
Robust Low Rank Kernel Embeddings of
Multivariate Distributions

Le Song, Bo Dai
College of Computing, Georgia Institute of Technology
lsong@cc.gatech.edu, bodai@gatech.edu

Abstract

Kernel embedding of distributions has led to many recent advances in machine
learning. However, latent and low rank structures prevalent in real world distri-
butions have rarely been taken into account in this setting. Furthermore, no prior
work in kernel embedding literature has addressed the issue of robust embedding
when the latent and low rank information are misspecified. In this paper, we
propose a hierarchical low rank decomposition of kernels embeddings which can
exploit such low rank structures in data while being robust to model misspeci-
fication. We also illustrate with empirical evidence that the estimated low rank
embeddings lead to improved performance in density estimation.

1 Introduction
Many applications of machine learning, ranging from computer vision to computational biology,
require the analysis of large volumes of high-dimensional continuous-valued measurements. Com-
plex statistical features are commonplace, including multi-modality, skewness, and rich dependency
structures. Kernel embedding of distributions is an effective framework to address challenging prob-
lems in this regime [1, 2]. Its key idea is to implicitly map distributions into potentially infinite di-
mensional feature spaces using kernels, such that subsequent comparison and manipulation of these
distributions can be achieved via feature space operations (e.g., inner product, distance, projection
and spectral analysis). This new framework has led to many recent advances in machine learning
such as kernel independence test [3] and kernel belief propagation [4].

However, algorithms designed with kernel embeddings have rarely taken into account latent and
low rank structures prevalent in high dimensional data arising from various applications such as
gene expression analysis. While these information have been extensively exploited in other learning
contexts such as graphical models and collaborative filtering, their use in kernel embeddings re-
mains scarce and challenging. Intuitively, these intrinsically low dimensional structures of the data
should reduce the effect number of parameters in kernel embeddings, and allow us to obtain a better
estimator when facing with high dimensional problems.

As a demonstration of the above intuition, we illustrate the behavior of low rank kernel embeddings
(which we will explain later in more details) when applied to density estimation (Figure 1). 100 data
points are sampled i.i.d. from a mixture of 2 spherical Gaussians, where the latent variable is the
cluster indicator. The fitted density based on an ordinary kernel density estimator has quite different
contours from the ground truth (Figure 1(b)), while those provided by low rank embeddings appear
to be much closer to the ground truth ((Figure 1(c)). Essentially, the low rank approximation step
endows kernel embeddings with an additional mechanism to smooth the estimator which can be
beneficial when the number of data points is small and there are clusters in the data. In our later
more systematic experiments, we show that low rank embeddings can lead to density estimators
which can significantly improve over alternative approaches in terms of held-out likelihood.

While there are a handful of exceptions [5, 6] in the kernel embedding literature which have ex-
ploited latent and low rank information, these algorithms are not robust in the sense that, when such
information are misspecification, no performance guarantee can be provided and these algorithms
can fail drastically. The hierarchical low rank kernel embeddings we proposed in this paper can be

1

−
3

−
2

−
1

0
1

2
3

−
3

−
2

−
1 0 1 2 3 −

3
−

2
−

1
0

1
2

3
−

3

−
2

−
1 0 1 2 3 −

3
−

2
−

1
0

1
2

3
−

3

−
2

−
1 0 1 2 3

(a) Ground truth (b) Ordinary KDE (c) Low Rank KDE

Figure 1: We draw 100 samples from a mixture of 2 spherical Gaussians with equal mixing weights.
(a) the contour plot for the ground truth density, (b) for ordinary kernel density estimator (KDE), (c)
for low rank KDE. We used cross-validation to find the best kernel bandwidth for both the KDE and
low rank KDE. The latter produces a density which is visibly closer to the ground truth, and in term
of the integrated square error, it is smaller than the KDE (0.0092 vs. 0.012).

considered as a kernel generalization of the discrete valued tree-structured latent variable models
studied in [7]. The objective of the current paper is to address previous limitations of kernel embed-
dings as applied to graphical models and make them more practically useful. Furthermore, we will
provide both theoretical and empirical support to the new approach.

Another key contribution of the paper is a novel view of kernel embedding of multivariate distri-
butions as infinite dimensional higher order tensors, and the low rank structure of these tensors in
the presence of latent variables. This novel view allows us to introduce modern multi-linear alge-
bra and tensor decomposition tools to address challenging problems in the interface between kernel
methods and latent variable models. We believe our work will play a synergistic role in bridging to-
gether largely separate areas in machine learning research, including kernel methods, latent variable
models, and tensor data analysis.

In the remainder of the paper, we will first present the tensor view of kernel embeddings of mul-
tivariate distributions and its low rank structure in the presence of latent variables. Then we will
present our algorithm for hierarchical low rank decomposition of kernel embeddings by making use
of a sequence of nested kernel singular value decompositions. Last, we will provide both theoretical
and empirical support to our proposed approach.

2 Kernel Embeddings of Distributions
We will focus on continuous domains, and denote X a random variable with domain Ω and density
p(X). The instantiations of X are denoted by lower case character, x. A reproducing kernel Hilbert
space (RKHS) F on Ω with a kernel k(x, x′) is a Hilbert space of functions f : Ω 7→ R with inner
product 〈·, ·〉F . Its element k(x, ·) satisfies the reproducing property: 〈f(·), k(x, ·)〉F = f(x), and
consequently, 〈k(x, ·), k(x′, ·)〉F = k(x, x′), meaning that we can view the evaluation of a function
f at any point x ∈ Ω as an inner product. Alternatively, k(x, ·) can be viewed as an implicit feature
map φ(x) where k(x, x′) = 〈φ(x), φ(x′)〉F . For simplicity of notation, we assumes that the domain
of all variables are the same and the same kernel function is applied to all variables.

A kernel embedding represents a density by its expected features, i.e., µX := EX [φ(X)] =∫
Ω
φ(x)p(x)dx, or a point in a potentially infinite-dimensional and implicit feature space of a k-

ernel [8, 1, 2]. The embedding µX has the property that the expectation of any RKHS func-
tion f ∈ F can be evaluated as an inner product in F , 〈µX , f〉F := EX [f(X)]. Kernel
embeddings can be readily generalized to joint density of d variables, X1, . . . , Xd, using d-
th order tensor product feature space Fd, In this feature space, the feature map is defined as
⊗di=1φ(xi) := φ(x1) ⊗ φ(x2) ⊗ . . . ⊗ φ(xd), and the inner product in this space satisfies〈
⊗di=1φ(xi),⊗di=1φ(x′i)

〉
Fd =

∏d
i=1 〈φ(xi), φ(x′i)〉F =

∏d
i=1 k(xi, x

′
i). Then we can embed a

joint density p(X1, . . . , Xd) into a tensor product feature space Fd by

CX1:d
:= EX1:d

[
⊗di=1φ(Xi)

]
=

∫
Ωd

(
⊗di=1φ(xi)

)
p(x1, . . . , xd)

d∏
i=1

dxi, (1)

where we used X1:d to denote the set of variables {X1, . . . , Xd}.

2

The kernel embeddings can also be generalized to conditional densities p(X|z) [9]

µX|z := EX|z[φ(X)] =

∫
Ω

φ(x) p(x|z) dx (2)

Given this embedding, the conditional expectation of a function f ∈ F can be computed as
EX|z[f(X)] =

〈
f, µX|z

〉
F . Unlike the ordinary embeddings, an embedding of conditional dis-

tribution is not a single element in the RKHS, but will instead sweep out a family of points in the
RKHS, each indexed by a fixed value z of the conditioning variable Z. It is only by fixing Z to a
particular value z, that we will be able to obtain a single RKHS element, µX|z ∈ F . In other words,
conditional embedding is an operator, denoted as CX|Z , which can take as input an z and output an
embedding, i.e., µX|z = CX|Zφ(z). Likewise, kernel embedding of conditional distributions can
also be generalized to joint distribution of d variables.

We will represent an observation from a discrete variable Z taking r possible value using the stan-
dard basis in Rr (or one-of-r representation). That is when z takes the i-th value, the i-th dimension
of vector z is 1 and other dimensions 0. For instance, when r = 3, Z can take three possible val-
ue (1, 0, 0)>, (0, 1, 0)> and (0, 0, 1)>. In this case, we let φ(Z) = Z and use the linear kernel
k(Z,Z ′) = Z>Z. Then, the conditional embedding operator reduces to a separate embedding µX|z
for each conditional density p(X|z). Conceptually, we can concatenate these µX|z for different val-
ue of z in columns CX|Z := (µX|z=(1,0,0)> , µX|z=(0,1,0)> , µX|z=(0,0,1)>). The operation CX|Zφ(z)
essentially picks up the corresponding embedding (or column).

3 Kernel Embeddings as Infinite Dimensional Higher Order Tensors
The above kernel embedding CX1:d

can also be viewed as a multi-linear operator (tensor) of order
d mapping from F × . . . × F to R. (For generic introduction to tensor and tensor notation, please
see [10]). The operator is linear in each argument (mode) when fixing other arguments. Furthermore,
the application of the operator to a set of elements {fi ∈ F}di=1 can be defined using the inner
product from the tensor product feature space, i.e.,

CX1:d
•1 f1 •2 . . . •d fd :=

〈
CX1:d

, ⊗di=1fd
〉
Fd = EX1:d

[
d∏
i=1

〈φ(Xi), fi〉F

]
, (3)

where •i means applying fi to the i-th argument of CX1:d
. Furthermore, we can define the gener-

alized Frobenius norm ‖·‖• of CX1:d
as ‖CX1:d

‖2• =
∑∞
i1=1 · · ·

∑∞
id=1(CX1:d

•1 ei1 •2 . . . •d eid)2

using an orthonormal basis {ei}∞i=1 ⊂ F . We can also define the inner product for the space of such
operator that ‖CX1:d

‖• <∞ as〈
CX1:d

, C̃X1:d

〉
•

=

∞∑
i1=1

· · ·
∞∑
id=1

(CX1:d
•1 ei1 •2 . . . •d eid)(C̃X1:d

•1 ei1 •2 . . . •d eid). (4)

When CX1:d
has the form of EX1:d

[
⊗di=1φ(Xi)

]
, the above inner product reduces to EX1:d

[C̃X1:d
•1

φ(X1) •2 . . . •d φ(Xd)].

In this paper, the ordering of the tensor modes is not essential so we simply label them using the
corresponding random variables. We can reshape a higher order tensor into a lower order tensor by
partitioning its modes into several disjoint groups. For instance, let I1 = {X1, . . . , Xs} be the set
of modes corresponding to the first s variables and I2 = {Xs+1, . . . , Xd}. Similarly to the Matlab
function, we can obtain a 2nd order tensor by

CI1;I2
= reshape (CX1:d

, I1, I2) : Fs ×Fd−s 7→ R. (5)
In the reverse direction, we can also reshape a lower order tensor into a higher order one by further
partitioning certain mode of the tensor. For instance, we can partition I1 into I ′1 = {X1, . . . , Xt}
and I ′′1 = {Xt+1, . . . , Xs}, and turn CI1;I2

into a 3rd order tensor by

CI ′1;I ′′1 ;I2
= reshape (CI1;I2

, I ′1, I ′′1 , I2) : F t ×Fs−t ×Fd−s 7→ R. (6)

Note that given a orthonormal basis {ei}∞i=1 ∈ F , we can readily obtain an orthonormal basis
for, e.g., F t, as {ei1 ⊗ . . .⊗ eit}

∞
i1,...,it=1, and hence define the generalized Frobenius norm for

CI1;I2 and CI ′1;I ′′1 ;I2
. This also implies that the generalized Frobenius norms are the same for all

these reshaped tensors, i.e., ‖CX1:d
‖• = ‖CI1;I2

‖• =
∥∥CI ′1;I ′′1 ;I2

∥∥
•.

3

X1 X2

Z
X1

X2

X3

X4

Z1 Z2

X1 X2 Xd

Z1 Z2 Zd

(a) X1 ⊥ X2|Z (b) X1:2 ⊥ X3:4|Z1:2 (c) Caterpillar tree (hidden Markov model)

Figure 2: Three latent variable model with different tree topologies

The 2nd order tensor CI1;I2
can also be viewed as the cross-covariance operator between two sets of

variables in I1 and I2. In this case, we can essentially use notation and operations for matrices. For
instance, we can perform singular value decomposition of CI1;I2

=
∑∞
i=1 si(ui⊗vi) where si ∈ R

are ordered in nonincreasing manner, {ui}∞i=1 ⊂ Fs and {vi}∞i=1 ⊂ Fd−s are singular vectors. The
rank of CI1;I2

is the smallest r such that si = 0 for i ≥ r. In this case, we will also define
Ur = (u1, u2, . . . , ur), Vr = (v1, v2, . . . , vr) and Sr = diag (s1, s2, . . . , sr), and denote the low
rank approximation as CI1;I2

= UrSrV>r . Finally, a 1st order tensor reshape (CX1:d
, {X1:d} , ∅),

is simply a vector where we we will use vector notation.

4 Low Rank Kernel Embeddings Induced by Latent Variables
In the presence of latent variables, the kernel embedding CX1:d

will be low rank. For example,
the two observed variables X1 and X2 in the example in Figure 1 is conditional independent giv-
en the latent cluster indicator variable Z. That is the joint density factorizes as p(X1, X2) =∑
z p(z)p(X1|z)p(X2|z) (see Figure 2(a) for the graphical model). Throughout the paper, we as-

sume that z is discrete and takes r possible values. Then the embedding CX1X2
of p(X1, X2) has a

rank at most r. Let z be represented as the standard basis in Rr. Then

CX1X2
= EZ

[(
EX1|Z [φ(X1)]Z

)
⊗
(
EX2|Z [φ(X2)]Z

)]
= CX1|Z EZ [Z ⊗ Z]

(
CX2|Z

)>
(7)

where EZ [Z ⊗ Z] is an r × r matrix, and hence restricting the rank of CX1X2 to be at most r.

In our second example, four observed variables are connected via two latent variables Z1 and Z2

each taking r possible values. The conditional independence structure implies that the density of
p(X1, X2, X3, X4) factorizes as

∑
z1,z2

p(X1|z1)p(X2|z1)p(z1, z2)p(X3|z2)p(X4|z2) (see Fig-
ure 2(b) for the graphical model). Reshaping its kernel embedding CX1:4

, we obtain CX1:2;X3:4
=

reshape (CX1:4 , {X1:2} , {X3:4}) which factorizes as

EX1:2|Z1
[φ(X1)⊗ φ(X2)] EZ1Z2

[Z1 ⊗ Z2]
(
EX3:4|Z2

[φ(X3)⊗ φ(X4)]
)>

(8)

where EZ1Z2 [Z1 ⊗ Z2] is an r × r matrix. Hence the intrinsic “rank” of the reshaped embedding is
only r, although the original kernel embedding CX1:4 is a 4th order tensor with infinite dimensions.

In general, for a latent variable model p(X1, . . . , Xd) where the conditional independence structure
is a tree T , various reshapings of its kernel embedding CX1:d

according to edges in the tree will be
low rank. More specifically, each edge in the latent tree corresponds to a pair of latent variables
(Zs, Zt) (or an observed and a hidden variable (Xs, Zt)) which induces a partition of the observed
variables into two groups, I1 and I2. One can imagine splitting the latent tree into two subtrees by
cutting the edge. One group of variables reside in the first subtree, and the other group in the second
subtree. If we reshape the tensor according to this partitioning, then

Theorem 1 Assume that all observed variables are leaves in the latent tree structure, and all latent
variables take r possible values, then rank(CI1;I2

) ≤ r.

Proof Due to the conditional independence structure induced by the latent tree, p(X1, . . . , Xd) =∑
zs

∑
zt
p(I1|zs)p(zs, zt)p(I2|zt). Then its embedding can be written as

CI1;I2
= CI1|Zs

EZsZt
[Zs ⊗ Zt]

(
CI2|Zt

)>
, (9)

where CI1|Zs
and CI2|Zt

are the conditional embedding operators for p(I1|zs) and p(I2|zt) re-
spectively. Since EZsZt

[Zs ⊗ Zt] is a r × r matrix, rank(CI1;I2
) ≤ r.

Theorem 1 implies that, given a latent tree model, we obtain a collection of low rank reshapings
{CI1;I2} of the kernel embedding CX1:d

, each corresponding to an edge (Zs, Zt) of the tree. We

4

will denote byH(T , r) the class of kernel embeddings CX1:d
whose various reshapings according to

the latent tree T have rank at most r.1 We will also use CX1:d
∈ H(T , r) to indicator such a relation.

In practice, the latent tree model assumption may be misspecified for a joint density p(X1, . . . , Xd),
and consequently the various reshapings of its kernel embedding CX1:d

are only approximately low
rank. In this case, we will instead impose a (potentially misspecified) latent structure T and a fixed
rank r on the data and obtain an approximate low rank decomposition of the kernel embedding. The
goal is to obtain a low rank embedding C̃X1:d

∈ H(T , r), while at the same time insure ‖C̃X1:d
−

CX1:d
‖• is small. In the following, we will present such a decomposition algorithm.

5 Low Rank Decomposition of Kernel Embeddings
For simplicity of exposition, we will focus on the case where the latent tree structure T has a cater-
pillar shape (Figure 2(c)). This decomposition can be viewed as a kernel generalization of the hier-
archical tensor decomposition in [11, 12, 7]. The decomposition proceeds by reshaping the kernel
embedding CX1:d

according to the first edge (Z1, Z2), resulting inA1 := CX1;X2:d
. Then we perform

a rank r approximation for it, resulting in A1 ≈ UrSrV>r . This leads to the first intermediate tensor
G1 = Ur, and we reshape SrV>r and recursively decompose it. We note that Algorithm 1 contains
only pseudo codes, and not implementable in practice since the kernel embedding to decompose can
have infinite dimensions. We will design a practical kernel algorithm in the next section.

Algorithm 1 Low Rank Decomposition of Kernel Embeddings
In: A kernel embedding CX1:d

, the caterpillar tree T and desired rank r
Out: A low rank embedding C̃X1:d

∈ H(T , r) as intermediate tensors {G1, . . . ,Gd}
1: A1 = reshape(CX1:d

, {X1} , {X2:d}) according to tree T .
2: A1 ≈ UrSrV>r , approximate A1 using its r leading singular vectors.
3: G1 = Ur, and B1 = SrV>r . G1 can be viewed as a model with two variables, X1 and Z1; and
B1 as a new caterpillar tree model T1 with variable X1 removed from T .

4: for j = 2, . . . , d− 1 do
5: Aj = reshape(Bj−1, {Zj−1, Xj} , {Xj+1:d}) according to tree Tj−1.
6: Aj ≈ UrSrV>r , approximate Aj using its r leading singular vectors.
7: Gj = reshape(Ur, {Zj−1} , {Xj} , {Zj}), and Bj = SrV>r . Gj can be viewed as a model

with three variables,Xj , Zj and Zj−1; and Bj as a new caterpillar tree model Tj with variable
Zj−1 and Xj removed from Tj−1.

8: end for
9: Gd = Bd−1

Once we finish the decomposition, we obtain the low rank representation of the kernel embedding
as a set of intermediate tensors {G1, . . . ,Gd}. In particular, we can think of G1 as a second order
tensor with dimension ∞ × r, Gd as a second order tensor with dimension r × ∞, and Gj for
2 6 j 6 d − 1 as a third order tensor with dimension r × ∞ × r. Then we can apply the low
rank kernel embedding C̃X1:d

to a set of elements {fi ∈ F}di=1 as follows C̃X1:d
•1 f1 •2 . . . •d fd =

(G1 •1 f1)> (G2 •2 f2) . . . (Gd−1 •2 fd−1)(Gd •2 fd). Based on the above decomposition, one can
obtain a low rank density estimate by p̃(X1, . . . , Xd) = C̃X1:d

•1 φ(X1) •2 . . . •d φ(Xd). We can
also compute the difference between C̃X1:d

and the operator CX1:d
by using the generalized Frobenius

norm ‖C̃X1:d
− CX1:d

‖•.

6 Kernel Algorithm
In practice, we are only provided with a finite number of samples

{
(xi1, . . . , x

i
d)
}n
i=1

draw i.i.d. from
p(X1, . . . , Xd), and we want to obtain an empirical low rank decomposition of the kernel embed-
ding. In this case, we will perform a low rank decomposition of the empirical kernel embedding
C̄X1:d

= 1
n

∑n
i=1

(
⊗dj=1φ(xij)

)
. Although the empirical kernel embedding still has infinite dimen-

sions, we will show that we can carry out the decomposition using just the kernel matrices. Let us
denote the kernel matrix for each dimension of the data by Kj where j ∈ {1, . . . , d}. The (i, i′)-th
entry inKj can be computed asKii′

j = k(xij , x
i′

j). Alternatively, one can think of implicitly forming

1One can readily generalize this notation to decompositions where different reshapings have different ranks.

5

the feature matrix Φj =
(
φ(x1

j), . . . , φ(xnj)
)
, and the corresponding kernel matrix is Kj = Φ>j Φj .

Furthermore, we denote the tensor feature matrix formed from dimension j + 1 to d of the data as
Ψj =

(
⊗dj′=j+1φ(x1

j′), . . . ,⊗dj′=j+1φ(xnj′)
)
. The corresponding kernel matrix Lj = Ψ>j Ψj with

the (i, i′)-th entry in Lj defined as Lii
′

j =
∏d
j′=j+1 k(xij′ , x

i′

j′).

Step 1-3 in Algorithm 1. The key building block of the algorithm is a kernel singular value de-
composition (Algorithm 2), which we will explain in more details using the example in step 2 of
Algorithm 1. Using the implicitly defined feature matrix, A1 can be expressed as A1 = 1

nΦ1Ψ>1 .
For the low rank approximation, A1 ≈ UrSrV>r , using singular value decomposition, the lead-
ing r singular vector Ur = (u1, . . . , ur) will lie in the span of Φ1, i.e., Ur = Φ1(β1, . . . ,βr)
where β ∈ Rn. Then we can transform the singular value decomposition problem for an infinite
dimensional matrix to a generalized eigenvalue problem involving kernel matrices, A1A1

>u =
λ u ⇔ 1

n2 Φ1Ψ>1 Ψ1Φ>1 Φ1β = λΦ1β ⇔ 1
n2K1L1K1β = λK1β. Let the Cholesky decom-

position of K1 be R>R, then the generalized eigenvalue decomposition problem can be solved by
redefining β̃ = Rβ, and solving an ordinary eigenvalue problem

1

n2
RL1R

>β̃ = λ β̃, and obtain β = R†β̃. (10)

The resulting singular vectors satisfy u>l ul′ = β>l Φ>1 Φ1βl′ = β>l Kβl′ = β̃>l β̃l′ = δll′ . Then we
can obtain B1 := SrV>r = U>r A1 by projecting the column of A1 using the singular vectors Ur,

B1 =
1

n
(β1, . . . ,βr)

>Φ>1 Φ1Ψ>1 =
1

n
(β1, . . . ,βr)

>K1Ψ>1 =: (γ1, . . . ,γn)Ψ>1 (11)

where γ ∈ Rr can be treated as the reduced r-dimensional feature representation for each feature
mapped data point φ(xi1). Then we have the first intermediate tensor G1 = Ur = Φ1(β1, . . . ,βr) =:
Φ1(θ1, . . . ,θn)>, where θ ∈ Rr. Then the kernel singular value decomposition can be carried out
recursively on the reshaped tensor B1.

Step 5-7 in Algorithm 1. When j = 2, we first reshape B1 = SrV>r to obtainA2 = 1
n Φ̃2Ψ>2 , where

Φ̃2 = (γ1⊗φ(x1
2), . . . ,γn⊗φ(xn2)). Then we can carry out similar singular value decomposition as

before, and obtain Ur = Φ̃2(β1, . . . ,βr) =: Φ̃2(θ1, . . . ,θn)>. Then we have the second operator
G2 =

∑n
i=1 γ

i ⊗ φ(xi2)⊗ θi. Last, we define B2 := SrV>r = U>r A2 as

B2 =
1

n
(β1, . . . ,βr)

>Φ̃>2 Φ̃2Ψ>2 =
1

n
(β1, . . . ,βr)

>(Γ ◦K2)Ψ>2 =:
1

n
(γ1, . . . ,γn)Ψ>2 , (12)

and carry out the recursive decomposition further.

The result of the algorithm is an empirical low rank kernel embedding, ĈX1:d
, represented as a col-

lection of intermediate tensors {G1, . . . ,Gd}. The overall algorithm is summarized in Algorithm 3.
More details about the derivation can be found in Appendix A.

The application of the set of intermediate tensor {G1, . . . ,Gd} to a set of elements {fi ∈ F} can be
expressed as kernel operations. For instance, we can obtain a density estimate by p̂(x1, . . . , xd) =

ĈX1:d
•1 φ(x1) •2 . . . •d φ(xd) =

∑
z1,...,zd

g1(x1, z1)g2(z1, x2, z2) . . . gd(zd−1, xd) where (see
Appendix A for more details)

g1(x1, z1) = G1 •1 φ(x1) •2 z1 =
∑n

i=1
(z>1 θi)k(xi1, x1) (13)

gj(zj−1, xj , zj) = Gj •1 zj−1 •2 φ(xj) •3 zj =
∑n

i=1
(z>j−1γ

i)k(xij , xj)(z
>
j θ

i) (14)

gd(zd−1, xd) = Gd •1 zd−1 • xd =
∑n

i=1
(z>d−1γ

i)k(xid, xd) (15)

In the above formulas, each term is a weighted combination of kernel functions, and the weighting
is determined by the kernel singular value decomposition and the values of the latent variable {zj}.

7 Performance Guarantees
As we mentioned in the introduction, the imposed latent structure used in the low rank decompo-
sition of kernel embeddings may be misspecified, and the decomposition of empirical embeddings
may suffer from sampling error. In this section, we provide finite guarantee for Algorithm 3 even
when the latent structures are misspecified. More specifically, we will bound, in terms of the gen-

6

Algorithm 2 KernelSVD(K, L, r)
Out: A collection of vectors (θ1, . . . ,θn)

1: Perform Cholesky decomposition K = R>R

2: Solve eigen decomposition 1
n2RLR

>β̃ = λ β̃, and keep the leading r eigen vectors
(β̃1, . . . , β̃r)

3: Compute β1 = R†β̃1, . . . ,βr = R†β̃r, and reorgnaize (θ1, . . . ,θn)> = (β1, . . . ,βr)

Algorithm 3 Kernel Low Rank Decomposition of Empirical Embedding C̄X1:d

In: A sample
{

(xi1, . . . , x
i
d)
}n
i=1

, desired rank r, a query point (x1, . . . , xd)

Out: A low rank embedding ĈX1:d
∈ H(T , r) as intermediate operators {G1, . . . ,Gd}

1: Ld = 11>

2: for j = d, d− 1, . . . , 1 do
3: Compute matrix Kj with Kii′

j = k(xij , x
i′

j); furthermore, if j < d, then Lj = Lj+1 ◦Kj+1

4: end for
5: (θ1, . . . ,θn) = KernelSVD(K1, L1, r)
6: G1 = Φ1(θ1, . . . ,θn)>, and compute (γ1, . . . ,γn) = (θ1, . . . ,θn)K1

7: for j = 2, . . . , d− 1 do
8: Γ = (γ1, . . . ,γn)>(γ1, . . . ,γn), and compute (θ1, . . . ,θn) = KernelSVD(Ki ◦ Γ, Li, r)
9: Gj =

∑n
i=1 γ

i ⊗ φ(xij)⊗ θi, and compute (γ1, . . . ,γn) = (θ1, . . . ,θn)Ki

10: end for
11: Gd = (γ1, . . . ,γn)Φ>d

eralized Frobenius norm ‖CX1:d
− ĈX1:d

‖•, the difference between the true kernel embeddings and
the low rank kernel embeddings estimated from a set of n i.i.d. samples

{
(xi1, . . . , x

i
d)
}n
i=1

. First
we observed that the difference can be decomposed into two terms

‖CX1:d
− ĈX1:d

‖• 6 ‖CX1:d
− C̃X1:d

‖•︸ ︷︷ ︸
E1: model error

+ ‖C̃X1:d
− ĈX1:d

‖•︸ ︷︷ ︸
E2: estimation error

(16)

where the first term is due to the fact that the latent structures may be misspecified, while the second
term is due to estimation from finite number of data points. We will bound these two sources of
error separately (the proof is deferred to Appendix B)

Theorem 2 Suppose each reshaping CI1;I2 of CX1:d
according to an edge in the latent tree struc-

ture has a rank r approximation UrSrV>r with error
∥∥CI1;I2 − UrSrV>r

∥∥
• 6 ε. Then the low rank

decomposition C̃X1:d
from Algorithm 1 satisfies ‖CX1:d

− C̃X1:d
‖• 6

√
d− 1 ε.

Although previous work [5, 6] have also used hierarchical decomposition for kernel embeddings,
their decompositions make the strong assumption that the latent tree models are correctly specified.
When the models are misspecified, these algorithms have no guarantees whatsoever, and may fail
drastically as we show in later experiments. In contrast, the decomposition we proposed here are
robust in the sense that even when the latent tree structure is misspecified, we can still provide
the approximation guarantee for the algorithm. Furthermore, when the latent tree structures are
correctly specified and the rank r is also correct, then CI1;I2

has rank r and hence ε = 0 and our
decomposition algorithm does not incur any modeling error.

Next, we provide bound for the the estimation error. The estimation error arises from decomposing
the empirical estimate C̄X1:d

of the kernel embedding, and the error can accumulate as we combine
intermediate tensors {G1, . . . ,Gd} to form the final low rank kernel embedding. More specifically,
we have the following bound (the proof is deferred to Appendix C)

Theorem 3 Suppose the r-th singular value of each reshaping CI1;I2 of CX1:d
according to an

edge in the latent tree structure is lower bounded by λ, then with probability at least 1− δ, ‖C̃X1:d
−

ĈX1:d
‖• ≤ (1+λ)d−2

λd−2

∥∥CX1:d
− C̄X1:d

∥∥
• 6 (1+λ)d−2c

λd−2
√
n
, with some constant c associated with the

kernel and the probability δ.

7

From the above theorem, we can see that the smaller the r-th singular value, the more difficult it is
to estimate the low rank kernel embedding. Although in the bound the error grows exponential in
1/λd−2, in our experiments, we did not observe such exponential degradation of performance even
in relatively high dimensional datasets.

8 Experiments
Besides the synthetic dataset we showed in Figure 1 where low rank kernel embedding can lead to
significant improvement in term of estimating the density, we also experimented with real world
datasets from UCI data repository. We take 11 datasets with varying dimensions and number of data
points, and the attributes of the datasets are continuous-valued. We whiten the data and compare
low rank kernel embeddings (Low Rank) obtained from Algorithm 3 to 3 other alternatives for
continuous density estimation, namely, mixture of Gaussian with full covariance matrix, ordinary
kernel density estimator (KDE) and the kernel spectral algorithm for latent trees (Spectral) [6]. We
use Gaussian kernel k(x, x′) = 1√

2πs
exp(−‖x − x′‖2/(2s2)) for KDE, Spectral and our method

(Low rank). We split each dataset into 10 subsets, and use nested cross-validation based on held-
out likelihood to choose hyperparameters: the kernel parameter s for KDE, Spectral and Low rank
({2−3, 2−2, 2−1, 1, 2, 4, 8} times the median pairwise distance), the rank parameter r for Spectral
and Low rank (range from 2 to 30), and the number of components in the Gaussian mixture (range
from 2 to # Sample

30). For both Spectral and Low rank, we use a caterpillar tree in Figure 2(c) as the
structure for the latent variable model.

From Table 1, we can see that low rank kernel embeddings provide the best or comparable held-out
negative log-likelihood across the datasets we experimented with. In some datasets, low rank kernel
embeddings can lead to drastic improvement over the alternatives. For instance, in dataset “sonar”
and “yeast”, the improvement is dramatic. The Spectral approach performs even worse sometimes.
This makes sense, since the caterpillar tree supplied to the algorithm may be far away from the
reality and Spectral is not robust to model misspecification. Meanwhile, the Spectral algorithm also
caused numerical problem in practical. In contrast, our method Low Rank uses the same latent
structure, but achieved much more robust results.

Table 1: Negative log-likelihood on held-out data (the lower the better).
Method

Data Set # Sample Dim. Gaussian mixture KDE Spectral Low rank
australian 690 14 17.97±0.26 18.32±0.64 33.50 ±2.17 15.88±0.11
bupa 345 6 8.17±0.30 8.36±0.17 25.01±0.66 7.57±0.14
german 1000 24 31.14 ± 0.41 30.57 ± 0.15 28.40 ± 11.64 22.89 ± 0.26
heart 270 13 17.72 ±0.23 18.23 ±0.18 21.50 ± 2.39 16.95 ± 0.13
ionosphere 351 34 47.60 ±1.77 43.53 ± 1.25 54.91±1.35 35.84 ± 1.00
pima 768 8 11.78 ± 0.04 10.38 ± 0.19 31.42 ± 2.40 10.07 ± 0.11
parkinsons 195 22 30.13± 0.24 30.65 ± 0.66 33.20 ± 0.70 28.19 ± 0.37
sonar 208 60 107.06 ± 1.36 96.17 ± 0.27 89.26 ± 2.75 57.96 ± 2.67
wpbc 198 33 50.75 ± 1.11 49.48 ± 0.64 48.66 ± 2.56 40.78 ± 0.86
wine 178 13 19.59 ± 0.14 19.56 ± 0.56 19.25 ± 0.58 18.67 ± 0.17
yeast 208 79 146.11 ± 5.36 137.15 ± 1.80 76.58 ± 2.24 72.67 ±4.05

9 Discussion and Conclusion
In this paper, we presented a robust kernel embedding algorithm which can make use of the low
rank structure of the data, and provided both theoretical and empirical support for it. However, there
are still a number of issues which deserve further research. First, the algorithm requires a sequence
of kernel singular decompositions which can be computationally intensive for high dimensional and
large datasets. Developing efficient algorithms yet with theoretical guarantees will be interesting fu-
ture research. Second, the statistical analysis could be sharpened. For the moment, the analysis does
not seem to suggest that the obtained estimator by our algorithm is better than ordinary KDE. Third,
it will be interesting empirical work to explore other applications for low rank kernel embeddings,
such as kernel two-sample tests, kernel independence tests and kernel belief propagation.

8

References
[1] A. J. Smola, A. Gretton, L. Song, and B. Schölkopf. A Hilbert space embedding for dis-

tributions. In Proceedings of the International Conference on Algorithmic Learning Theory,
volume 4754, pages 13–31. Springer, 2007.

[2] B. Sriperumbudur, A. Gretton, K. Fukumizu, G. Lanckriet, and B. Schölkopf. Injective Hilbert
space embeddings of probability measures. In Proc. Annual Conf. Computational Learning
Theory, pages 111–122, 2008.

[3] A. Gretton, K. Fukumizu, C.-H. Teo, L. Song, B. Schölkopf, and A. J. Smola. A kernel
statistical test of independence. In Advances in Neural Information Processing Systems 20,
pages 585–592, Cambridge, MA, 2008. MIT Press.

[4] L. Song, A. Gretton, D. Bickson, Y. Low, and C. Guestrin. Kernel belief propagation. In Proc.
Intl. Conference on Artificial Intelligence and Statistics, volume 10 of JMLR workshop and
conference proceedings, 2011.

[5] L. Song, B. Boots, S. Siddiqi, G. Gordon, and A. J. Smola. Hilbert space embeddings of hidden
markov models. In International Conference on Machine Learning, 2010.

[6] L. Song, A. Parikh, and E.P. Xing. Kernel embeddings of latent tree graphical models. In
Advances in Neural Information Processing Systems, volume 25, 2011.

[7] L. Song, M. Ishteva, H. Park, A. Parikh, and E. Xing. Hierarchical tensor decomposition of
latent tree graphical models. In International Conference on Machine Learning (ICML), 2013.

[8] A. Berlinet and C. Thomas-Agnan. Reproducing Kernel Hilbert Spaces in Probability and
Statistics. Kluwer, 2004.

[9] L. Song, J. Huang, A. J. Smola, and K. Fukumizu. Hilbert space embeddings of conditional
distributions. In Proceedings of the International Conference on Machine Learning, 2009.

[10] Tamara. G. Kolda and Brett W. Bader. Tensor decompositions and applications. SIAM Review,
51(3):455–500, 2009.

[11] L. Grasedyck. Hierarchical singular value decomposition of tensors. SIAM Journal on Matrix
Analysis and Applications, 31(4):2029–2054, 2010.

[12] I Oseledets. Tensor-train decomposition. SIAM Journal on Scientific Computing, 33(5):2295–
2317, 2011.

[13] L. Rosasco, M. Belkin, and E.D. Vito. On learning with integral operators. Journal of Machine
Learning Research, 11:905–934, 2010.

9

	Introduction
	Kernel Embeddings of Distributions
	Kernel Embeddings as Infinite Dimensional Higher Order Tensors
	Low Rank Kernel Embeddings Induced by Latent Variables
	Low Rank Decomposition of Kernel Embeddings
	Kernel Algorithm
	Performance Guarantees
	Experiments
	Discussion and Conclusion

