
It is all in the noise: Efficient multi-task Gaussian
process inference with structured residuals

Barbara Rakitsch
Machine Learning and Computational Biology

Research Group
Max Planck Institutes Tübingen, Germany
rakitsch@tuebingen.mpg.de

Christoph Lippert
Microsoft Research
Los Angeles, USA

lippert@microsoft.com

Karsten Borgwardt1,2
Machine Learning and Computational Biology

Research Group
Max Planck Institutes Tübingen, Germany

karsten.borgwardt@tuebingen.mpg.de

Oliver Stegle2

European Molecular Biology Laboratory
European Bioinformatics Institute

Cambridge, UK
oliver.stegle@ebi.ac.uk

Abstract

Multi-task prediction methods are widely used to couple regressors or classifica-
tion models by sharing information across related tasks. We propose a multi-task
Gaussian process approach for modeling both the relatedness between regressors
and the task correlations in the residuals, in order to more accurately identify true
sharing between regressors. The resulting Gaussian model has a covariance term
in form of a sum of Kronecker products, for which efficient parameter inference
and out of sample prediction are feasible. On both synthetic examples and applica-
tions to phenotype prediction in genetics, we find substantial benefits of modeling
structured noise compared to established alternatives.

1 Introduction

Multi-task Gaussian process (GP) models are widely used to couple related tasks or functions for
joint regression. This coupling is achieved by designing a structured covariance function, yielding
a prior on vector-valued functions. An important class of structured covariance functions can
be derived from a product of a kernel function c relating the tasks (task covariance) and a kernel
function r relation the samples (sample covariance)

cov(fn,t, fn′,t′) = c(t, t′)︸ ︷︷ ︸
task covariance

· r(n, n′)︸ ︷︷ ︸
sample covariance

, (1)

where fn,t are latent function values that induce the outputs yn,t by adding some Gaussian noise.
If the outputs yn,t are fully observed, with one training example per sample and task, the resulting
covariance matrix between the latent factors can be written as a Kronecker product between the
sample covariance matrix and the task covariance matrix (e.g. [1]). More complex multi-task
covariance structures can be derived from generalizations of this product structure, for example via
convolution of multiple features, e.g. [2]. In [3], a parameterized covariance over the tasks is used,
assuming that task-relevant features are observed. The authors of [4] couple the latent features over
the tasks exploiting a dependency in neural population activity over time.

1Also at Zentrum für Bioinformatik, Eberhard Karls Universität Tübingen,Tübingen, Germany
2Both authors contributed equally to this work.

1

Work proposing this type of multi-task GP regression builds on Bonilla and Williams [1], who have
emphasized that the power of Kronecker covariance models for GP models (Eqn. (1)) is linked to
non-zero observation noise. In fact, in the limit of noise-free training observations, the coupling of
tasks for predictions is lost in the predictive model, reducing to ordinary GP regressors for each indi-
vidual task. Most multi task GP models build on a simple independent noise model, an assumption
that is mainly routed in computational convenience. For example [5] show that this assumption ren-
ders the evaluation of the model likelihood and parameter gradients tractable, avoiding the explicit
evaluation of the Kronecker covariance.

In this paper, we account for residual noise structure by modeling the signal and the noise covari-
ance matrix as two separate Kronecker products. The structured noise covariance is independent
of the inputs but instead allows to capture residual correlation between tasks due to latent causes;
moreover, the model is simple and extends the widely used product covariance structure. Concep-
tually related noise models have been proposed in animal breeding [6, 7]. In geostatistics [8], linear
coregionalization models have been introduced to allow for more complicated covariance structures:
the signal covariance matrix is modeled as a sum of Kronecker products and the noise covariance
as a single Kronecker product. In machine learning, the Gaussian process regression networks [9]
considers an adaptive mixture of GPs to model related tasks. The mixing coefficients are dependent
on the input signal and control the signal and noise correlation simultaneously.

The remainder of this paper is structured as follows. First, we show that unobserved regressors or
causal processes inevitably lead to correlated residual, motivating the need to account for structured
noise (Section 2). This extension of the multi task GP model allows for more accurate estimation
of the task-task relationships, thereby improving the performance for out-of-sample predictions. At
the same time, we show how an efficient inference scheme can be derived for this class of models.
The proposed implementation handles closed form marginal likelihoods and parameter gradients for
matrix-variate normal models with a covariance structure represented by the sum of two Kronecker
products. These operations can be implemented at marginal extra computational cost compared to
models that ignore residual task correlations (Section 3). In contrast to existing work extending
Gaussian process multi task models by defining more complex covariance structures [2, 9, 8], our
model utilizes the gradient of the marginal likelihood for parameter estimation and does not require
expected maximization, variational approximation or MCMC sampling. We apply the resulting
model in simulations and real settings, showing that correlated residuals are a concern in important
applications (Section 4).

2 Multi-task Gaussian processes with structured noise

Let Y ∈ RN×T denote the N × T output training matrix for N samples and T tasks. A column of
this matrix corresponds to a particular task t is denoted as yt, and vecY =

(
y>1 . . .y

>
T

)>
denotes

the vector obtained by vertical concatenation of all columns of Y. We indicate the dimensions of the
matrix as capital subscripts when needed for clarity. A more thoughtful derivation of all equations
can be found in the Supplementary Material.

Multivariate linear model equivalence The multi-task Gaussian process regression model with
structured noise can be derived from the perspective of a linear multivariate generative model. For
a particular task t, the outputs are determined by a linear function of the training inputs across F
features S = {s1, . . . , sF },

yt =

F∑
f=1

sfwf,t +ψt. (2)

Multi-task sharing is achieved by specifying a multivariate normal prior across tasks, both for the
regression weights wf,t and the noise variances ψt:

p(W>) =

F∏
f=1

N (wf |0,CTT) p(Ψ>) =

N∏
n=1

N (ψn |0,ΣTT) .

2

Marginalizing out the weights W and the residuals Ψ results in a matrix-variate normal model with
sum of Kronecker products covariance structure

p(vecY |C,R,Σ) = N

vecYNT |0,CTT ⊗RNN︸ ︷︷ ︸
signal covariance

+ΣTT ⊗ INN︸ ︷︷ ︸
noise covariance

 , (3)

where RNN = SS> is the sample covariance matrix that results from the marginalization over
the weights W in Eqn. (2). In the following, we will refer to a Gaussian process model with this
type of sum of Kronecker products covariance structure as GP-kronsum1. As common to any kernel
method, the linear covariance R can be replaced with any positive semi-definite covariance function.

Predictive distribution In a GP-kronsum model, predictions for unseen test instances can be car-
ried out by using the standard Gaussian process framework [10]:

p(vecY∗|R∗,Y) = N (vecY∗ | vec M∗,V∗) . (4)

Here, M∗ denotes the mean prediction and V∗ is the predictive covariance. Analytical expression
for both can be obtained by considering the joint distribution of observed and unobserved outputs
and completing the square, yielding:

vec M∗ = (CTT ⊗R∗N∗N) (CTT ⊗RNN + ΣTT ⊗ INN)
−1

vecYNT ,

V∗ = (CTT ⊗R∗N∗N∗)− (CTT ⊗R∗N∗N) (CTT ⊗RNN + ΣTT ⊗ INN)
−1

(CTT ⊗R∗NN∗) ,

where R∗N∗N is the covariance matrix between the test and training instances, and R∗N∗N∗ is the
covariance matrix between the test samples.

Design of multi-task covariance function In practice, neither the form of C nor the form of Σ is
known a priori and hence needs to be inferred from data, fitting a set of corresponding covariance
parameters θC and θΣ. If the number of tasks T is large, learning a free-form covariance matrix is
prone to overfitting, as the number of free parameters grows quadratically with T . In the experi-
ments, we consider a rank-k approximation of the form

∑K
k=1 xkx>k + σ2I for the task matrices.

Task cancellation when the task covariance matrices are equal A notable form of the predictive
distribution (4) arises for the special case C = Σ, that is the task covariance matrix of signal
and noise are identical. Similar to previous results for noise-free observations [1], maximizing the
marginal likelihood p(vecY|C,R,Σ) with respect to the parameters θR becomes independent of C
and the predictions are decoupled across tasks, i.e. the benefits from joint modeling are lost:

vec M∗ = vec
(
R∗N∗N (RNN + INN)−1YNT

)
(5)

In this case, the predictions depend on the sample covariance, but not on the task covariance. Thus,
the GP-kronsum model is most useful when the task covariances on observed features and on noise
reflect two independent sharing structures.

3 Efficient Inference

In general, efficient inference can be carried out for Gaussian models with a sum covariance of two
arbitrary Kronecker products

p(vecY |C,R,Σ) = N (vecY |0,CTT ⊗RNN + ΣTT ⊗ΩNN) . (6)

The key idea is to first consider a suitable data transformation that leads to a diagonalization of all
covariance matrices and second to exploit Kronecker tricks whenever possible.

Let Σ = UΣSΣU>Σ be the eigenvalue decomposition of Σ, and analogously for Ω. Borrowing
ideas from [11], we can first bring the covariance matrix in a more amenable form by factoring out
the structured noise:

1the covariance is defined as the sum of two Kronecker products and not as the classical Kronecker sum
C⊕R = C⊗ I+ I⊗R.

3

K = C⊗R + Σ⊗Ω

=
(
UΣS

1
2

Σ ⊗UΩS
1
2

Ω

)(
C̃⊗ R̃ + I⊗ I

)(
S

1
2

ΣU>Σ ⊗ S
1
2

ΩU>Ω

)
, (7)

where C̃ = S
− 1

2

Σ U>ΣCUΣS
− 1

2

Σ and R̃ = S
− 1

2

Ω U>ΩRUΩS
− 1

2

Ω . In the following, we use definition
K̃ = C̃⊗ R̃ + I⊗ I for this transformed covariance.

Efficient log likelihood evaluation. The log model likelihood (Eqn. (6)) can be expressed in terms
of the transformed covariance K̃:

L =− NT

2
ln(2π)− 1

2
ln|K| − 1

2
vecY>K−1vecY

=− NT

2
ln(2π)− 1

2
ln|K̃| − 1

2
|SΣ ⊗ SΩ| −

1

2
vecỸ>K̃−1vecỸ, (8)

where vecỸ =
(
S
− 1

2

Σ U>Σ ⊗ S
− 1

2

Ω U>Ω

)
vecY = vec

(
S
− 1

2

Ω UT
ΩYUΣS

− 1
2

Σ

)
is the projected output.

Except for the additional term |SΣ ⊗ SΩ|, resulting from the transformation, the log likelihood has
the exactly same form as for multi-task GP regression with iid noise [1, 5]. Using an analogous
derivation, we can now efficiently evaluate the log likelihood:

L =− NT

2
ln(2π)− 1

2
ln|SC̃ ⊗ SR̃ + I⊗ I| − N

2
ln|SΣ| −

T

2
|SΩ|

− 1

2
vec
(
U>

R̃
ỸUC̃

)>
(SC̃ ⊗ SR̃ + I⊗ I)

−1
vec
(
U>

R̃
ỸUC̃

)
, (9)

where we have defined the eigenvalue decomposition of C̃ as UC̃SC̃U>
C̃

and similar for R̃.

Efficient gradient evaluation The derivative of the log marginal likelihood with respect to a co-
variance parameter θR can be expressed as:

∂

∂θR
L =− 1

2

∂

∂θR
ln |K̃| − 1

2
vecỸ>

(
∂

∂θR
K̃−1

)
vec(Ỹ)

=− 1

2
diag

(
(SC̃ ⊗ SR̃ + I⊗ I)

−1
)>

diag

(
SC̃ ⊗U>

R̃

(
∂

∂θR
R̃

)
UR̃

)
+

1

2
vec(Ŷ)>vec

(
U>

R̃

(
∂

∂θR
R̃

)
UR̃ŶSC̃

)
, (10)

where vec(Ŷ) = (SC̃ ⊗ SR̃ + I⊗ I)
−1

vec
(
U>

R̃
ỸUC̃

)
. Analogous gradients can be derived for

the task covariance parameters θC and θΣ. The proposed speed-ups also apply to the special cases
where Σ is modeled as being diagonal as in [1], or for optimizing the parameters of a kernel function.
Since the sum of Kronecker products generally can not be written as a single Kronecker product, the
speed-ups cannot be generalized to larger sums of Kronecker products.

Efficient prediction Similarly, the mean predictor (Eqn. (4)) can be efficiently evaluated

vec M∗ = vec
[(

R∗UΩS
− 1

2

Ω

)(
UR̃ŶU>

C̃

)(
S
− 1

2

Σ U>ΣC>
)]
. (11)

Gradient-based parameter inference The closed-form expression of the marginal likelihood
(Eqn. (9)) and gradients with respect to covariance parameters (Eqn. (10)) allow for use of gradient-
based parameter inference. In the experiments, we employ a variant of L-BFGS-B [12].

Computational cost. While the naive approach has a runtime ofO(N3 ·T 3) and memory require-
ment of O(N2 ·T 2), as it explicitly computes and inverts the Kronecker products, our reformulation
reduces the runtime to O(N3 + T 3) and the memory requirement to O(N2 + T 2), making it appli-
cable to large numbers of samples and tasks. The empirical runtime savings over the naive approach
are explored in Section 4.1.

4

(a) Efficient Implementation (b) Naive Implementation

Figure 1: Runtime comparison on syn-
thetic data. We compare our efficient GP-
kronsum implementation (left) versus its
naive counterpart (right). Shown is the run-
time in seconds on a logarithmic scale as a
function of the sample size and the number
of tasks. The optimization was stopped pre-
maturely if it did not complete after 104 sec-
onds.

4 Experiments

We investigated the performance of the proposed GP-kronsum model in both simulated datasets and
response prediction problems in statistical genetics. To investigate the benefits of structured residual
covariances, we compared the GP-kronsum model to a Gaussian process (GP-kronprod) with iid
noise [5] as well as independent modeling of tasks using a standard Gaussian process (GP-single),
and joint modeling of all tasks using a standard Gaussian on a pooled dataset, naively merging data
from all tasks (GP-pool).

The predictive performance of individual models was assessed through 10-fold cross-validation.
For each fold, model parameters were fit on the training data only. To avoid local optima during
training, parameter fitting was carried out using five random restarts of the parameters on 90% of
the training instances. The remaining 10% of the training instances were used for out of sample
selection using the maximum log likelihood as criterion. Unless stated otherwise, in the multi-task
models the relationship between tasks was parameterized as xx> + σ2I, the sum of a rank-1 matrix
and a constant diagonal component. Both parameters, x and σ2, were learnt by optimizing the
marginal likelihood. Finally, we measured the predictive performance of the different methods via
the averaged square of Pearson’s correlation coefficient r2 between the true and the predicted output,
averaged over tasks. The squared correlation coefficient is commonly used in statistical genetics to
evaluate the performance of different predictors [13].

4.1 Simulations

First, we considered simulated experiments to explore the runtime behavior and to find out if there
are settings in which GP-kronsum performs better than existing methods.

Runtime evaluation. As a first experiment, we examined the runtime behavior of our method as
a function of the number of samples and of the number of tasks. Both parameters were varied in
the range {16, 32, 64, 128, 256}. The simulated dataset was drawn from the GP-kronsum model
(Eqn. (3)) using a linear kernel for the sample covariance matrix R and rank-1 matrices for the task
covariances C and Σ. The runtime of this model was assessed for a single likelihood optimization on
an AMD Opteron Processor 6,378 using a single core (2.4GHz, 2,048 KB Cache, 512 GB Memory)
and compared to a naive implementation. The optimization was stopped prematurely if it did not
converge within 104 seconds.

In the experiments, we used a standard linear kernel on the features of the samples as sample covari-
ance while learning the task covariances. This modeling choice results in a steeper runtime increase
with the number of tasks, due to the increasing number of model parameters to be estimated. Fig-
ure 1 demonstrates the significant speed-up. While our algorithm can handle 256 samples/256 tasks
with ease, the naive implementation failed to process more than 32 samples/32 tasks.

Unobserved causal process induces structured noise A common source of structured residuals
are unobserved causal processes that are not captured via the inputs. To explore this setting, we
generated simulated outputs from a sum of two different processes. For one of the processes, we
assumed that the causal features Xobs were observed, whereas for the second process the causal
features Xhidden were hidden and independent of the observed measurements. Both processes were
simulated to have a linear effect on the output. The effect from the observed features was again
divided up into an independent effect, which is task-specific, and a common effect, which, up to

5

rescaling rcommon, is shared over all tasks:

Ycommon = XobsWcommon, Wcommon = rcommon ⊗wcommon, rcommon ∼ N (0, I),wcommon ∼ N (0, I)

The trade-off parameter µcommon determines the extent of relatedness between tasks:

Yobs = µcommonYcommon + (1− µcommon)Yind.

The effect of the hidden features was simulated analogously. A second trade-off parameter µhidden
was introduced, controlling the ratio between the observed and hidden effect:

Y = µsignal [(1− µhidden)Yobs + µhiddenYhidden] + (1− µsignal)Ynoise,

where Ynoise is Gaussian observation noise, and µsignal is a third trade-off parameter defining the
ratio between noise and signal.

To investigate the impact of the different trade-off parameters, we considered a series of
datasets varying one of the parameters while keeping others fixed. We varied µsignal in the
range {0.1, 0.3, 0.5, 0.7,0.9, 1.0}, µcommon ∈ {0.0, 0.1, 0.3, 0.5, 0.7,0.9, 1.0} and µhidden ∈
{0.0, 0.1, 0.3,0.5, 0.7, 0.9, 1.0}, with default values marked in bold. Note that the best possible
explained variance for the default setting is 45%, as the causal signal is split up equally between
the observed and the hidden process. For all simulation experiments, we created datasets with 200
samples and 10 tasks. The number of observed features was set to 200, as well as the number of
hidden features. For each such simulation setting, we created 30 datasets.

First, we considered the impact of variation in signal strength µsignal (Figure 2a), where the overall
signal was divided up equally between the observed and hidden signal. Both GP-single and GP-
kronsum performed better as the overall signal strength increased. The performance of GP-kronsum
was superior, as the model can exploit the relatedness between the different tasks.
Second, we explored the ability of the different methods to cope with an underlying hidden pro-
cess (Figure 2b). In the absence of a hidden process (µhidden = 0), GP-kronprod and GP-kronsum
had very similar performances, as both methods leverage the shared signal of the observed pro-
cess, thereby outperforming the single-task GPs. However, as the magnitude of the hidden signal
increases, GP-kronprod falsely explains the task correlation completely by the covariance term rep-
resenting the observed process which leads to loss of predictive power.
Last, we examined the ability of different methods to exploit the relatedness between the tasks (Fig-
ure 2c). Since GP-single assumed independent tasks, the model performed very similarly across
the full range of common signal. GP-kronprod suffered from the same limitations as previously de-
scribed, because the correlation between tasks in the hidden process increases synchronously with
the correlation in the observed process as µcommon increases. In contrast, GP-kronsum could take
advantage of the shared component between the tasks, as knowledge is transferred between them.
GP-pool was consistently outperformed by all competitors as two of its main assumptions are heav-
ily violated: samples of different tasks do not share the same signal and the residuals are neither
independent of each other, nor do they have the same noise level.

In summary, the proposed model is robust to a range of different settings and clearly outperforms its
competitors when the tasks are related to each other and not all causal processes are observed.

4.2 Applications to phenotype prediction

As a real world application we considered phenotype prediction in statistical genetics. The aim of
these experiments was to demonstrate the relevance of unobserved causes in real world prediction
problems and hence warrant greater attention.

Gene expression prediction in yeast We considered gene expression levels from a yeast genet-
ics study [14]. The dataset comprised of gene expression levels of 5, 493 genes and 2, 956 SNPs
(features), measured for 109 yeast crosses. Expression levels for each cross were measured in two
conditions (glucose and ethanol as carbon source), yielding a total of 218 samples. In this experi-
ment, we treated the condition information as a hidden factor instead of regressing it out, which is
analogous to the hidden process in the simulation experiments. The goal of this experiment was to
investigate how alternative methods can deal and correct for this hidden covariate. We normalized
all features and all tasks to zero mean and unit variance. Subsequently, we filtered out all genes
that were not consistently expressed in at least 90% of the samples (z-score cutoff 1.5). We also

6

(a) Total Signal (b) Hidden Signal (c) Shared Signal

Figure 2: Evaluation of alternative methods for different simulation settings. From left to right:
(a) Evaluation for varying signal strength. (b) Evaluation for variable impact of the hidden signal.
(c) Evaluation for different strength of relatedness between the tasks. In each simulation setting, all
other parameters were kept constant at default parameters marked with the yellow star symbol.

(a) Empirical (b) Signal (c) Noise

Figure 3: Fitted task covariance matrices for gene expression levels in yeast. From left to right:
(a) Empirical covariance matrix of the gene expression levels. (b) Signal covariance matrix learnt
by GP-kronsum. (c) Noise covariance matrix learnt by GP-kronsum. The ordering of the tasks was
determined using hierarchical clustering on the empirical covariance matrix.

discarded genes with low signal (< 10% of the variance) or were close to noise free (> 90% of the
variance), reducing the number of genes to 123, which we considered as tasks in our experiment.
The signal strength was estimated by a univariate GP model. We used a linear kernel calculated on
the SNP features for the sample covariance.

Figure 3 shows the empirical covariance and the learnt task covariances by GP-kronsum. Both learnt
covariances are highly structured, demonstrating that the assumption of iid noise in the GP-kronprod
model is violated in this dataset. While the signal task covariance matrix reflects genetic signals that
are shared between the gene expression levels, the noise covariance matrix mainly captures the
mean shift between the two conditions the gene expression levels were measured in (Figure 4). To
investigate the robustness of the reconstructed latent factor, we repeated the training 10 times. The
mean latent factors and its standard errors were 0.2103± 0.0088 (averaged over factors, over the 10
best runs selected by out-of-sample likelihood), demonstrating robustness of the inference.

When considering alternative methods for out of sample prediction, the proposed Kronecker Sum
model (r2(GP-kronsum)=0.3322±0.0014) performed significantly better than previous approaches
(r2(GP-pool)=0.0673 ± 0.0004, r2(GP-single)=0.2594 ± 0.0011, r2(GP-kronprod)=0.1820 ±
0.0020). The results are averages over 10 runs and ± denotes the corresponding standard errors.

Multi-phenotype prediction in Arabidopsis thaliana. As a second dataset, we considered a
genome-wide association study in Arabidopsis thaliana [15] to assess the prediction of develop-
mental phenotypes from genomic data. This dataset consisted of 147 samples and 216,130 single
nucleotide polymorphisms (SNPs, here used as features). As different tasks, we considered the phe-
notypes flowering period duration, life cycle period, maturation period and reproduction period.
To avoid outliers and issues due to non-Gaussianity, we preprocessed the phenotypic data by first
converting it to ranks and squashing the ranks through the inverse cumulative Gaussian distribution.
The SNPs in Arabidopsis thaliana are binary and we discarded features with a frequency of less

7

Corr(Glucose,Ethanol)

X C

(a) Signal

Corr(Glucose,Ethanol)

X S
ig
m
a

(b) Noise

Figure 4: Correlation between the mean
difference of the two conditions and the
latent factors on the yeast dataset. Shown
is the strength of the latent factor of the sig-
nal (left) and the noise (right) task covari-
ance matrix as a function of the mean dif-
ference between the two environmental con-
ditions. Each dot corresponds to one gene
expression level.

than 10% in all samples, resulting in 176,436 SNPs. Subsequently, we normalized the features to
zero mean and unit variance. Again, we used a linear kernel on the SNPs as sample covariance.

Since the causal processes in Arabidopsis thaliana are complex, we allowed the rank of the signal
and noise matrix to vary between 1 and 3. The appropriate rank complexity was selected on the 10%
hold out data of the training fold. We considered the average squared correlation coefficient on the
holdout fraction of the training data to select the model for prediction on the test dataset. Notably,
for GP-kronprod, the selected task complexity was rank(C) = 3, whereas GP-kronsum selected
a simpler structure for the signal task covariance (rank(C) = 1) and chose a more complex noise
covariance, rank(Σ) = 2.

The cross validation prediction performance of each model is shown in Table 1. For reproduction
period, GP-single is outperformed by all other methods. For the phenotype life cycle period, the
noise estimates of the univariate GP model were close to zero, and hence all methods, except of
GP-pool, performed equally well since the measurements of the other phenotypes do not provide
additional information. For maturation period, GP-kronsum and GP-kronprod showed improved
performance compared to GP-single and GP-pool. For flowering period duration, GP-kronsum
outperformed its competitors.

Flowering period Life cycle Maturation Reproduction
duration period period period

GP-pool 0.0502± 0.0025 0.1038± 0.0034 0.0460± 0.0024 0.0478± 0.0013
GP-single 0.0385± 0.0017 0.3500± 0.0069 0.1612± 0.0027 0.0272± 0.0024
GP-kronprod 0.0846± 0.0021 0.3417± 0.0062 0.1878± 0.0042 0.0492± 0.0032
GP-kronsum 0.1127± 0.0049 0.3485± 0.0068 0.1918± 0.0041 0.0501± 0.0033

Table 1: Predictive performance of the different methods on the Arabidopsis thaliana dataset.
Shown is the squared correlation coefficient and its standard error (measured by repeating 10-fold
cross-validation 10 times).

5 Discussion and conclusions

Multi-task Gaussian process models are a widely used tool in many application domains, ranging
from the prediction of user preferences in collaborative filtering to the prediction of phenotypes in
computational biology. Many of these prediction tasks are complex and important causal features
may remain unobserved or are not modeled. Nevertheless, most approaches in common usage as-
sume that the observation noise is independent between tasks. We here propose the GP-kronsum
model, which allows to efficiently model data where the noise is dependent between tasks by build-
ing on a sum of Kronecker products covariance. In applications to statistical genetics, we have
demonstrated (1) the advantages of the dependent noise model over an independent noise model, as
well as (2) the feasibility of applying larger data sets by the efficient learning algorithm.

Acknowledgement

We thank Francesco Paolo Casale for helpful discussions. OS was supported by an Marie Curie
FP7 fellowship. KB was supported by the Alfried Krupp Prize for Young University Teachers of the
Alfried Krupp von Bohlen und Halbach-Stiftung.

8

References

[1] Edwin V. Bonilla, Kian Ming Adam Chai, and Christopher K. I. Williams. Multi-task gaussian
process prediction. In NIPS, 2007.

[2] Mauricio A. Álvarez and Neil D. Lawrence. Sparse convolved gaussian processes for multi-
output regression. In NIPS, pages 57–64, 2008.

[3] Edwin V. Bonilla, Felix V. Agakov, and Christopher K. I. Williams. Kernel multi-task learning
using task-specific features. In AISTATS, 2007.

[4] Byron M. Yu, John P. Cunningham, Gopal Santhanam, Stephen I. Ryu, Krishna V. Shenoy, and
Maneesh Sahani. Gaussian-process factor analysis for low-dimensional single-trial analysis of
neural population activity. In NIPS, pages 1881–1888, 2008.

[5] Oliver Stegle, Christoph Lippert, Joris M. Mooij, Neil D. Lawrence, and Karsten M. Borg-
wardt. Efficient inference in matrix-variate gaussian models with iid observation noise. In
NIPS, pages 630–638, 2011.

[6] Karin Meyer. Estimating variances and covariances for multivariate animal models by re-
stricted maximum likelihood. Genetics Selection Evolution, 23(1):67–83, 1991.

[7] V Ducrocq and H Chapuis. Generalizing the use of the canonical transformation for the so-
lution of multivariate mixed model equations. Genetics Selection Evolution, 29(2):205–224,
1997.

[8] Hao Zhang. Maximum-likelihood estimation for multivariate spatial linear coregionalization
models. Environmetrics, 18(2):125–139, 2007.

[9] Andrew Gordon Wilson, David A. Knowles, and Zoubin Ghahramani. Gaussian process re-
gression networks. In ICML, 2012.

[10] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT Press, 2005.

[11] Alfredo A. Kalaitzis and Neil D. Lawrence. Residual components analysis. In ICML, 2012.
[12] Ciyou Zhu, Richard H. Byrd, Peihuang Lu, and Jorge Nocedal. Algorithm 778: L-bfgs-b:

Fortran subroutines for large-scale bound-constrained optimization. ACM Trans. Math. Softw.,
23(4):550–560, December 1997.

[13] Ulrike Ober, Julien F. Ayroles, Eric A. Stone, Stephen Richards, and et al. Using Whole-
Genome Sequence Data to Predict Quantitative Trait Phenotypes in Drosophila melanogaster.
PLoS Genetics, 8(5):e1002685+, May 2012.

[14] Erin N Smith and Leonid Kruglyak. Gene–environment interaction in yeast gene expression.
PLoS Biology, 6(4):e83, 2008.

[15] S. Atwell, Y. S. Huang, B. J. Vilhjalmsson, Willems, and et al. Genome-wide association study
of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature, 465(7298):627–631, Jun 2010.

9

