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Abstract

We study the problem of reconstructing low-rank matrices from their noisy ob-
servations. We formulate the problem in the Bayesian framework, which allows
us to exploit structural properties of matrices in addition to low-rankedness, such
as sparsity. We propose an efficient approximate message passing algorithm, de-
rived from the belief propagation algorithm, to perform the Bayesian inference for
matrix reconstruction. We have also successfully applied the proposed algorithm
to a clustering problem, by reformulating it as a low-rank matrix reconstruction
problem with an additional structural property. Numerical experiments show that
the proposed algorithm outperforms Lloyd’s K-means algorithm.

1 Introduction

Low-rankedness of matrices has frequently been exploited when one reconstructs a matrix from its
noisy observations. In such problems, there are often demands to incorporate additional structural
properties of matrices in addition to the low-rankedness. In this paper, we consider the case where
a matrix A0 ∈ Rm×N to be reconstructed is factored as A0 = U0V

⊤
0 , U0 ∈ Rm×r, V0 ∈ RN×r

(r ≪ m, N ), and where one knows structural properties of the factors U0 and V0 a priori. Sparseness
and non-negativity of the factors are popular examples of such structural properties [1, 2].

Since the properties of the factors to be exploited vary according to the problem, it is desirable
that a reconstruction method has enough flexibility to incorporate a wide variety of properties. The
Bayesian approach achieves such flexibility by allowing us to select prior distributions of U0 and V0

reflecting a priori knowledge on the structural properties. The Bayesian approach, however, often
involves computationally expensive processes such as high-dimensional integrations, thereby requir-
ing approximate inference methods in practical implementations. Monte Carlo sampling methods
and variational Bayes methods have been proposed for low-rank matrix reconstruction to meet this
requirement [3–5].

We present in this paper an approximate message passing (AMP) based algorithm for Bayesian low-
rank matrix reconstruction. Developed in the context of compressed sensing, the AMP algorithm re-
constructs sparse vectors from their linear measurements with low computational cost, and achieves
a certain theoretical limit [6]. AMP algorithms can also be used for approximating Bayesian in-
ference with a large class of prior distributions of signal vectors and noise distributions [7]. These
successes of AMP algorithms motivate the use of the same idea for low-rank matrix reconstruction.
The IterFac algorithm for the rank-one case [8] has been derived as an AMP algorithm. An AMP
algorithm for the general-rank case is proposed in [9], which, however, can only treat estimation of
posterior means. We extend their algorithm so that one can deal with other estimations such as the
maximum a posteriori (MAP) estimation. It is the first contribution of this paper.
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As the second contribution, we apply the derived AMP algorithm to K-means type clustering to
obtain a novel efficient clustering algorithm. It is based on the observation that our formulation
of the low-rank matrix reconstruction problem includes the clustering problem as a special case.
Although the idea of applying low-rank matrix reconstruction to clustering is not new [10, 11], our
proposed algorithm is, to our knowledge, the first that directly deals with the constraint that each
datum should be assigned to exactly one cluster in the framework of low-rank matrix reconstruction.
We present results of numerical experiments, which show that the proposed algorithm outperforms
Lloyd’s K-means algorithm [12] when data are high-dimensional.

Recently, AMP algorithms for dictionary learning and blind calibration [13] and for matrix recon-
struction with a generalized observation model [14] were proposed. Although our work has some
similarities to these studies, it differs in that we fix the rank r rather than the ratio r/m when taking
the limit m,N → ∞ in the derivation of the algorithm. Another difference is that our formulation,
explained in the next section, does not assume statistical independence among the components of
each row of U0 and V0. A detailed comparison among these algorithms remains to be made.

2 Problem setting

2.1 Low-rank matrix reconstruction

We consider the following problem setting. A matrix A0 ∈ Rm×N to be estimated is defined
by two matrices U0 := (u0,1, . . . ,u0,m)⊤ ∈ Rm×r and V0 := (v0,1, . . . ,v0,N )⊤ ∈ RN×r as
A0 := U0V

⊤
0 , where u0,i,v0,j ∈ Rr. We consider the case where r ≪ m, N . Observations of A0

are corrupted by additive noise W ∈ Rm×N , whose components Wi,j are i.i.d. Gaussian random
variables following N(0,mτ). Here τ > 0 is a noise variance parameter and N(a, σ2) denotes the
Gaussian distribution with mean a and variance σ2. The factor m in the noise variance is introduced
to allow a proper scaling in the limit where m and N go to infinity in the same order, which is
employed in deriving the algorithm. An observed matrix A ∈ Rm×N is given by A := A0 + W .
Reconstructing A0 and (U0, V0) from A is the problem considered in this paper.

We take the Bayesian approach to address this problem, in which one requires prior distributions
of variables to be estimated, as well as conditional distributions relating observations with variables
to be estimated. These distributions need not be the true ones because in some cases they are not
available so that one has to assume them arbitrarily, and in some other cases one expects advantages
by assuming them in some specific manner in view of computational efficiencies. In this paper, we
suppose that one uses the true conditional distribution

p(A|U0, V0) =
1

(2πmτ)
mN
2

exp
(
− 1

2mτ
∥A− U0V

⊤
0 ∥2F

)
, (1)

where ∥ · ∥F denotes the Frobenius norm. Meanwhile, we suppose that the assumed prior distribu-
tions of U0 and V0, denoted by p̂U and p̂V, respectively, may be different from the true distributions
pU and pV, respectively. We restrict p̂U and p̂V to distributions of the form p̂U(U0) =

∏
i p̂u(u0,i)

and p̂V(V0) =
∏

j p̂v(v0,j), respectively, which allows us to construct computationally efficient
algorithms. When U ∼ p̂U(U) and V ∼ p̂V(V ), the posterior distribution of (U, V ) given A is

p̂(U, V |A) ∝ exp
(
− 1

2mτ
∥A− UV ⊤∥2F

)
p̂U(U)p̂V(V ). (2)

Prior probability density functions (p.d.f.s) p̂u and p̂v can be improper, that is, they can integrate to
infinity, as long as the posterior p.d.f. (2) is proper. We also consider cases where the assumed rank
r̂ may be different from the true rank r. We thus suppose that estimates U and V are of size m× r̂
and N × r̂, respectively.

We consider two problems appearing in the Bayesian approach. The first problem, which we call
the marginalization problem, is to calculate the marginal posterior distributions given A,

p̂i,j(ui,vj |A) :=
∫

p̂(U, V |A)
∏
k ̸=i

duk

∏
l ̸=j

dvl. (3)

These are used to calculate the posterior mean E[UV ⊤|A] and the marginal MAP estimates
uMMAP
i := argmaxu

∫
p̂i,j(u,v|A)dv and vMMAP

j := argmaxv
∫
p̂i,j(u,v|A)du. Because
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calculation of p̂i,j(ui,vj |A) typically involves high-dimensional integrations requiring high com-
putational cost, approximation methods are needed.

The second problem, which we call the MAP problem, is to calculate the MAP estimate
argmaxU,V p̂(U, V |A). It is formulated as the following optimization problem:

min
U,V

CMAP(U, V ), (4)

where CMAP(U, V ) is the negative logarithm of (2):

CMAP(U, V ) :=
1

2mτ
∥A− UV ⊤∥2F −

m∑
i=1

log p̂u(ui)−
N∑
j=1

log p̂v(vj). (5)

Because ∥A − UV ⊤∥2F is a non-convex function of (U, V ), it is generally hard to find the global
optimal solutions of (4) and therefore approximation methods are needed in this problem as well.

2.2 Clustering as low-rank matrix reconstruction

A clustering problem can be formulated as a problem of low-rank matrix reconstruction [11]. Sup-
pose that v0,j ∈ {e1, . . . , er}, j = 1, . . . , N , where el ∈ {0, 1}r is the vector whose lth component
is 1 and the others are 0. When V0 and U0 are fixed, aj follows one of the r Gaussian distributions
N(ũ0,l,mτI), l = 1, . . . , r, where ũ0,l is the lth column of U0. We regard that each Gaussian
distribution defines a cluster, ũ0,l being the center of cluster l and v0,j representing the cluster
assignment of the datum aj . One can then perform clustering on the dataset {a1, . . . ,aN} by re-
constructing U0 and V0 from A = (a1, . . . ,aN ) under the structural constraint that every row of V0

should belong to {e1, . . . , er̂}, where r̂ is an assumed number of clusters.

Let us consider maximum likelihood estimation argmaxU,V p(A|U, V ), or equivalently, MAP esti-
mation with the (improper) uniform prior distributions p̂u(u) = 1 and p̂v(v) = r̂−1

∑r̂
l=1 δ(v−el).

The corresponding MAP problem is

min
U∈Rm×r̂,V ∈{0,1}N×r̂

∥A− UV ⊤∥2F subject to vj ∈ {e1, . . . , er̂}. (6)

When V satisfies the constraints, the objective function ∥A − UV ⊤∥2F =
∑N

j=1

∑r̂
l=1 ∥aj −

ũl∥22I(vj = el) is the sum of squared distances, each of which is between a datum and the center of
the cluster that the datum is assigned to. The optimization problem (6), its objective function, and
clustering based on it are called in this paper the K-means problem, the K-means loss function, and
the K-means clustering, respectively.

One can also use the marginal MAP estimation for clustering. If U0 and V0 follow p̂U and p̂V, re-
spectively, the marginal MAP estimation is optimal in the sense that it maximizes the expectation of
accuracy with respect to p̂(V0|A). Here, accuracy is defined as the fraction of correctly assigned data
among all data. We call the clustering using approximate marginal MAP estimation the maximum
accuracy clustering, even when incorrect prior distributions are used.

3 Previous work

Existing methods for approximately solving the marginalization problem and the MAP problem
are divided into stochastic methods such as Markov-Chain Monte-Carlo methods and deterministic
ones. A popular deterministic method is to use the variational Bayesian formalism. The variational
Bayes matrix factorization [4, 5] approximates the posterior distribution p(U, V |A) as the product
of two functions pVB

U (U) and pVB
V (V ), which are determined so that the Kullback-Leibler (KL)

divergence from pVB
U (U)pVB

V (V ) to p(U, V |A) is minimized. Global minimization of the KL di-
vergence is difficult except for some special cases [15], so that an iterative method to obtain a local
minimum is usually adopted. Applying the variational Bayes matrix factorization to the MAP prob-
lem, one obtains the iterated conditional modes (ICM) algorithm, which alternates minimization of
CMAP(U, V ) over U for fixed V and minimization over V for fixed U .

The representative algorithm to solve the K-means problem approximately is Lloyd’s K-means algo-
rithm [12]. Lloyd’s K-means algorithm is regarded as the ICM algorithm: It alternates minimization
of the K-means loss function over U for fixed V and minimization over V for fixed U iteratively.

3



Algorithm 1 (Lloyd’s K-means algorithm).

nt
l =

N∑
j=1

I(vt
j = el), ũt

l =
1

nt
l

N∑
j=1

ajI(v
t
j = el), (7a)

lt+1
j = arg min

l∈{1,...,r̂}
∥aj − ũt

l∥22, vt+1
j = elt+1

j
. (7b)

Throughout this paper, we represent an algorithm by a set of equations as in the above. This repre-
sentation means that the algorithm begins with a set of initial values and repeats the update of the
variables using the equations presented until it satisfies some stopping criteria. Lloyd’s K-means
algorithm begins with a set of initial assignments V 0 ∈ {e1, . . . , er̂}N . This algorithm easily gets
stuck in local minima and its performance heavily depends on the initial values of the algorithm.
Some methods for initialization to obtain a better local minimum are proposed [16].

Maximum accuracy clustering can be solved approximately by using the variational Bayes matrix
factorization, since it gives an approximation to the marginal posterior distribution of vj given A.

4 Proposed algorithm

4.1 Approximate message passing algorithm for low-rank matrix reconstruction

We first discuss the general idea of the AMP algorithm and advantages of the AMP algorithm com-
pared with the variational Bayes matrix factorization. The AMP algorithm is derived by approximat-
ing the belief propagation message passing algorithm in a way thought to be asymptotically exact for
large-scale problems with appropriate randomness. Fixed points of the belief propagation message
passing algorithm correspond to local minima of the KL divergence between a kind of trial function
and the posterior distribution [17]. Therefore, the belief propagation message passing algorithm can
be regarded as an iterative algorithm based on an approximation of the posterior distribution, which
is called the Bethe approximation. The Bethe approximation can reflect dependence of random vari-
ables (dependence between U and V in p̂(U, V |A) in our problem) to some extent. Therefore, one
can intuitively expect that performance of the AMP algorithm is better than that of the variational
Bayes matrix factorization, which treats U and V as if they were independent in p̂(U, V |A).

An important property of the AMP algorithm, aside from its efficiency and effectiveness, is that
one can predict performance of the algorithm accurately for large-scale problems by using a set of
equations, called the state evolution [6]. Analysis with the state evolution also shows that required
iteration numbers are O(1) even when the problem size is large. Although we can present the state
evolution for the algorithm proposed in this paper and give a proof of its validity like [8, 18], we do
not discuss the state evolution here due to the limited space available.

We introduce a one-parameter extension of the posterior distribution p̂(U, V |A) to treat the marginal-
ization problem and the MAP problem in a unified manner. It is defined as follows:

p̂(U, V |A;β) ∝ exp
(
− β

2mτ
∥A− UV ⊤∥2F

)(
p̂U(U)p̂V(V )

)β
, (8)

which is proportional to p̂(U, V |A)β , where β > 0 is the parameter. When β = 1, p̂(U, V |A;β)
is reduced to p̂(U, V |A). In the limit β → ∞, the distribution p̂(U, V |A;β) concentrates on the
maxima of p̂(U, V |A). An algorithm for the marginalization problem on p̂(U, V |A;β) is particu-
larized to the algorithms for the marginalization problem and for the MAP problem for the original
posterior distribution p̂(U, V |A) by letting β = 1 and β → ∞, respectively. The AMP algorithm
for the marginalization problem on p̂(U, V |A;β) is derived in a way similar to that described in [9],
as detailed in the Supplementary Material.

In the derived algorithm, the values of variables Bt
u = (btu,1, . . . , b

t
u,m)⊤ ∈ Rm×r̂, Bt

v =

(btv,1, . . . , b
t
v,N )⊤ ∈ RN×r̂, Λt

u ∈ Rr̂×r̂, Λt
v ∈ Rr̂×r̂, U t = (ut

1, . . . ,u
t
m)⊤ ∈ Rm×r̂,

V t = (vt
1, . . . ,v

t
N )⊤ ∈ RN×r̂, St

1, . . . , S
t
m ∈ Rr̂×r̂, and T t

1 , . . . , T
t
N ∈ Rr̂×r̂ are calculated it-

eratively, where the superscript t ∈ N ∪ {0} represents iteration numbers. Variables with a negative
iteration number are defined as 0. The algorithm is as follows:
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Algorithm 2.

Bt
u =

1

mτ
AV t − 1

mτ
U t−1

N∑
j=1

T t
j , Λt

u =
1

mτ
(V t)⊤V t +

1

βmτ

N∑
j=1

T t
j − 1

mτ

N∑
j=1

T t
j , (9a)

ut
i = f(btu,i,Λ

t
u; p̂u), St

i = G(btu,i,Λ
t
u; p̂u), (9b)

Bt
v =

1

mτ
A⊤U t − 1

mτ
V t

m∑
i=1

St
i , Λt

v =
1

mτ
(U t)⊤U t +

1

βmτ

m∑
i=1

St
i −

1

mτ

m∑
i=1

St
i , (9c)

vt+1
j = f(btv,j ,Λ

t
v; p̂v), T t+1

j = G(btv,j ,Λ
t
v; p̂v). (9d)

Algorithm 2 is almost symmetric in U and V . Equations (9a)–(9b) and (9c)–(9d) update quantities
related to the estimates of U0 and V0, respectively. The algorithm requires an initial value V 0 and
begins with T 0

j = O. The functions f(·, ·; p̂) : Rr̂×Rr̂×r̂ → Rr̂ and G(·, ·; p̂) : Rr̂×Rr̂×r̂ → Rr̂×r̂,
which have a p.d.f. p̂ : Rr̂ → R as a parameter, are defined by

f(b,Λ; p̂) :=

∫
uq̂(u; b,Λ, p̂)du, G(b,Λ; p̂) :=

∂f(b,Λ; p̂)

∂b
, (10)

where q̂(u; b,Λ, p̂) is the normalized p.d.f. of u defined by

q̂(u; b,Λ, p̂) ∝ exp
(
−β

(1
2
u⊤Λu− b⊤u− log p̂(u)

))
. (11)

One can see that f(b,Λ; p̂) is the mean of the distribution q̂(u; b,Λ, p̂) and that G(b,Λ; p̂) is its
covariance matrix scaled by β. The function f(b,Λ; p̂) need not be differentiable everywhere;
Algorithm 2 works if f(b,Λ; p̂) is differentiable at b for which one needs to calculate G(b,Λ; p̂) in
running the algorithm.

We assume in the rest of this section the convergence of Algorithm 2, although the convergence is
not guaranteed in general. Let B∞

u , B∞
v , Λ∞

u , Λ∞
v , S∞

i , T∞
j , U∞, and V ∞ be the converged values

of the respective variables. First, consider running Algorithm 2 with β = 1. The marginal posterior
distribution is then approximated as

p̂i,j(ui,vj |A) ≈ q̂(ui; b
∞
u,i,Λ

∞
u , p̂u)q̂(vj ; b

∞
v,j ,Λ

∞
v , p̂v). (12)

Since u∞
i and v∞

j are the means of q̂(u; b∞u,i,Λ
∞
u , p̂u) and q̂(v; b∞v,j ,Λ

∞
v , p̂v), respectively, the

posterior mean E[UV ⊤|A] =
∫
UV ⊤p̂(U, V |A)dUdV is approximated as

E[UV ⊤|A] ≈ U∞(V ∞)⊤. (13)

The marginal MAP estimates uMMAP
i and vMMAP

j are approximated as

uMMAP
i ≈ argmax

u
q̂(u; b∞u,i,Λ

∞
u , p̂u), vMMAP

j ≈ argmax
v

q̂(v; b∞v,j ,Λ
∞
v , p̂v). (14)

Taking the limit β → ∞ in Algorithm 2 yields an algorithm for the MAP problem (4). In this case,
the functions f and G are replaced with

f∞(b,Λ; p̂) := argmin
u

[1
2
u⊤Λu− b⊤u− log p̂(u)

]
, G∞(b,Λ; p̂) :=

∂f∞(b,Λ; p̂)

∂b
. (15)

One may calculate G∞(b,Λ; p̂) from the Hessian of log p̂(u) at u = f∞(b,Λ; p̂), denoted by H ,
via the identity G∞(b,Λ; p̂) =

(
Λ−H

)−1
. This identity follows from the implicit function theorem

under some additional assumptions and helps in the case where the explicit form of f∞(b,Λ; p̂) is
not available. The MAP estimate is approximated by (U∞, V ∞).

4.2 Properties of the algorithm

Algorithm 2 has several plausible properties. First, it has a low computational cost. The compu-
tational cost per iteration is O(mN), which is linear in the number of components of the matrix
A. Calculation of f(·, ·; p̂) and G(·, ·; p̂) is performed O(N +m) times per iteration. The constant
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factor depends on p̂ and β. Calculation of f for β < ∞ generally involves an r̂-dimensional numer-
ical integration, although they are not needed in cases where an analytic expression of the integral
is available and cases where the variables take only discrete values. Calculation of f∞ involves
minimization over an r̂-dimensional vector. When − log p̂ is a convex function and Λ is positive
semidefinite, this minimization problem is convex and can be solved at relatively low cost.

Second, Algorithm 2 has a form similar to that of an algorithm based on the variational Bayesian
matrix factorization. In fact, if the last terms on the right-hand sides of the four equations in (9a)
and (9c) are removed, the resulting algorithm is the same as an algorithm based on the variational
Bayesian matrix factorization proposed in [4] and, in particular, the same as the ICM algorithm when
β → ∞. (Note, however, that [4] only treats the case where the priors p̂u and p̂v are multivariate
Gaussian distributions.) Note that additional computational cost for these extra terms is O(m+N),
which is insignificant compared with the cost of the whole algorithm, which is O(mN).

Third, when one deals with the MAP problem, the value of CMAP(U, V ) may increase in itera-
tions of Algorithm 2. The following proposition, however, guarantees optimality of the output of
Algorithm 2 in a certain sense, if it has converged.
Proposition 1. Let (U∞, V ∞, S∞

1 , . . . , S∞
m , T∞

1 , . . . , T∞
N ) be a fixed point of the AMP algorithm

for the MAP problem and suppose that
∑m

i=1 S
∞
i and

∑N
j=1 T

∞
j are positive semidefinite. Then

U∞ is a global minimum of CMAP(U, V ∞) and V ∞ is a global minimum of CMAP(U∞, V ).

The proof is in the Supplementary Material. The key to the proof is the following reformulation:

U t = argmin
U

[
CMAP(U, V t)− tr

(
(U − U t−1)

( 1

2mτ

N∑
j=1

T t
j

)
(U − U t−1)⊤

)]
(16)

If
∑N

j=1 T
t
j is positive semidefinite, the second term of the minimand is the negative squared pseudo-

metric between U and U t−1, which is interpreted as a penalty on nearness to the temporal estimate.
Positive semidefiniteness of

∑m
i=1 S

t
i and

∑N
j=1 T

t
j holds in almost all cases. In fact, we only have

to assume limβ→∞ G(b,Λ; p̂) = G∞(b,Λ; p̂), since G(b,Λ; p̂) is a scaled covariance matrix of
q̂(u; b,Λ, p̂), which is positive semidefinite. It follows from Proposition 1 that any fixed point of the
AMP algorithm is also a fixed point of the ICM algorithm. It has two implications: (i) Execution
of the ICM algorithm initialized with the converged values of the AMP algorithm does not improve
CMAP(U t, V t). (ii) The AMP algorithm has not more fixed points than the ICM algorithm. The
second implication may help the AMP algorithm avoid getting stuck in bad local minima.

4.3 Clustering via AMP algorithm

One can use the AMP algorithm for the MAP problem to perform the K-means clustering by letting
p̂u(u) = 1 and p̂v(v) = r̂−1

∑r̂
l=1 δ(v − el). Noting that f∞(b,Λ; p̂v) is piecewise constant with

respect to b and hence G∞(b,Λ; p̂v) is O almost everywhere, we obtain the following algorithm:
Algorithm 3 (AMP algorithm for the K-means clustering).

Bt
u =

1

mτ
AV t, Λt

u =
1

mτ
(V t)⊤V t, U t = Bt

u(Λ
t
u)

−1, St = (Λt
u)

−1, (17a)

Bt
v =

1

mτ
A⊤U t − 1

τ
V tSt, Λt

v =
1

mτ
(U t)⊤U t − 1

τ
St, (17b)

vt+1
j = arg min

v∈{e1,...,er̂}

[1
2
v⊤Λt

vv − v⊤btv,j

]
. (17c)

It is initialized with an assignment V 0 ∈ {e1, . . . , er̂}N . Algorithm 3 is rewritten as follows:

nt
l =

N∑
j=1

I(vt
j = el), ũt

l =
1

nt
l

N∑
j=1

ajI(v
t
j = el), (18a)

lt+1
j = arg min

l∈{1,...,r̂}

[ 1

mτ
∥aj − ũt

l∥22 +
2m

nt
l

I(vt
j = el)−

m

nt
l

]
, vt+1

j = elt+1
j

. (18b)
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The parameter τ appearing in the algorithm does not exist in the K-means clustering problem. In
fact, τ appears because m−2

∑m
i=1 A

2
ijS

t
i was estimated by τm−1

∑m
i=1 S

t
i in deriving Algorithm 2,

which can be justified for large-sized problems. In practice, we propose using m−2N−1∥A −
U t(V t)⊤∥2F as a temporary estimate of τ at tth iteration. While the AMP algorithm for the K-
means clustering updates the value of U in the same way as Lloyd’s K-means algorithm, it performs
assignments of data to clusters in a different way. In the AMP algorithm, in addition to distances
from data to centers of clusters, the assignment at present is taken into consideration in two ways:
(i) A datum is less likely to be assigned to the cluster that it is assigned to at present. (ii) Data are
more likely to be assigned to a cluster whose size at present is smaller. The former can intuitively be
understood by observing that if vt

j = el, one should take account of the fact that the cluster center
ũt
l is biased toward aj . The term 2m(nt

l)
−1I(vt

j = el) in (18b) corrects this bias, which, as it
should be, is inversely proportional to the cluster size.

The AMP algorithm for maximum accuracy clustering is obtained by letting β = 1 and p̂v(v) be
a discrete distribution on {e1, . . . , er̂}. After the algorithm converges, argmaxv q̂(v;v

∞
j ,Λ∞

v , p̂v)
gives the final cluster assignment of the jth datum and U∞ gives the estimate of the cluster centers.

5 Numerical experiments

We conducted numerical experiments on both artificial and real data sets to evaluate performance
of the proposed algorithms for clustering. In the experiment on artificial data sets, we set m = 800
and N = 1600 and let r̂ = r. Cluster centers ũ0,l, l = 1, . . . , r, were generated according to the
multivariate Gaussian distribution N(0, I). Cluster assignments v0,j , j = 1, . . . , N, were generated
according to the uniform distribution on {e1, . . . , er}. For fixed τ = 0.1 and r, we generated 500
problem instances and solved them with five algorithms: Lloyd’s K-means algorithm (K-means),
the AMP algorithm for the K-means clustering (AMP-KM), the variational Bayes matrix factoriza-
tion [4] for maximum accuracy clustering (VBMF-MA), the AMP algorithm for maximum accuracy
clustering (AMP-MA), and the K-means++ [16]. The K-means++ updates the variables in the same
way as Lloyd’s K-means algorithm with an initial value chosen in a sophisticated manner. For the
other algorithms, initial values v0

j , j = 1, . . . , N, were randomly generated from the same distribu-
tion as v0,j . We used the true prior distributions of U and V for maximum accuracy clustering.

We ran Lloyd’s K-means algorithm and the K-means++ until no change was observed. We ran the
AMP algorithm for the K-means clustering until either V t = V t−1 or V t = V t−2 is satisfied.
This is because we observed oscillations of assignments of a small number of data. For the other
two algorithms, we terminated the iteration when ∥U t − U t−1∥2F < 10−15∥U t−1∥2F and ∥V t −
V t−1∥2F < 10−15∥V t−1∥2F were met or the number of iterations exceeded 3000. We then evaluated
the following performance measures for the obtained solution (U∗, V ∗):

• Normalized K-means loss ∥A−U∗(V ∗)⊤∥2F /(
∑N

j=1 ∥aj−ā∥22), where ā := 1
N

∑N
j=1 aj .

• Accuracy maxP N−1
∑N

j=1 I(Pv∗
j = v0,j), where the maximization is taken over all

r-by-r permutation matrices. We used the Hungarian algorithm [19] to solve this maxi-
mization problem efficiently.

• Number of iterations needed to converge.

We calculated the averages and the standard deviations of these performance measures over 500
instances. We conducted the above experiments for various values of r.

Figure 1 shows the results. The AMP algorithm for the K-means clustering achieves the smallest K-
means loss among the five algorithms, while the Lloyd’s K-means algorithm and K-means++ show
large K-means losses for r ≥ 5. We emphasize that all the three algorithms are aimed to minimize
the same K-means loss and the differences lie in the algorithms for minimization. The AMP algo-
rithm for maximum accuracy clustering achieves the highest accuracy among the five algorithms. It
also shows fast convergence. In particular, the convergence speed of the AMP algorithm for max-
imum accuracy clustering is comparable to that of the AMP algorithm for the K-means clustering
when the two algorithms show similar accuracy (r < 9). This is in contrast to the common observa-
tion that the variational Bayes method often shows slower convergence than the ICM algorithm.

7



 0.97

 0.975

 0.98

 0.985

 0.99

 0.995

 1

 2  4  6  8  10  12  14  16  18
r

N
or

m
al

iz
ed

 K
-m

ea
ns

 lo
ss

K-means
AMP-KM

VBMF-MA
AMP-MA

K-means++

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 2  4  6  8  10  12  14  16  18
r

A
cc

ur
ac

y

K-means
AMP-KM

VBMF-MA
AMP-MA

K-means++

(b)

 0

 500

 1000

 1500

 2000

 2500

 2  4  6  8  10  12  14  16  18
r

N
um

be
r 

of
 it

er
at

io
ns

K-means
AMP-KM

VBMF-MA
AMP-MA

K-means++

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50
Iteration number

A
cc

ur
ac

y

AMP-KM
VBMF-MA

AMP-MA

(d)

Figure 1: (a)–(c) Performance for different r: (a) Normalized K-means loss. (b) Accuracy. (c)
Number of iterations needed to converge. (d) Dynamics for r = 5. Average accuracy at each
iteration is shown. Error bars represent standard deviations.
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Figure 2: Performance measures in real-data experiments. (a) Normalized K-means loss. (b) Accu-
racy. The results for the 50 trials are shown in the descending order of performance for AMP-KM.
The worst two results for AMP-KM are out of the range.

In the experiment on real data, we used the ORL Database of Faces [20], which contains 400 images
of human faces, ten different images of each of 40 distinct subjects. Each image consists of 112 ×
92 = 10304 pixels whose value ranges from 0 to 255. We divided N = 400 images into r̂ = 40
clusters with the K-means++ and the AMP algorithm for the K-means clustering. We adopted the
initialization method of the K-means++ also for the AMP algorithm, because random initialization
often yielded empty clusters and almost all data were assigned to only one cluster. The parameter τ
was estimated in the way proposed in Subsection 4.3. We ran 50 trials with different initial values,
and Figure 2 summarizes the results.

The AMP algorithm for the K-means clustering outperformed the standard K-means++ algorithm
in 48 out of the 50 trials in terms of the K-means loss and in 47 trials in terms of the accuracy.
The AMP algorithm yielded just one cluster with all data assigned to it in two trials. The attained
minimum value of K-means loss is 0.412 with the K-means++ and 0.400 with the AMP algorithm.
The accuracies at these trials are 0.635 with the K-means++ and 0.690 with the AMP algorithm. The
average number of iterations was 6.6 with the K-means++ and 8.8 with the AMP algorithm. These
results demonstrate efficiency of the proposed algorithm on real data.
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