable lower bound we used graph-cuts to compute the random
MAP perturbations. We compared these bounds to the different forms of structured mean-field, tak-
ing the one that performed best: standard structured mean-field that we computed over the vertical
chains [8, 1], and the negative tree re-weighted computed on the horizontal and vertical trees [14].
We also compared to the sum-product belief propagation algorithm, which was recently proven to
produce lower bounds for attractive models [20, 18]. We computed the error in estimating the loga-
rithm of the partition function, averaged over 10 spin glass models, see Figure 1. One can see that
the probable bound is the tightest when considering the medium and high coupling domain, which
is traditionally hard for all methods. As it holds in probability it might generate a solution which is
not a lower bound. One can also verify that on average this does not happen. The expected lower
bound is significantly worse for the low coupling regime, in which many configurations need to be
taken into account. It is (surprisingly) effective for the high coupling regime, which is characterized
by a few dominant configurations.

Section 4 describes an algorithm that generates unbiased samples from the full Gibbs distribution.
Focusing on spin glass models with strong local field potentials, it is well know that one cannot
produce unbiased samples from the Gibbs distributions in polynomial time [3]. Theorem 3 connects
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Image + annotation MAP solution Average of 20 samples Error estimates

Figure 2: Example image with the boundary annotation (left) and the error estimates obtained using our
method (right). Thin structures of the object are often lost in a single MAP solution (middle-left), which are
recovered by averaging the samples (middle-right) leading to better error estimates.

the computational complexity of our unbiased sampling procedure to the gap between the logarithm
of the partition function and its upper bound in [5]. We use our probable lower bound to estimate this
gap on large grids, for which we cannot compute the partition function exactly. Figure 1 suggests
that the running time for this sampling procedure is sub-exponential.

Sampling from the Gibbs distribution in spin glass models with non-zero local field potentials is
computationally hard [7, 3]. The approximate sampling technique in Theorem 3 suggests a method
to overcome this difficulty by efficiently sampling from a distribution that approximates the Gibbs
distribution on its marginal probabilities. Although our theory is only stated for graphs without
cycles, it can be readily applied to general graphs, in the same way the (loopy) belief propaga-
tion algorithm is applied. For computational reasons we did not expand the graph. Also, we ex-
periment both with pairwise perturbations, as Theorem 2 suggests, and with local perturbations,
which are guaranteed to preserve the potential function super-modularity. We computed the local
marginal probability errors of our sampling procedure, while comparing to the standard methods
of Gibbs sampling, Metropolis and Swendsen-Wang1. In our experiments we let them run for at
most 1e8 iterations, see Figure 1. Both Gibbs sampling and the Metropolis algorithm perform sim-
ilarly (we omit the Gibbs sampler performance for clarity). Although these algorithms as well as
the Swendsen-Wang algorithm directly sample from the Gibbs distribution, they typically require
exponential running time to succeed on spin glass models. Figure 1 shows that these samplers are
worse than our approximate samplers. Although we omit from the plots for clarity, our approximate
sampling marginal probabilities compare to those of the sum-product belief propagation and the tree
re-weighted belief propagation [22]. Nevertheless, our sampling scheme also provides a probability
notion, which lacks in the belief propagation type algorithms. Surprisingly, the approximate sampler
that uses pairwise perturbations performs (slightly) worse than the approximate sampler that only
use local perturbations. Although this is not explained by our current theory, it is an encouraging
observation, since approximate sampler that uses random MAP predictions with local perturbations
is orders of magnitude faster.

Lastly, we emphasize the importance of probabilistic reasoning over the current variational methods,
such as tree re-weighted belief propagation [22] or max-marginal probabilities [10], that only gen-
erate probabilities over small subsets of variables. The task we consider is to obtain pixel accurate
boundaries from rough boundaries provided by the user. For example in an image editing application
the user may provide an input in the form of a rough polygon and the goal is to refine the boundaries
using the information from the gradients in the image. A natural notion of error is the average devi-
ation of the marked boundary from the true boundary of the image. Given a user boundary we set
up a graphical model on the pixels using foreground/background models trained from regions well
inside/outside the marked boundary. Exact binary labeling can be obtained using the graph-cuts al-
gorithm. From this we can compute the expected error by sampling multiple solutions using random
MAP predictors and averaging. On a dataset of 10 images which we carefully annotated to obtain
pixel accurate boundaries we find that random MAP perturbations produce significantly more accu-
rate estimates of boundary error compared to a single MAP solution. On average the error estimates
obtained using random MAP perturbations is off by 1.04 pixels from the true error (obtained from
ground truth) whereas the MAP which is off by 3.51 pixels. Such a measure can be used in an active
annotation framework where the users can iteratively fix parts of the boundary that contain errors.

1We used Talya Meltzer’s inference package.
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Figure 2 shows an example annotation, the MAP solution, the mean of 20 random MAP solutions,
and boundary error estimates.

7 Related work

The Gibbs distribution plays a key role in many areas of science, including computer science, statis-
tics and physics. To learn more about its roles in machine learning, as well as its standard samplers,
we refer the interested reader to the textbook [11]. Our work is based on max-statistics of collections
of random variables. For comprehensive introduction to extreme value statistics we refer the reader
to [12].

The Gibbs distribution and its partition function can be realized from the statistics of random
MAP perturbations with the Gumbel distribution (see Theorem 1), [12, 17, 21, 5]. Recently,
[16, 9, 17, 21, 6] explore the different aspects of random MAP predictions with low dimensional
perturbation. [16] describe sampling from the Gaussian distribution with random Gaussian pertur-
bations. [17] show that random MAP predictors with low dimensional perturbations share similar
statistics as the Gibbs distribution. [21] describe the Bayesian perspectives of these models and their
efficient sampling procedures. [9, 6] consider the generalization properties of such models within
PAC-Bayesian theory. In our work we formally relate random MAP perturbations and the Gibbs
distribution. Specifically, we describe the case for which the marginal probabilities of random MAP
perturbations, with the proper expansion, approximate those of the Gibbs distribution. We also
show how to use the statistics of random MAP perturbations to generate unbiased samples from
the Gibbs distribution. These probability models generate samples efficiently thorough optimiza-
tion: they have statistical advantages over purely variational approaches such as tree re-weighted
belief propagation [22] or max-marginals [10], and they are faster than standard Gibbs samplers and
Markov chain Monte Carlo approaches when MAP prediction is efficient [3, 25]. Other methods
that efficiently produce samples include Herding [23] and determinantal processes [13].

Our suggested samplers for the Gibbs distribution are based on low dimensional representation of
the partition function, [5]. We augment their results in a few ways. In Lemma 2 we refine their
upper bound, to a series of sequentially tighter bounds. Corollary 2 shows that the approximation
scheme of [5] is in fact a lower bound that holds in probability. Lower bounds for the partition func-
tion have been extensively developed in the recent years within the context of variational methods.
Structured mean-field methods are inner-bound methods where a simpler distribution is optimized
as an approximation to the posterior in a KL-divergence sense [8, 1, 14]. The difficulty comes
from non-convexity of the set of feasible distributions. Surprisingly, [20, 18] have shown that the
sum-product belief propagation provides a lower bound to the partition function for super-modular
potential functions. This result is based on the four function theorem which considers nonnegative
functions over distributive lattices.

8 Discussion

This work explores new approaches to sample from the Gibbs distribution. Sampling from the Gibbs
distribution is key problem in machine learning. Traditional approaches, such as Gibbs sampling,
fail in the “high-signal high-coupling” regime that results in ragged energy landscapes. Following
[17, 21], we showed here that one can take advantage of efficient MAP solvers to generate approx-
imate or unbiased samples from the Gibbs distribution, when we randomly perturb the potential
function. Since MAP predictions are not affected by ragged energy landscapes, our approach excels
in the “high-signal high-coupling” regime. As a by-product to our approach we constructed lower
bounds to the partition functions, which are both tighter and faster than the previous approaches in
the ”high-signal high-coupling” regime.

Our approach is based on random MAP perturbations that estimate the partition functions with
expectation. In practice we compute the empirical mean. [15] show that the deviation of the sampled
mean from its expectation decays exponentially.

The computational complexity of our approximate sampling procedure is determined by the pertur-
bations dimension. Currently, our theory do not describe the success of the probability model that is
based on the maximal argument of perturbed MAP program with local perturbations.

8



References
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