
Distributed Exploration in Multi-Armed Bandits

Eshcar Hillel
Yahoo Labs, Haifa

eshcar@yahoo-inc.com

Zohar Karnin
Yahoo Labs, Haifa

zkarnin@yahoo-inc.com

Tomer Koren∗
Technion — Israel Inst. of Technology

tomerk@technion.ac.il

Ronny Lempel
Yahoo Labs, Haifa

rlempel@yahoo-inc.com

Oren Somekh
Yahoo Labs, Haifa

orens@yahoo-inc.com

Abstract

We study exploration in Multi-Armed Bandits in a setting where k players col-
laborate in order to identify an ε-optimal arm. Our motivation comes from recent
employment of bandit algorithms in computationally intensive, large-scale appli-
cations. Our results demonstrate a non-trivial tradeoff between the number of arm
pulls required by each of the players, and the amount of communication between
them. In particular, our main result shows that by allowing the k players to com-
municate only once, they are able to learn

√
k times faster than a single player.

That is, distributing learning to k players gives rise to a factor
√
k parallel speed-

up. We complement this result with a lower bound showing this is in general the
best possible. On the other extreme, we present an algorithm that achieves the
ideal factor k speed-up in learning performance, with communication only loga-
rithmic in 1/ε.

1 Introduction
Over the past years, multi-armed bandit (MAB) algorithms have been employed in an increasing
amount of large-scale applications. MAB algorithms rank results of search engines [23, 24], choose
between stories or ads to showcase on web sites [2, 8], accelerate model selection and stochastic
optimization tasks [21, 22], and more. In many of these applications, the workload is simply too
high to be handled by a single processor. In the web context, for example, the sheer volume of user
requests and the high rate at which they arrive, require websites to use many front-end machines
that run in multiple data centers. In the case of model selection tasks, a single evaluation of a
certain model or configuration might require considerable computation time, so that distributing
the exploration process across several nodes may result with a significant gain in performance. In
this paper, we study such large-scale MAB problems in a distributed environment where learning is
performed by several independent nodes that may take actions and observe rewards in parallel.

Following recent MAB literature [14, 3, 15, 18], we focus on the problem of identifying a “good”
bandit arm with high confidence. In this problem, we may repeatedly choose one arm (corresponding
to an action) and observe a reward drawn from a probability distribution associated with that arm.
Our goal is to find an arm with an (almost) optimal expected reward, with as few arm pulls as
possible (that is, minimize the simple regret [7]). Our objective is thus explorative in nature, and in

∗Most of this work was done while the author was at Yahoo Labs, Haifa.

1

particular we do not mind the incurred costs or the involved regret. This is indeed the natural goal in
many applications, such as in the case of model selection problems mentioned above. In our setup,
a distributed strategy is evaluated by the number of arm pulls per node required for the task, which
correlates with the parallel speed-up obtained by distributing the learning process.

We abstract a distributed MAB system as follows. In our model, there are k players that correspond
to k independent machines in a cluster. The players are presented with a set of arms, with a common
goal of identifying a good arm. Each player receives a stream of queries upon each it chooses an arm
to pull. This stream is usually regulated by some load balancer ensuring the load is roughly divided
evenly across players. To collaborate, the players may communicate with each other. We assume
that the bandwidth of the underlying network is limited, so that players cannot simply share every
piece of information. Also, communicating over the network might incur substantial latencies, so
players should refrain from doing so as much as possible. When measuring communication of a
certain multi-player protocol we consider the number of communication rounds it requires, where
in a round of communication each player broadcasts a single message (of arbitrary size) to all other
players. Round-based models are natural in distributed learning scenarios, where frameworks such
as MapReduce [11] are ubiquitous.

What is the tradeoff between the learning performance of the players, and the communication be-
tween them? At one extreme, if all players broadcast to each other each and every arm reward as
it is observed, they can simply simulate the decisions of a serial, optimal algorithm. However, the
communication load of this strategy is of course prohibitive. At the other extreme, if the players
never communicate, each will suffer the learning curve of a single player, thereby avoiding any pos-
sible speed-up the distributed system may provide. Our goal in this work is to better understand this
tradeoff between inter-player communication and learning performance.

Considering the high cost of communication, perhaps the simplest and most important question that
arises is how well can the players learn while keeping communication to the very minimum. More
specifically, is there a non-trivial strategy by which the players can identify a “good” arm while
communicating only once, at the end of the process? As we discuss later on, this is a non-trivial
question. On the positive side, we present a k-player algorithm that attains an asymptotic parallel
speed-up of

√
k factor, as compared to the conventional, serial setting. In fact, our approach demon-

strates how to convert virtually any serial exploration strategy to a distributed algorithm enjoying
such speed-up. Ideally, one could hope for a factor k speed-up in learning performance; however,
we show a lower bound on the required number of pulls in this case, implying that our

√
k speed-up

is essentially optimal.

At the other end of the trade-off, we investigate how much communication is necessary for obtaining
the ideal factor k parallel speed-up. We present a k-player strategy achieving such speed-up, with
communication only logarithmic in 1/ε. As a corollary, we derive an algorithm that demonstrates an
explicit trade-off between the number of arm pulls and the amount of inter-player communication.

1.1 Related Work

Recently there has been an increasing interest in distributed and collaborative learning problems.
In the MAB literature, several recent works consider multi-player MAB scenarios in which players
actually compete with each other, either on arm-pulls resources [15] or on the rewards received [19].
In contrast, we study a collaborative multi-player problem and investigate how sharing observations
helps players achieve their common goal. The related work of Kanade et al. [17] in the context
of non-stochastic (i.e. adversarial) experts also deals with a collaborative problem in a similar dis-
tributed setup, and examine the trade-off between communication and the cumulative regret.

Another line of recent work was focused on distributed stochastic optimization [13, 1, 12] and dis-
tributed PAC models [6, 10, 9], investigating the involved communication trade-offs. The techniques
developed there, however, are inherently “batch” learning methods and thus are not directly applica-
ble to our MAB problem which is online in nature. Questions involving network topology [13, 12]
and delays [1] are relevant to our setup as well; however, our present work focuses on establishing
the first non-trivial guarantees in a distributed collaborative MAB setting.

2

2 Problem Setup and Statement of Results

In our model of the Distributed Multi-Armed Bandit problem, there are k ≥ 1 individual players.
The players are given n arms, enumerated by [n] := {1, 2, . . . , n}. Each arm i ∈ [n] is associated
with a reward, which is a [0, 1]-valued random variable with expectation pi. For convenience, we
assume that the arms are ordered by their expected rewards, that is p1 ≥ p2 ≥ · · · ≥ pn. At every
time step t = 1, 2, . . . , T , each player pulls one arm of his choice and observes an independent
sample of its reward. Each player may choose any of the arms, regardless of the other players and
their actions. At the end of the game, each player must commit to a single arm. In a communication
round, that may take place at any predefined time step, each player may broadcast a message to all
other players. While we do not restrict the size of each message, in a reasonable implementation a
message should not be larger than Õ(n) bits.

In the best-arm identification version of the problem, the goal of a multi-player algorithm given some
target confidence level δ > 0, is that with probability at least 1− δ all players correctly identify the
best arm (i.e. the arm having the maximal expected reward). For simplicity, we assume in this setting
that the best arm is unique. Similarly, in the (ε, δ)-PAC variant the goal is that each player finds an
ε-optimal (or “ε-best”) arm, that is an arm i with pi ≥ p1−ε, with high probability. In this paper we
focus on the more general (ε, δ)-PAC setup, which also includes best-arm identification for ε = 0.

We use the notation ∆i := p1 − pi to denote the suboptimality gap of arm i, and occasionally
use ∆? := ∆2 for denoting the minimal gap. In the best-arm version of the problem, where we
assume that the best arm is unique, we have ∆i > 0 for all i > 1. When dealing with the (ε, δ)-PAC
setup, we also consider the truncated gaps ∆ε

i := max{∆i, ε}. In the context of MAB problems, we
are interested in deriving distribution-dependent bounds, namely, bounds that are stated as a function
of ε, δ and also the distribution-specific values ∆ := (∆2, . . . ,∆n). The Õ notation in our bounds
hides polylogarithmic factors in n, k, ε, δ, and also in ∆2, . . . ,∆n. In the case of serial exploration
algorithms (i.e., when there is only one player), the lower bounds of Mannor and Tsitsiklis [20] and
Audibert et al. [3] show that in general Ω̃(Hε) pulls are necessary for identifying an ε-arm, where

Hε :=

n∑
i=2

1

(∆ε
i)

2
. (1)

Intuitively, the hardness of the task is therefore captured by the quantity Hε, which is roughly the
number of arm pulls needed to find an ε-best arm with a reasonable probability; see also [3] for a
discussion. Our goal in this work is therefore to establish bounds in the distributed model that are
expressed as a function of Hε, in the same vein of the bounds known in the classic MAB setup.

2.1 Baseline approaches

We now discuss several baseline approaches for the problem, starting with our main focus—the sin-
gle round setting. The first obvious approach, already mentioned earlier, is the no-communication
strategy: just let each player explore the arms in isolation of the other players, following an inde-
pendent instance of some serial strategy; at the end of the executions, all players hold an ε-best arm.
Clearly, this approach performs poorly in terms of learning performance, needing Ω̃(Hε) pulls per
player in the worst case and not leading to any parallel speed-up.

Another straightforward approach is to employ a majority vote among the players: let each player
independently identify an arm, and choose the arm having most of the votes (alternatively, at least
half of the votes). However, this approach does not lead to any improvement in performance: for
this vote to work, each player has to solve the problem correctly with reasonable probability, which
already require Ω̃(Hε) pulls of each. Even if we somehow split the arms between players and let
each player explore a share of them, a majority vote would still fail since those players getting the
“good” arms might have to pull arms Ω̃(Hε) times—a small MAB instance might be as hard as the
full-sized problem (in terms of the complexity measure Hε).

When considering algorithms employing multiple communication rounds, we use an ideal simulated
serial algorithm (i.e., a full-communication approach) as our baseline. This approach is of course
prohibited in our context, but is able to achieve the optimal parallel speed-up, linear in the number
of players k.

3

2.2 Our results

We now discuss our approach and overview our algorithmic results. These are summarized in Table 1
below, that compares the different algorithms in terms of parallel speed-up and communication.

Our approach for the one-round case is based on the idea of majority vote. For the best-arm identifi-
cation task, our observation is that by letting each player explore a smaller set of n/

√
k arms chosen

at random and choose one of them as “best”, about
√
k of the players would come up with the global

best arm. This (partial) consensus on a single arm is a key aspect in our approach, since it allows the
players to identify the correct best arm among the votes of all k players, after sharing information
only once. Our approach leads to a factor

√
k parallel speed-up which, as we demonstrate in our

lower bound, is the optimal factor in this setting. Although our goal here is pure exploration, in our
algorithms each player follows an explore-exploit strategy. The idea is that a player should sample
his recommended arm as much as his budget permits, even if it was easy to identify in his small-
sized problem. This way we can guarantee that the top arms are sampled to a sufficient precision by
the time each of the players has to choose a single best arm.

The algorithm for the (ε, δ)-PAC setup is similar, but its analysis is more challenging. As mentioned
above, an agreement on a single arm is essential for a vote to work. Here, however, there might
be several ε-best arms, so arriving at a consensus on a single one is more difficult. Nonetheless,
by examining two different regimes, namely when there are “many” ε-best arms and when there
are “few” of them, our analysis shows that a vote can still work and achieve the

√
k multiplicative

speed-up.

In the case of multiple communication rounds, we present a distributed elimination-based algorithm
that discards arms right after each communication round. Between rounds, we share the work load
between players uniformly. We show that the number of such rounds can be reduced to as low
as O(log(1/ε)), by eliminating all 2−r-suboptimal arms in the r’th round. A similar idea was
employed in [4] for improving the regret bound of UCB with respect to the parameters ∆i. We also
use this technique to develop an algorithm that performs only R communication rounds, for any
given parameter R ≥ 1, that achieves a slightly worse multiplicative ε2/Rk speed-up.

SETTING ALGORITHM SPEED-UP COMMUNICATION

ONE-ROUND
No-Communication 1 none
Majority Vote 1 1 round
Algorithm 1,2

√
k 1 round

MULTI-ROUND
Serial (simulated) k every time step
Algorithm 3 k O(log 1

ε) rounds

Algorithm 3’ ε2/R · k R rounds

Table 1: Summary of baseline approaches and our results. The speed-up results are asymptotic
(logarithmic factors are omitted).

3 One Communication Round

This section considers the most basic variant of the multi-player MAB problem, where each player
is only allowed a single transmission, when finishing her queries. For the clarity of exposition, we
first consider the best-arm identification setting in Section 3.1. Section 3.2 deals with the (ε, δ)-PAC
setup. We demonstrate the tightness of our result in Section 3.3 with a lower bound for the required
budget of arm pulls in this setting.

Our algorithms in this section assume the availability of a serial algorithm A(A, ε), that given a set
of arms A and target accuracy ε, identifies an ε-best arm in A with probability at least 2/3 using no
more than

cA
∑
i∈A

1

(∆ε
i)

2
log
|A|
∆ε

i

(2)

4

arm pulls, for some constant cA > 1. For example, the Successive Elimination algorithm [14] and
the Exp-Gap Elimination algorithm [18] provide a guarantee of this form. Essentially, any explo-
ration strategy whose guarantee is expressed as a function of Hε can be used as the procedure A,
with technical modifications in our analysis.

3.1 Best-arm Identification Algorithm

We now describe our one-round best-arm identification algorithm. For simplicity, we present a
version matching δ = 1/3, meaning that the algorithm produces the correct arm with probability at
least 2/3; we later explain how to extend it to deal with arbitrary values of δ.

Our algorithm is akin to a majority vote among the multiple players, in which each player pulls
arms in two stages. In the first EXPLORE stage, each player independently solves a “smaller” MAB
instance on a random subset of the arms using the exploration strategy A. In the second EXPLOIT
stage, each player exploits the arm identified as “best” in the first stage, and communicates that arm
and its observed average reward. See Algorithm 1 below for a precise description. An appealing
feature of our algorithm is that it requires each player to transmit a single message of constant
size (up to logarithmic factors).

Algorithm 1 ONE-ROUND BEST-ARM

input time horizon T
output an arm

1: for player j = 1 to k do
2: choose a subset Aj of 6n/

√
k arms uni-

formly at random
3: EXPLORE: execute ij ← A(Aj , 0) using

at most 1
2T pulls (and halting the algorithm

early if necessary);
if the algorithm fails to identify any arm or
does not terminate gracefully, let ij be an
arbitrary arm

4: EXPLOIT: pull arm ij for 1
2T times and

let q̂j be its average reward
5: communicate the numbers ij , q̂j
6: end for
7: let ki be the number of players j with ij = i,

and define A = {i : ki >
√
k}

8: let p̂i = (1/ki)
∑
{j : ij=i} q̂j for all i

9: return arg maxi∈A p̂i; if the set A is empty,
output an arbitrary arm.

In Theorem 3.1 we prove that Algorithm 1 in-
deed achieves the promised upper bound.
Theorem 3.1. Algorithm 1 identifies the best
arm correctly with probability at least 2/3 us-
ing no more than

O

(
1√
k
·

n∑
i=2

1

∆2
i

log
n

∆i

)
arm pulls per player, provided that 6 ≤

√
k ≤

n. The algorithm uses a single communica-
tion round, in which each player communicates
Õ(1) bits.

By repeating the algorithm O(log(1/δ)) times
and taking the majority vote of the independent
runs, we can amplify the success probability to
1 − δ for any given δ > 0. Note that we can
still do that with one communication round (at
the end of all executions), but each player now
has to communicate O(log(1/δ)) values1.
Theorem 3.2. There exists a k-player al-
gorithm that given Õ

(
1√
k

∑n
i=2 1/∆2

i

)
arm

pulls, identifies the best arm correctly with probability at least 1 − δ. The algorithm uses a sin-
gle communication round, in which each player communicates O(log(1/δ)) numerical values.

We now prove Theorem 3.1. We show that a budget T of samples (arm pulls) per player, where

T ≥ 24cA√
k
·

n∑
i=2

1

∆2
i

ln
n

∆i
, (3)

suffices for the players to jointly identify the best arm i? with the desired probability. Clearly, this
would imply the bound stated in Theorem 3.1. We note that we did not try to optimize the constants
in the above expression.

We begin by analyzing the EXPLORE phase of the algorithm. Our first lemma shows that each player
chooses the global best arm and identifies it as the local best arm with sufficiently large probability.

1In fact, by letting each player pick a slightly larger subset of O(
√

log(1/δ) ·n/
√
k) arms, we can amplify

the success probability to 1− δ without needing to communicate more than 2 values per player. However, this
approach only works when k = Ω(log(1/δ)).

5

Lemma 3.3. When (3) holds, each player identifies the (global) best arm correctly after the EX-
PLORE phase with probability at least 2/

√
k.

We next address the EXPLOIT phase. The next simple lemma shows that the popular arms (i.e. those
selected by many players) are estimated to a sufficient precision.
Lemma 3.4. Provided that (3) holds, we have |p̂i − pi| ≤ 1

2∆? for all arms i ∈ A with probability
at least 5/6.

Due to lack of space, the proofs of the above lemmas are omitted and can be found in [16]. We can
now prove Theorem 3.1.

Proof (of Theorem 3.1). Let us first show that with probability at least 5/6, the best arm i is con-
tained in the set A. To this end, notice that ki? is the sum of k i.i.d. Bernoulli random vari-
ables {Ij}j where Ij is the indicator of whether player j chooses arm i? after the EXPLORE

phase. By Lemma 3.3 we have that E[Ij] ≥ 2/
√
k for all j, hence by Hoeffding’s inequality,

Pr[ki? ≤
√
k] ≤ Pr[ki? − E[ki?] ≤ −

√
k] ≤ exp(−2k/k) ≤ 1/6 which implies that i? ∈ A with

probability at least 5/6.

Next, note that with probability at least 5/6 the arm i ∈ A having the highest empirical reward p̂i
is the one with the highest expected reward pi. Indeed, this follows directly from Lemma 3.4 that
shows that with probability at least 5/6, for all arms i ∈ A the estimate p̂i is within 1

2∆ of the true
bias pi. Hence, via a union bound we conclude that with probability at least 2/3, the best arm is in
A and has the highest empirical reward. In other words, with probability at least 2/3 the algorithm
outputs the best arm i?.

3.2 (ε, δ)-PAC Algorithm

We now present an algorithm whose purpose is to recover an ε-optimal arm. Here, there might be
more than one ε-best arm, so each “successful” player might come up with a different ε-best arm.
Nevertheless, our analysis below shows that with high probability, a subset of the players can still
agree on a single ε-best arm, which makes it possible to identify it among the votes of all players.
Our algorithm is described in Algorithm 2, and the following theorem states its guarantees.
Theorem 3.5. Algorithm 2 identifies a 2ε-best arm with probability at least 2/3 using no more than

O

(
1√
k
·

n∑
i=2

1

(∆ε
i)

2
log

n

∆ε
i

)
arm pulls per player, provided that 24 ≤

√
k ≤ n. The algorithm uses a single communication

round, in which each player communicates Õ(1) bits.

Before proving the theorem, we first state several key lemmas. In the following, let nε and n2ε
denote the number of ε-best and 2ε-best arms respectively. Our analysis considers two different
regimes: n2ε ≤ 1

50

√
k and n2ε > 1

50

√
k, and shows that in any case,

T ≥ 400cA√
k

n∑
i=2

1

(∆ε
i)

2
ln

24n

∆ε
i

(4)

suffices for identifying a 2ε-best arm with the desired probability. Clearly, this implies the bound
stated in Theorem 3.5.

The first lemma shows that at least one of the players is able to find an ε-best arm. As we later show,
this is sufficient for the success of the algorithm in case there are many 2ε-best arms.
Lemma 3.6. When (4) holds, at least one player successfully identifies an ε-best arm in the EX-
PLORE phase, with probability at least 5/6.

The next lemma is more refined and states that in case there are few 2ε-best arms, the probability of
each player to successfully identify an ε-best arm grows linearly with nε.

Lemma 3.7. Assume that n2ε ≤ 1
50

√
k. When (4) holds, each player identifies an ε-best arm in the

EXPLORE phase, with probability at least 2nε/
√
k.

6

Algorithm 2 ONE-ROUND ε-ARM

input time horizon T , accuracy ε
output an arm

1: for player j = 1 to k do
2: choose a subset Aj of 12n/

√
k arms uni-

formly at random
3: EXPLORE: execute ij ← A(Aj , ε) using

at most 1
2T pulls (and halting the algorithm

early if necessary);
if the algorithm fails to identify any arm or
does not terminate gracefully, let ij be an
arbitrary arm

4: EXPLOIT: pull arm ij for 1
2T times, and

let q̂j be the average reward
5: communicate the numbers ij , q̂j
6: end for
7: let ki be the number of players j with ij = i
8: let ti = 1

2kiT and p̂i = (1/ki)
∑
{j : ij=i} q̂j

for all i
9: define A = {i ∈ [n] : ti ≥ (1/ε2) ln(12n)}

10: return arg maxi∈A p̂i; if the set A is empty,
output an arbitrary arm.

The last lemma we need analyzes the accuracy
of the estimated rewards of arms in the set A.
Lemma 3.8. With probability at least 5/6, we
have |p̂i − pi| ≤ ε/2 for all arms i ∈ A.

For the proofs of the above lemmas, refer to
[16]. We now turn to prove Theorem 3.5.

Proof. We shall prove that with probability 5/6
the set A contains at least one ε-best arm. This
would complete the proof, since Lemma 3.8 as-
sures that with probability 5/6, the estimates p̂i
of all arms i ∈ A are at most ε/2-away from the
true reward pi, and in turn implies (via a union
bound) that with probability 2/3 the arm i ∈ A
having the maximal empirical reward p̂i must
be a 2ε-best arm.

First, consider the case n2ε > 1
50

√
k. Lemma

3.6 shows that with probability 5/6 there exists
a player j that identifies an ε-best arm ij . Since
for at least n2ε arms ∆i ≤ 2ε, we have

tij ≥ 1
2T ≥

400

2
√
k
· n2ε − 1

(2ε)2
ln

24n

2ε

≥ 1

ε2
ln(12n) ,

that is, ij ∈ A.

Next, consider the case n2ε ≤ 1
50

√
k. Let N denote the number of players that identified some

ε-best arm. The random variable N is a sum of Bernoulli random variables {Ij}j where Ij in-
dicates whether player j identified some ε-best arm. By Lemma 3.7, E[Ij] ≥ 2nε/

√
k and thus

by Hoeffding’s inequality, Pr[N < nε

√
k] = Pr[N − E[N] ≤ −nε

√
k] ≤ exp(−2n2ε) ≤ 1/6 .

That is, with probability 5/6, at least nε
√
k players found an ε-best arm. A pigeon-hole argument

now shows that in this case there exists an ε-best arm i? selected by at least
√
k players. Hence,

with probability 5/6 the number of samples of this arm collected in the EXPLOIT phase is at least
ti? ≥

√
kT/2 > (1/ε2) ln(12n), which means that i? ∈ A.

3.3 Lower Bound

The following theorem suggests that in general, for identifying the best arm k players achieve a
multiplicative speed-up of at most Õ(

√
k) when allowing one transmission per player (at the end of

the game). Clearly, this also implies that a similar lower bound holds in the PAC setup, and proves
that our algorithmic results for the one-round case are essentially tight.
Theorem 3.9. For any k-player strategy that uses a single round of communication, there exist
rewards p1, . . . , pn ∈ [0, 1] and integer T such that

• each individual player must use at least T/
√
k arm pulls for them to collectively identify the

best arm with probability at least 2/3;
• there exist a single-player algorithm that needs at most Õ(T) pulls for identifying the best arm

with probability at least 2/3.

The proof of the theorem is omitted due to space constraints and can be found in [16].

4 Multiple Communication Rounds

In this section we establish an explicit tradeoff between the performance of a multi-player algorithm
and the number of communication rounds it uses, in terms of the accuracy ε. Our observation is that

7

by allowing O(log(1/ε)) rounds of communication, it is possible to achieve the optimal speedup of
factor k. That is, we do not gain any improvement in learning performance by allowing more than
O(log(1/ε)) rounds.

Algorithm 3 MULTI-ROUND ε-ARM

input (ε, δ)
output an arm

1: initialize S0 ← [n], r ← 0, t0 ← 0
2: repeat
3: set r ← r + 1
4: let εr ← 2−r, tr ← (2/kε2r) ln(4nr2/δ)
5: for player j = 1 to k do
6: sample each arm i ∈ Sr−1 for tr − tr−1

times
7: let p̂rj,i be the average reward of arm i (in

all rounds so far of player j)
8: communicate the numbers p̂rj,1, . . . , p̂

r
j,n

9: end for
10: let p̂ri = (1/k)

∑k
j=1 p̂

r
j,i for all i ∈ Sr−1,

and let p̂r? = maxi∈Sr−1
p̂ri

11: set Sr ← Sr−1\{i ∈ Sr−1 : p̂ri < p̂r?−εr}
12: until εr ≤ ε/2 or |Sr| = 1
13: return an arm from Sr

Our algorithm is given in Algorithm 3. The
idea is to eliminate in each round r (i.e., right
after the rth communication round) all 2−r-
suboptimal arms. We accomplish this by let-
ting each player sample uniformly all remain-
ing arms and communicate the results to other
players. Then, players are able to eliminate
suboptimal arms with high confidence. If
each such round is successful, after log2(1/ε)
rounds only ε-best arms survive. Theorem 4.1
below bounds the number of arm pulls used by
this algorithm (a proof can be found in [16]).
Theorem 4.1. With probability at least 1 − δ,
Algorithm 3

• identifies the optimal arm using

O

(
1

k
·

n∑
i=2

1

(∆ε
i)

2
log

(
n

δ
log

1

∆ε
i

))
arm pulls per player;

• terminates after at most 1 + dlog2(1/ε)e rounds of communication (or after 1 + dlog2(1/∆?)e
rounds for ε = 0).

By properly tuning the elimination thresholds εr of Algorithm 3 in accordance with the target accu-
racy ε, we can establish an explicit trade-off between the number of communication rounds and the
number of arm pulls each player needs. In particular, we can design a multi-player algorithm that
terminates after at most R communication rounds, for any given parameter R > 0. This, however,
comes at the cost of a compromise in learning performance as quantified in the following corollary.

Corollary 4.2. Given a parameter R > 0, set εr ← εr/R for all r ≥ 1 in Algorithm 3. With proba-
bility at least 1− δ, the modified algorithm

• identifies an ε-best arm using Õ((ε−2/R/k) ·
∑n

i=2(1/∆ε
i)

2) arm pulls per player;
• terminates after at most R rounds of communication.

5 Conclusions and Further Research

We have considered a collaborative MAB exploration problem, in which several independent play-
ers explore a set of arms with a common goal, and obtained the first non-trivial results in such
setting. Our main results apply for the specifically interesting regime where each of the players is
allowed a single transmission; this setting fits naturally to common distributed frameworks such as
MapReduce. An interesting open question in this context is whether one can obtain a strictly better
speed-up result (which, in particular, is independent of ε) by allowing more than a single round.
Even when allowing merely two communication rounds, it is unclear whether the

√
k speed-up can

be improved. Intuitively, the difficulty here is that in the second phase of a reasonable strategy each
player should focus on the arms that excelled in the first phase; this makes the sub-problems being
faced in the second phase as hard as the entire MAB instance, in terms of the quantity Hε. Nev-
ertheless, we expect our one-round approach to serve as a building-block in the design of future
distributed exploration algorithms, that are applicable in more complex communication models.

An additional interesting problem for future research is how to translate our results to the regret
minimization setting. In particular, it would be nice to see a conversion of algorithms like UCB [5]
to a distributed setting. In this respect, perhaps a more natural distributed model is a one resembling
that of Kanade et al. [17], that have established a regret vs. communication trade-off in the non-
stochastic setting.

8

References
[1] A. Agarwal and J. C. Duchi. Distributed delayed stochastic optimization. In NIPS, pages

873–881, 2011.
[2] D. Agarwal, B.-C. Chen, P. Elango, N. Motgi, S.-T. Park, R. Ramakrishnan, S. Roy, and

J. Zachariah. Online models for content optimization. In NIPS, pages 17–24, December 2008.
[3] J.-Y. Audibert, S. Bubeck, and R. Munos. Best arm identification in multi-armed bandits. In

COLT, pages 41–53, 2010.
[4] P. Auer and R. Ortner. UCB revisited: Improved regret bounds for the stochastic multi-armed

bandit problem. Periodica Mathematica Hungarica, 61(1-2):55–65, 2010.
[5] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time analysis of the multiarmed bandit prob-

lem. Machine learning, 47(2):235–256, 2002.
[6] M. Balcan, A. Blum, S. Fine, and Y. Mansour. Distributed learning, communication complexity

and privacy. Arxiv preprint arXiv:1204.3514, 2012.
[7] S. Bubeck, R. Munos, and G. Stoltz. Pure exploration in multi-armed bandits problems. In

Algorithmic Learning Theory, pages 23–37. Springer, 2009.
[8] D. Chakrabarti, R. Kumar, F. Radlinski, and E. Upfal. Mortal multi-armed bandits. In NIPS,

pages 273–280, 2008.
[9] H. Daumé III, J. M. Phillips, A. Saha, and S. Venkatasubramanian. Efficient protocols for

distributed classification and optimization. In ALT, 2012.
[10] H. Daumé III, J. M. Phillips, A. Saha, and S. Venkatasubramanian. Protocols for learning

classifiers on distributed data. AISTAT, 2012.
[11] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters. Commun.

ACM, 51(1):107–113, Jan. 2008.
[12] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao. Optimal distributed online prediction

using mini-batches. Journal of Machine Learning Research, 13:165–202, 2012.
[13] J. Duchi, A. Agarwal, and M. J. Wainwright. Distributed dual averaging in networks. NIPS,

23, 2010.
[14] E. Even-Dar, S. Mannor, and Y. Mansour. Action elimination and stopping conditions for the

multi-armed bandit and reinforcement learning problems. The Journal of Machine Learning
Research, 7:1079–1105, 2006.

[15] V. Gabillon, M. Ghavamzadeh, A. Lazaric, and S. Bubeck. Multi-bandit best arm identification.
NIPS, 2011.

[16] E. Hillel, Z. Karnin, T. Koren, R. Lempel, and O. Somekh. Distributed exploration in multi-
armed bandits. arXiv preprint arXiv:1311.0800, 2013.

[17] V. Kanade, Z. Liu, and B. Radunovic. Distributed non-stochastic experts. In Advances in
Neural Information Processing Systems 25, pages 260–268, 2012.

[18] Z. Karnin, T. Koren, and O. Somekh. Almost optimal exploration in multi-armed bandits. In
Proceedings of the 30th International Conference on Machine Learning, 2013.

[19] K. Liu and Q. Zhao. Distributed learning in multi-armed bandit with multiple players. IEEE
Transactions on Signal Processing, 58(11):5667–5681, Nov. 2010.

[20] S. Mannor and J. Tsitsiklis. The sample complexity of exploration in the multi-armed bandit
problem. The Journal of Machine Learning Research, 5:623–648, 2004.

[21] O. Maron and A. W. Moore. Hoeffding races: Accelerating model selection search for classi-
fication and function approximation. In NIPS, 1994.

[22] V. Mnih, C. Szepesvári, and J.-Y. Audibert. Empirical bernstein stopping. In ICML, pages
672–679. ACM, 2008.

[23] F. Radlinski, M. Kurup, and T. Joachims. How does clickthrough data reflect retrieval quality?
In CIKM, pages 43–52, October 2008.

[24] Y. Yue and T. Joachims. Interactively optimizing information retrieval systems as a dueling
bandits problem. In ICML, page 151, June 2009.

9

