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Abstract
In large-scale applications of undirected graphical models, such as social networks
and biological networks, similar patterns occur frequently and give rise to simi-
lar parameters. In this situation, it is beneficial to group the parameters for more
efficient learning. We show that even when the grouping is unknown, we can in-
fer these parameter groups during learning via a Bayesian approach. We impose a
Dirichlet process prior on the parameters. Posterior inference usually involves cal-
culating intractable terms, and we propose two approximation algorithms, namely
a Metropolis-Hastings algorithm with auxiliary variables and a Gibbs sampling al-
gorithm with “stripped” Beta approximation (Gibbs SBA). Simulations show that
both algorithms outperform conventional maximum likelihood estimation (MLE).
Gibbs SBA’s performance is close to Gibbs sampling with exact likelihood cal-
culation. Models learned with Gibbs SBA also generalize better than the models
learned by MLE on real-world Senate voting data.

1 Introduction
Undirected graphical models, a.k.a. Markov random fields (MRFs), have many real-world applica-
tions such as social networks and biological networks. In these large-scale networks, similar kinds
of relations can occur frequently and give rise to repeated occurrences of similar parameters, but the
grouping pattern among the parameters is usually unknown. For a social network example, suppose
that we collect voting data over the last 20 years from a group of 1,000 people who are related to each
other through different types of relations (such as family, co-workers, classmates, friends and so on),
but the relation types are usually unknown. If we use a binary pairwise MRF to model the data, each
binary node denotes one person’s vote, and two nodes are connected if the two people are linked
in the social network. Eventually we want to estimate the pairwise potential functions on edges,
which can provide insights about how the relations between people affect their decisions. This can
be done via standard maximum likelihood estimation (MLE), but the latent grouping pattern among
the parameters is totally ignored, and the model can be overparametrized. Therefore, two questions
naturally arise. Can MRF parameter learners automatically identify these latent parameter groups
during learning? Will this further abstraction make the model generalize better, analogous to the
lessons we have learned from hierarchical modeling [9] and topic modeling [5]?

This paper shows that it is feasible and potentially beneficial to identify the latent parameter groups
during MRF parameter learning. Specifically, we impose a Dirichlet process prior on the parameters
to accommodate our uncertainty about the number of the parameter groups. Posterior inference can
be done by Markov chain Monte Carlo with proper approximations. We propose two approximation
algorithms, a Metropolis-Hastings algorithm with auxiliary variables and a Gibbs sampling algo-
rithm with stripped Beta approximation (Gibbs SBA). Algorithmic details are provided in Section
3 after we review related parameter estimation methods in Section 2. In Section 4, we evaluate
our Bayesian estimates and the classical MLE on different models, and both algorithms outperform
classical MLE. The Gibbs SBA algorithm performs very close to the Gibbs sampling algorithm with
exact likelihood calculation. Models learned with Gibbs SBA also generalize better than the models
learned by MLE on real-world Senate voting data in Section 5. We finally conclude in Section 6.
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2 Maximum Likelihood Estimation and Bayesian Estimation for MRFs
Let X = {0, 1, ...,m− 1} be a discrete space. Suppose that we have an MRF defined on a random
vector X ∈ X d described by an undirected graph G(V, E) with d nodes in the node set V and r
edges in the edge set E . The probability of one sample x from the MRF parameterized by θ is

P (x;θ) = P̃ (x;θ)/Z(θ), (1)

where Z(θ) is the partition function. P̃ (x;θ)=
∏
c∈C(G) φc(x;θc) is some unnormalized measure,

and C(G) is some subset of cliques in G, and φc is the potential function defined on the clique c
parameterized by θc. In this paper, we consider binary pairwise MRFs for simplicity, i.e. C(G)=E
and m=2. We also assume that each potential function φc is parameterized by one parameter θc,
namely φc(X; θc)=θc

I(Xu=Xv)(1−θc)I(Xu 6=Xv) where I(Xu=Xv) indicates whether the two nodes
u and v connected by edge c take the same value, and 0<θc<1,∀c=1, ...,r. Thus, θ={θ1, ..., θr}.
Suppose that we have n independent samples X={x1, ...,xn} from (1), and we want to estimate θ.

Maximum Likelihood Estimate: The MLE of θ maximizes the log-likelihood function L(θ|X)
which is concave w.r.t. θ. Therefore, we can use gradient ascent to find the global maximum of
the likelihood function and find the MLE of θ. The partial derivative of L(θ|X) with respect to θi
is ∂L(θ|X)

∂θi
= 1
n

∑n
j=1 ψi(x

j)−Eθψi=EXψi−Eθψi where ψi is the sufficient statistic corresponding
to θi after we rewrite the density into the exponential family form, and Eθψi is the expectation of
ψi with respect to the distribution specified by θ. However the exact computation of Eθψi takes
time exponential in the treewidth of G. A few sampling-based methods have been proposed, with
different ways of generating particles and computing Eθψ from the particles, including MCMC-
MLE [11, 34], particle-filtered MCMC-MLE [1], contrastive divergence [15] and its variations such
as persistent contrastive divergence (PCD) [29] and fast PCD [30]. Note that contrastive divergence
is related to pseudo-likelihood [4], ratio matching [17, 16], and together with other MRF parameter
estimators [13, 31, 12] can be unified as minimum KL contraction [18].

Bayesian Estimate: Let π(θ) be a prior of θ; then its posterior is P (θ|X) ∝ π(θ)P̃ (X;θ)/Z(θ).
The Bayesian estimate of θ is its posterior mean. Exact sampling from P (θ|X) is known as doubly-
intractable for general MRFs [21]. If we use the Metropolis-Hastings algorithm, then Metropolis-
Hastings ratio is

a(θ∗|θ) =
π(θ∗)P̃ (X;θ∗)Q(θ|θ∗)/Z(θ∗)

π(θ)P̃ (X;θ)Q(θ∗|θ)/Z(θ)
, (2)

whereQ(θ∗|θ) is some proposal distribution from θ to θ∗, and with probability min{1, a(θ∗|θ)}we
accept the move from θ to θ∗. The real hurdle is that we have to evaluate the intractableZ(θ)/Z(θ∗)
in the ratio. In [20], Møller et al. introduce one auxiliary variable y on the same space as x, and
the state variable is extended to (θ,y). They set the new proposal distribution for the extended
state Q(θ,y|θ∗,y∗)=Q(θ|θ∗)P̃ (y;θ)/Z(θ) to cancel Z(θ)/Z(θ∗) in (2). Therefore by ignoring
y, we can generate the posterior samples of θ via Metropolis-Hastings. Technically, this auxiliary
variable approach requires perfect sampling [25], but [20] pointed out that other simpler Markov
chain methods also work with the proviso that it converges adequately to the equilibrium distribution.

3 Bayesian Parameter Estimation for MRFs with Dirichlet Process Prior
In order to model the latent parameter groups, we impose a Dirichlet process prior on θ, which
accommodates our uncertainty about the number of groups. Then, the generating model is

G ∼ DP(α0, G0)

θi|G ∼ G, i = 1, ..., r

xj |θ ∼ F (θ), j = 1, ..., n,

(3)

whereF (θ) is the distribution specified by (1). G0 is the base distribution (e.g. Unif(0, 1)), andα0 is
the concentration parameter. With probability 1.0, the distributionG drawn from DP(α0, G0) is dis-
crete, and places its mass on a countably infinite collection of atoms drawn from G0. In this model,
X={x1, ...,xn} is observed, and we want to perform posterior inference for θ = (θ1, θ2, ..., θr),
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and regard its posterior mean as its Bayesian estimate. We propose two Markov chain Monte Carlo
(MCMC) methods. One is a Metropolis-Hastings algorithm with auxiliary variables, as introduced
in Section 3.1. The second is a Gibbs sampling algorithm with stripped Beta approximation, as in-
troduced in Section 3.2. In both methods, the state of the Markov chain is specified by two vectors,
c and φ. In vector c = (c1, ..., cr), ci denotes the group to which θi belongs. φ = (φ1, ..., φk)
records the k distinct values in {θ1, ..., θr} with φci = θi for i = 1, ..., r. This way of specifying the
Markov chain is more efficient than setting the state variable directly to be (θ1, θ2, ..., θr) [22].

3.1 Metropolis-Hastings (MH) with Auxiliary Variables

In the MH algorithm (see Algorithm 1), the initial state of the Markov chain is set by performingK-
means clustering on MLE of θ (e.g. from the PCD algorithm [29]) with K=bα0 ln rc. The Markov
chain resembles Algorithm 5 in [22], and it is ergodic. We move the Markov chain forward for T
steps. In each step, we update c first and then update φ. We update each element of c in turn; when
resampling ci, we fix c−i, all elements in c other than ci. When updating ci, we repeatedly for M
times propose a new value c∗i according to proposal Q(c∗i |ci) and accept the move with probability
min{1, a(c∗i |ci)} where a(c∗i |ci) is the MH ratio. After we update every element of c in the current
iteration, we draw a posterior sample of φ according to the current grouping c. We iterate T times,
and get T posterior samples of θ. Unlike the tractable Algorithm 5 in [22], we need to introduce
auxiliary variables to bypass MRF’s intractable likelihood in two places, namely calculating the MH
ratio (in Section 3.1.1) and drawing samples of φ|c (in Section 3.1.2).

3.1.1 Calculating Metropolis-Hastings Ratio

Algorithm 1 The Metropolis-Hastings algorithm
Input: observed data X={x1, ...,xn}
Output: θ̂

(1)
, ..., θ̂

(T )
; T samples of θ|X

Procedure:
Perform PCD algorithm to get θ̃, MLE of θ
Init. c and φ via K-means on θ̃; K=bα0 ln rc
for t = 1 to T do

for i = 1 to r do
for l = 1 to M do

Draw a candidate c∗i from Q(ci|c∗i )
If c∗i 6∈ c, draw a value for φci from G0

Set ci=c∗i with prob min{1, a(c∗i |ci)}
end for

end for
Draw a posterior sample of φ according to
current c, and set θ̂(t)i =φci for i=1, ..., r.

end for

The MH ratio of proposing a new value c∗i for ci
according to proposal Q(c∗i |ci) is

a(c∗i |ci) =
π(c∗i , c−i)P (X;θ.∗i )Q(ci|c∗i )
π(ci, c−i)P (X;θ)Q(c∗i |ci)

=
π(c∗i |c−i)P̃ (X;θ.∗i )Q(ci|c∗i )/Z(θ.∗i )

π(ci|c−i)P̃ (X;θ)Q(c∗i |ci)/Z(θ)
,

where θ.∗i is the same as θ except its i-th ele-
ment is replaced with φc∗i . The conditional prior
π(c∗i |c−i) is

π(ci=c|c−i)=

{
n−i,c

r−1+α0
, if c ∈ c−i

α0

r−1+α0
, if c 6∈ c−i

where n−i,c is the number of cj for j 6=i and
cj=c. We choose proposal Q(c∗i |ci) to be the
conditional prior π(c∗i |c−i), and the Metropolis-
Hastings ratio can be further simplified as
a(c∗i |ci)=P̃ (X;θ.∗i )Z(θ)/P̃ (X;θ)Z(θ.∗i ). However, Z(θ)/Z(θ.∗i ) is intractable. Similar to [20],
we introduce an auxiliary variable Z on the same space as X, and the state variable is extended to
(c,Z). When proposing a move, we propose c∗i first and then propose Z∗ with proposal P (Z;θ.∗i )

to cancel the intractable Z(θ)/Z(θ.∗i ). We set the target distribution of Z to be P (Z; θ̃) where θ̃ is
some estimate of θ (e.g. from PCD [29]). Then, the MH ratio with the auxiliary variable is

a(c∗i ,Z∗|ci,Z) =
P (Z∗; θ̃)P̃ (X;θ.∗i )P̃ (Z;θ)

P (Z; θ̃)P̃ (X;θ)P̃ (Z∗;θ.∗i )
=
P̃ (Z∗; θ̃)P̃ (X;θ.∗i )P̃ (Z;θ)

P̃ (Z; θ̃)P̃ (X;θ)P̃ (Z∗;θ.∗i )
.

Thus, the intractable computation of the MH ratio is replaced by generating particles Z∗ and Z under
θ.∗i and θ respectively. Ideally, we should use perfect sampling [25], but it is intractable for general
MRFs. As a compromise, we use standard Gibbs sampling with long runs to generate these particles.

3.1.2 Drawing Posterior Samples of φ|c
We draw posterior samples of φ under grouping c via the MH algorithm, again following [20]. The
state of the Markov chain is φ. The initial state of the Markov chain is set by running PCD [29] with
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parameters tied according to c. The proposal Q(φ∗|φ) is a k-variate Gaussian N (φ, σ2
QIk) where

σ2
QIk is the covariance matrix. The auxiliary variable Y is on the same space as X, and the state is

extended to (φ,Y). The proposal distribution for the extended state variable is Q(φ,Y|φ∗,Y∗) =

Q(φ|φ∗)P̃ (Y;φ)/Z(φ). We set the target distribution of Y to be P (Y; φ̃) where φ̃ is some estimate
of φ such as the estimate from the PCD algorithm [29]. Then, the MH ratio for the extended state is

a(φ∗,Y∗|φ,Y) = I(φ∗∈Θ)
P̃ (Y∗; φ̃)P̃ (X;φ∗)P̃ (Y;φ)

P̃ (Y; φ̃)P̃ (X;φ)P̃ (Y∗;φ∗)
,

where I(φ∗∈Θ) indicates that every dimension of φ∗ is in the domain of G0. We set the state to be
the new values with probability min{1, a(φ∗,Y∗|φ,Y)}. We move the Markov chain for S steps,
and get S samples of φ by ignoring Y. Eventually we draw one sample from them randomly.

3.2 Gibbs Sampling with Stripped Beta Approximation

Algorithm 2 The Gibbs sampling algorithm
Input: observed data X = {x1,x2, ...,xn}
Output: θ̂

(1)
, ..., θ̂

(T )
; T posterior samples of θ|X

Procedure:
Perform PCD algorithm to get MLE θ̃
Init. c and φ via K-means on θ̃; K=bα0 ln rc
for t = 1 to T do

for i = 1 to r do
If current ci is unique in c, remove φci from φ
Update ci according to (4).
If new ci 6∈c, draw a value for φci and add to φ

end for
Draw a posterior sample of φ according to current
c, and set θ̂(t)i = φci for i = 1, ..., r

end for

In the Gibbs sampling algorithm (see Al-
gorithm 2), the initialization of the Markov
chain is exactly the same as in the MH al-
gorithm in Section 3.1. The Markov chain
resembles Algorithm 2 in [22] and it can
be shown to be ergodic. We move the
Markov chain forward for T steps. In each
of the T steps, we update c first and then
update φ. When we update c, we fix the
values in φ, except we may add one new
value to φ or remove a value from φ. We
update each element of c in turn. When
we update ci, we first examine whether ci
is unique in c. If so, we remove φci from
φ first. We then update ci by assigning it
to an existing group or a new group with
a probability proportional to a product of
two quantities, namely

P (ci = c|c−i,X, φc−i) ∝

{
n−i,c

r−1+α0
P (X;φc, φc−i

), if c ∈ c−i
α0

r−1+α0

∫
P (X; θi, φc−i

) dG0(θi), if c 6∈ c−i.
(4)

The first quantity is n−i,c, the number of members already in group c. For starting a new group,
the quantity is α0. The second quantity is the likelihood of X after assigning ci to the new value c
conditional on φc−i

. When considering a new group, we integrate the likelihood w.r.t. G0. After ci
is resampled, it is either set to be an existing group or a new group. If a new group is assigned, we
draw a new value for φci , and add it to φ. After updating every element of c in the current iteration,
we draw a posterior sample of φ under the current grouping c. In total, we run T iterations, and
get T posterior samples of θ. This Gibbs sampling algorithm involves two intractable calculations,
namely (i) calculating P (X;φc, φc−i

) and
∫
P (X; θi, φc−i

) dG0(θi) in (4) and (ii) drawing posterior
samples for φ. We use a stripped Beta approximation in both places, as in Sections 3.2.1 and 3.2.2.

3.2.1 Calculating P (X;φc, φc−i
) and

∫
P (X; θi, φc−i

) dG0(θi) in (4)
In Formula (4), we evaluate P (X;φc, φc−i

) for different φc values with φc−i
fixed and X =

{x1,x2, ...,xn} observed. For ease of notation, we rewrite this quantity as a likelihood function
of θi, L(θi|X,θ−i), where θ−i = {θ1, ..., θi−1, θi+1, ..., θr} is fixed. Suppose that the edge i con-
nects variables Xu and Xv , and we denote X−uv to be the variables other than Xu and Xv . Then

L(θi|X,θ−i)=
∏n

j=1
P (xju, x

j
v|x

j
−uv; θi,θ−i)P (xj−uv; θi,θ−i)

≈
∏n

j=1
P (xju, x

j
v|x

j
−uv; θi,θ−i)P (xj−uv;θ−i) ∝

∏n

j=1
P (xju, x

j
v|x

j
−uv; θi,θ−i).

Above we approximate P (xj−uv; θi,θ−i) with P (xj−uv;θ−i) because the density of X−uv mostly
depends on θ−i. The term P (xj−uv;θ−i) can be dropped since θ−i is fixed, and we only have
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to consider P (xju, x
j
v|x

j
−uv; θi,θ−i). Since θ−i is fixed and we are conditioning on xj−uv , they

together can be regarded as a fixed potential function telling how likely the rest of the graph thinks
Xu andXv should take the same value. Suppose that this fixed potential function (the message from
the rest of the network xj−uv) is parameterized as ηi (0<ηi<1). Then

n∏
j=1

P (xju, x
j
v|x

j
−uv; θi,θ−i)∝

n∏
j=1

λI(x
j
u=x

j
v)(1−λ)

I(xj
u 6=x

j
v)=λ

n∑
j=1

I(xj
u=x

j
v)

(1−λ)

n∑
j=1

I(xj
u 6=x

j
v)

(5)

where λ=θiηi/{θiηi+(1−θi)(1−ηi)}. The end of (5) resembles a Beta distribution with param-
eters (

∑n
j=1 I(xju=xjv)+1, n−

∑n
j=1 I(xju=xjv)+1) except that only part of λ, namely θi, is ran-

dom. Now we want to use a Beta distribution to approximate the likelihood with respect to θi, and
we need to remove the contribution of ηi and only consider the contribution from θi. We choose
Beta(bnθ̃ic+1, n−bnθ̃ic+1) where θ̃i is MLE of θi (e.g. from the PCD algorithm). This approxi-
mation is named the Stripped Beta Approximation. The simulation results in Section 4.2 indicate that
the performance of the stripped Beta approximation is very close to using exact calculation. Also
this approximation only requires as much computation as in the tractable tree-structure MRFs, and
it does not require generating expensive particles as in the MH algorithm with auxiliary variables.
The integral

∫
P (X; θi, φc−i) dG0(θi) in (4) can be calculated via Monte Carlo approximation. We

draw a number of samples of θi from G0, and evaluate P (X; θi, φc−i) and take the average.

3.2.2 Drawing Posterior Samples of φ|c
The stripped Beta approximation also allows us to draw posterior samples from φ|c approximately.
Suppose that there are k groups according to c, and we have estimates for φ, denoted as φ̂ =

(φ̂1, ..., φ̂k). We denote the numbers of elements in the k groups by m = {m1, ...,mk}. For group
i, we draw a posterior sample for φi from Beta(bminφ̂ic+1,min−bminφ̂ic+1).

4 Simulations
We investigate the performance of our Bayesian estimators on three models: (i) a tree-MRF, (ii)
a small grid-MRF whose likelihood is tractable, and (iii) a large grid-MRF whose likelihood is
intractable. We first set the ground truth of the parameters, and then generate training and testing
samples. On training data, we apply our grouping-aware Bayesian estimators and two baseline
estimators, namely a grouping-blind estimator and an oracle estimator. The grouping-blind estimator
does not know groups exist in the parameters, and estimates the parameters in the normal MLE
fashion. The oracle estimator knows the ground truth of the groupings, and ties the parameters from
the same group and estimates them via MLE. For the tree-MRF, our Bayesian estimator is exact
since the likelihood is tractable. For the small grid-MRF, we have three variations for the Bayesian
estimator, namely Gibbs sampling with exact likelihood computation, MH with auxiliary variables,
and Gibbs sampling with stripped Beta approximation. For the large grid-MRF, the computational
burden only allows us to apply Gibbs sampling with stripped Beta approximation.

We compare the estimators by three measures. The first is the average absolute error of estimate
1/r

∑r
i=1 |θi − θ̂i| where θ̂i is the estimate of θi. The second measure is the log likelihood of the

testing data, or the log pseudo-likelihood [4] of the testing data when exact likelihood is intractable.
Thirdly, we evaluate how informative the grouping yielded by the Bayesian estimator is. We use the
variation of information metric [19] between the inferred grouping Ĉ and the ground truth grouping
C, namely VI(Ĉ,C). Since VI(Ĉ,C) is sensitive to the number of groups in Ĉ, we contrast it
with VI(C̄,C) where C̄ is a random grouping with its number of groups the same as Ĉ. Eventually,
we evaluate Ĉ via the VI difference, namely VI(C̄,C)−VI(Ĉ,C). A larger value of VI difference
indicates a more informative grouping yielded by our Bayesian estimator. Because we have one
grouping in each of the T MCMC steps, we average the VI difference yielded in each of the T steps.

4.1 Simulations on Tree-structure MRFs

For the structure of the MRF, we choose a perfect binary tree of height 12 (i.e. 8,191 nodes and
8,190 edges). We assume there are 25 groups among the 8,190 parameters. The base distribution
G0 is Unif(0, 1). We first generate the true parameters for the 25 groups from Unif(0, 1). We then
randomly assign each of the 8,190 parameters to one of the 25 groups. We then generate 1,000
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Figure 1: Performance of the grouping-blind MLE, the oracle MLE and our Bayesian estimator on tree-structure
MRFs in terms of (a) error of estimate and (b) log-likelihood of test data. Subfigure (c) shows the VI difference
between the grouping yielded by our Bayesian estimator and random grouping.

testing samples and n training samples (n=100, 200, ..., 1,000). Eventually, we apply the grouping-
blind MLE, the oracle MLE, and our grouping-aware Bayesian estimator on the training samples.
For tree-structure MRFs, both MLE and Bayesian estimation have a closed form solution. For the
Bayesian estimator, we set the number of Gibbs sampling steps to be 500 and set α0=1.0. We
replicate the experiment 500 times, and the averaged results are in Figure 1.
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Figure 2: Number of groups inferred by the Bayesian
estimator and its run time.

Our grouping-aware Bayesian estimator has a
lower estimate error and a higher log likelihood of
test data, compared with the grouping-blind MLE,
demonstrating the “blessing of abstraction”. Our
Bayesian estimator performs worse than oracle
MLE, as we expect. In addition, as the train-
ing sample size increases, the performance of our
Bayesian estimator approaches that of the oracle
MLE. The VI difference in Figure 1(c) indicates that the Bayesian estimator also recovers the latent
grouping to some extent, and the inferred groupings become more and more reliable as the training
size increases. The number of groups inferred by the Bayesian estimator and its running time are in
Figure 2. We also investigate the asymptotic performance of the estimators and their performance
when there are no parameter groups. The results are provided in the supplementary materials.

4.2 Simulations on Small Grid-MRFs

For the structure of the MRF, we choose a 4×4 grid with 16 nodes and 24 edges. Exact likeli-
hood is tractable in this small model, which allows us to investigate how good the two types of
approximation are. We apply the grouping-blind MLE (the PCD algorithm), the oracle MLE (the
PCD algorithm with the parameters from same group tied) and three Bayesian estimators: Gibbs
sampling with exact likelihood computation (Gibbs ExactL), Metropolis-Hastings with auxiliary
variables (MH AuxVar), and Gibbs sampling with stripped Beta approximation (Gibbs SBA). We
assume there are five parameter groups. The base distribution is Unif(0, 1). We first generate the
true parameters for the five groups from Unif(0, 1). We then randomly assign each of the 24 pa-
rameters to one of the five groups. We then generate 1,000 testing samples and n training samples
(n=100, 200, ..., 1,000). For Gibbs ExactL and Gibbs SBA, we set the number of Gibbs sampling
steps to be 100. For MH AuxVar, we set the number of MH steps to be 500 and its proposal number
M to be 5. The parameter σQ in Section 3.1.2 is set to be 0.001 and the parameter S is set to be
100. For all three Bayesian estimators, we set α0=1.0. We replicate the experiment 50 times, and
the averaged results are in Figure 4.
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Figure 3: The number of groups inferred by
Gibbs ExactL, MH AuxVar and Gibbs SBA.

Our grouping-aware Bayesian estimators have
a lower estimate error and a higher log likeli-
hood of test data, compared with the grouping-
blind MLE, demonstrating the blessing of ab-
straction. All three Bayesian estimators per-
form worse than oracle MLE, as we expect. The
VI difference in Figure 4(c) indicates that the
Bayesian estimators also recover the grouping to some extent, and the inferred groupings become
more and more reliable as the training size increases. In Figure 3, we provide the boxplots of the
number of groups inferred by Gibbs ExactL, MH AuxVar and Gibbs SBA. All three methods re-
cover a reasonable number of groups, and Gibbs SBA slightly over-estimates the number of groups.
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Figure 4: Performance of grouping-blind MLE, oracle MLE, Gibbs ExactL, MH AuxVar, and Gibbs SBA on
the small grid-structure MRFs in terms of (a) error of estimate and (b) log-likelihood of test data. Subfigure (c)
shows the VI difference between the grouping yielded by our Bayesian estimators and random grouping.
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Figure 5: Performance of the grouping-blind MLE, the oracle MLE and the Bayesian estimator (Gibbs SBA)
on large grid-structure MRFs in terms of (a) error of estimate and (b) log-likelihood of test data. Subfigure (c)
shows the VI difference between the grouping yielded by our Bayesian estimator and random grouping.

Table 1: The run time (in seconds) of Gibbs ExactL,
MH AuxVar and Gibbs SBA when training size is n.

n=100 n=500 n=1,000
GIBBS EXACTL 88,136.3 91,055.0 92,503.4
MH AUXVAR 540.2 3,342.2 4,546.7
GIBBS SBA 8.1 10.8 14.2

Among the three Bayesian estimators,
Gibbs ExactL has the lowest estimate er-
ror and the highest log likelihood of test
data. Gibbs SBA also performs consid-
erably well, and its performance is close
to the performance of Gibbs ExactL.
MH AuxVar works slightly worse, espe-
cially when there is less training data. However, MH AuxVar recovers better groupings than
Gibbs SBA when there are more training data. The run times of the three Bayesian estimators are
listed in Table 1. Gibbs ExactL has a computational complexity that is exponential in the dimen-
sionality d, and cannot be applied to situations when d > 20. MH AuxVar is also computationally
intensive because it has to generate expensive particles. Gibbs SBA runs fast, with its burden mainly
from running PCD under a specific grouping in each Gibbs sampling step, and it scales well.

4.3 Simulations on Large Grid-MRFs

The large grid consists of 30 rows and 30 columns (i.e. 900 nodes and 1,740 edges). Exact likeli-
hood is intractable for this large model, and we cannot run Gibbs ExactL. The high dimension also
prohibits MH AuxVar. Therefore, we only run the Gibbs SBA algorithm on this large grid-structure
MRF. We assume that there are 10 groups among the 1,740 parameters. We also evaluate the esti-
mators by the log pseudo-likelihood of testing data. The other settings of the experiments stay the
same as Section 4.2. We replicate the experiment 50 times, and the averaged results are in Figure 5.
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Figure 6: Number of groups inferred by Gibbs SBA
and its run time.

For all 10 training sets, our Bayesian estima-
tor Gibbs SBA has a lower estimate error and
a higher log likelihood of test data, compared
with the grouping-blind MLE (via the PCD al-
gorithm). Gibbs SBA has a higher estimate error
and a lower pseudo-likelihood of test data than
the oracle MLE. The VI difference in Figure 5(c)
indicates that Gibbs SBA gradually recovers the
grouping as the training size increases. The number of groups inferred by Gibbs SBA and its run-
ning time are provided in Figure 6. Similarly to the observation in Section 4.2, Gibbs SBA over-
estimates the number of groups. Gibbs SBA finishes the simulations on 900 nodes and 1,740 edges
in hundreds of minutes (depending on the training size), which is considered to be very fast.

7



Table 2: Log pseudo-likelihood (LPL) of training and testing data from MLE (PCD) and Bayesian estimate
(Gibbs SBA), the number of groups inferred by Gibbs SBA, and its run time in the Senate voting experiments.

LPL-TRAIN LPL-TEST
MLE GIBBS SBA MLE GIBBS SBA # GROUPS RUNTIME (MINS)

EXP1 -10716.75 -10721.34 -9022.01 -8989.87 7.89 204
EXP2 -8306.17 -8322.34 -11490.47 -11446.45 7.29 183

5 Real-world Application
We apply the Gibbs SBA algorithm on US Senate voting data from the 109th Congress (available
at www.senate.gov). The 109th Congress has two sessions, the first session in 2005 and the second
session in 2006. There are 366 votes and 278 votes in the two sessions, respectively. There are 100
senators in both sessions, but Senator Corzine only served the first session and Senator Menendez
only served the second session. We remove them. In total, we have 99 senators in our experiments,
and we treat the votes from the 99 senators as the 99 variables in the MRF. We only consider con-
tested votes, namely we remove the votes with less than ten or more than ninety supporters. In total,
there are 292 votes and 221 votes left in the two sessions, respectively. The structure of the MRF is
from Figure 13 in [2]. There are in total 279 edges. The votes are coded as −1 for no and 1 for yes.
We replace all missing votes with −1, staying consistent with [2]. We perform two experiments.
First, we train the MRF using the first session data, and test on the second session data. Then, we
train on the second session and test on the first session. We compare our Bayesian estimator (via
Gibbs SBA) and MLE (via PCD) by the log pseudo-likelihood of testing data since exact likelihood
is intractable. We set the number of Gibbs sampling steps to be 3,000. Both of the two experi-
ments are finished in around three hours on a single CPU. The results are summarized in Table 2.
In the first experiment, the log pseudo-likelihood of test data is −9022.01 from MLE, whereas it
is −8989.87 from our Bayesian estimate. In the second experiment, the log pseudo-likelihood of
test data is −11490.47 from MLE, whereas it is −11446.45 from our Bayesian estimate. The in-
crease of log pseudo-likelihood is comparable to the increase of log (pseudo-)likelihood we gain in
the simulations (please refer to Figures 1b, 4b and 5b at the points when we simulate 200 and 300
training samples). Both experiments indicate that the models trained with the Gibbs SBA algorithm
generalize considerably better than the models trained with MLE. Gibbs SBA also infers there are
around eight different types of relations among the senators. The two trained models are provided
in the supplementary materials, and the estimated parameters in the two models are consistent.

6 Discussion
Bayesian nonparametric approaches [23, 10], such as the Dirichlet process [7], provide an elegant
way of modeling mixtures with an unknown number of components. These approaches have yielded
advances in different machine learning areas, such as the infinite Gaussian mixture models [26], the
infinite mixture of Gaussian processes [27], infinite HMMs [3, 8], infinite HMRFs [6], DP-nonlinear
models [28], DP-mixture GLMs [14], infinite SVMs [33, 32], and the infinite latent attribute models
[24]. In this paper, we play the same trick of replacing the prior distribution with a prior stochas-
tic process to accommodate our uncertainty about the number of parameter groups. To the best of
our knowledge, this is the first time a Bayesian nonparametric approach is applied to models whose
likelihood is intractable. Accordingly, we propose two types of approximation, namely a Metropolis-
Hastings algorithm with auxiliary variables and a Gibbs sampling algorithm with stripped Beta ap-
proximation. Both algorithms show superior performance over conventional MLE, and Gibbs SBA
can also scale well to large-scale MRFs. The Markov chains in both algorithms are ergodic, but
may not be in detailed balance because we rely on approximation. Thus, we guarantee that both
algorithms converge for general MRFs, but they may not exactly converge to the target distribution.

In this paper, we only consider the situation where the potential functions are pairwise and there is
only one parameter in each potential function. For graphical models with more than one parameter
in the potential functions, it is appropriate to group the parameters on the level of potential functions.
A more sophisticated base distribution G0 (such as some multivariate distribution) needs to be con-
sidered. In this paper, we also assume the structures of the MRFs are given. When the structures are
unknown, we still need to perform structure learning. Allowing structure learners to automatically
identify structure modules will be another very interesting topic to explore in the future research.
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