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Abstract

Probabilistic models for binary spike patterns provide a powerful tool for un-
derstanding the statistical dependencies in large-scale neural recordings. Maxi-
mum entropy (or “maxent”) models, which seek to explain dependencies in terms
of low-order interactions between neurons, have enjoyed remarkable success in
modeling such patterns, particularly for small groups of neurons. However, these
models are computationally intractable for large populations, and low-order max-
ent models have been shown to be inadequate for some datasets. To overcome
these limitations, we propose a family of “universal” models for binary spike pat-
terns, where universality refers to the ability to model arbitrary distributions over
all 2m binary patterns. We construct universal models using a Dirichlet process
centered on a well-behaved parametric base measure, which naturally combines
the flexibility of a histogram and the parsimony of a parametric model. We derive
computationally efficient inference methods using Bernoulli and cascaded logis-
tic base measures, which scale tractably to large populations. We also establish a
condition for equivalence between the cascaded logistic and the 2nd-order maxent
or “Ising” model, making cascaded logistic a reasonable choice for base measure
in a universal model. We illustrate the performance of these models using neural
data.

1 Introduction

Probability distributions over spike words form the fundamental building blocks of the neural code.
Accurate estimates of these distributions are difficult to obtain in the context of modern experimen-
tal techniques, which make it possible to record the simultaneous spiking activity of hundreds of
neurons. These difficulties, both computational and statistical, arise fundamentally from the expo-
nential scaling (in population size) of the number of possible words a given population is capable
of expressing. One strategy for combating this combinatorial explosion is to introduce a parametric
model which seeks to make trade-offs between flexibility, computational expense [1, 2], or math-
ematical completeness [3] in order to be applicable to large-scale neural recordings. A variety of
parametric models have been proposed in the literature, including the 2nd-order maxent or Ising
model [4, 5], the reliable interaction model [3], restricted Boltzmann machine [6], deep learning [7],
mixture of Bernoulli model [8], and the dichotomized Gaussian model [9]. However, while the num-
ber of parameters in a model chosen from a given parametric family may increase with the number
of neurons, it cannot increase exponentially with the number of words. Thus, as the size of a popula-
tion increases, a parametric model rapidly loses flexibility in describing the full spike distribution. In
contrast, nonparametric models allow flexibility to grow with the amount of data [10, 11, 12, 13, 14].
A naive nonparametric model, such as the histogram of spike words, theoretically preserves repre-
sentational power and computational simplicity. Yet in practice, the empirical histogram may be
extremely slow to converge, especially for the high dimensional data we are primarily interested
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Figure 1: (A) Binary representation of neural population activity. A single spike word x is indicated
in red. (B) Hierarchical Dirichlet process prior for the universal binary model (UBM) over spike
words. Each word is drawn with probability ⇡

j

. The ⇡’s are drawn from a Dirichlet with parameters
given by ↵ and a base distribution over spike words with parameter ✓. (C, D) Graphical models
of two base measures over spike words: independent Bernoulli model and cascaded logistic model.
The base measure is also a distribution over each spike word x = (x1, . . . , xm

).

in. In most cases, we expect never to have enough data for the empirical histogram to converge.
Perhaps even more concerning is that a naive histogram model fails smooth over the space of words:
unobserved words are not accounted for in the model.

We propose a framework which combines the parsimony of parametric models with the flexibility
of nonparametric models. We model the spike word distribution as a Dirichlet process centered on a
parametric base measure. An appropriately chosen base measure smooths the observations, while the
Dirichlet process allows for data that depart systematically from the base measure. These models
are universal in the sense that they can converge to any distribution supported on the (2

m � 1)-
dimensional simplex. The influence of any base measure diminishes with increasing sample size,
and the model ultimately converges to the empirical distribution function.

The choice of base measure influences the small-sample behavior and computational tractability of
universal models, both of which are crucial for neural applications. We consider two base measures
that exploit a priori knowledge about neural data while remaining computationally tractable for large
populations: the independent Bernoulli spiking model, and the cascaded logistic model [15, 16].
Both the Bernoulli and cascaded logistic models show better performance when used as a base
measure for a universal model than when used alone. We apply these models to several simulated
and neural data examples.

2 Universal binary model

Consider a (random) binary spike word of length m, x 2 {0, 1}m, where m denotes the number of
distinct neurons (and/or time bins; Fig. 1A). There are K = 2

m possible words, which we index
by k 2 {1, . . . ,K}. The universal binary model is a hierarchical probabilistic model where on the
bottom level (Fig. 1B), x is drawn from a multinomial (categorical) distribution with the probability
of observing each word given by the vector ⇡ (spike word distribution). On the top level, we model
⇡ as a Dirichlet process [11] with a discrete base measure G

✓

, hence,

x ⇠ Cat(⇡), ⇡ ⇠ DP(↵G

✓

), ✓ ⇠ p(✓|�), (1)

where ↵ is the concentration parameter, G
✓

is the base measure, a discrete probability distribution
over spike words, parameterized by ✓, and p(✓|�) is the hyper-prior. We choose a discrete probability
measure for G

✓

such that it has positive measure only over {1, . . . ,K}, and denote g

k

= G

✓

(k).
Thus, the Dirichlet process has probability mass only on the K spike words, and is described by a
(finite dimensional) Dirichlet distribution,

⇡ ⇠ Dir(↵g1, . . . ,↵gK). (2)

In the absence of data, the parametric base measure controls the mean of this nonparametric model,

E[⇡|↵] = G

✓

, (3)
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regardless of ↵. Therefore, we loosely say that ⇡ is “centered” around G

✓

.1 We can start with good
parametric models of neural populations, and extend them into a nonparametric model by using
them as the base measure [17]. Under this scheme, the base measure quickly learns much of the
basic structure of the data while the Dirichlet extension takes into account any deviations in the data
which are not predicted by the parametric component. We call such an extension a universal binary

model (UBM) with base measure G

✓

.

The marginal distribution of a collection of words X = {x
i

}N
i=1 under UBM is obtained by inte-

grating over ⇡, and has the form of a Polya (a.k.a. Dirichlet-Multinomial) distribution:

P (X|↵, G
✓

) =

�(↵)

� (N + ↵)

KY

k=1

�(n

k

+ ↵g

k

)

�(↵g

k

)

, (4)

where n

k

is the number of observations of the word k. This leads to a simple formula for sampling
from the predictive distribution over words:

Pr(x

N+1 = k|X
N

,↵, G

✓

) =

n

k

+ ↵g

k

N + ↵

. (5)

Thus, sampling proceeds exactly as in the Chinese restaurant process (CRP): we set the (N + 1)-th
word to be k with probability proportional to n

k

+ ↵g

k

, and with probability proportional to ↵ we
draw a new word from G

✓

(which in turn increases the probability of getting word k on the next
draw). Note that as ↵ ! 0, the predictive distribution converges to the histogram estimate nk

N

, and
as ↵ ! 1, it converges to the base measure itself. We use the Jensen-Shannon divergence to the
predictive distribution to quantify the performance in our experiments.

2.1 Model fitting

Given data, we fit the UBM via maximum a posteriori (MAP) inference for ↵ and ✓, using coordinate
ascent. The marginal log-likelihood from (4) is given by,

L = logP (X

N

|↵, ✓) =
X

k

log�(n

k

+ ↵g

k

)�
X

k

log�(↵g

k

) + log�(↵)� log� (N + ↵) . (6)

Derivatives with respect to ↵ and ✓ are,

@L

@✓

= ↵

X

k

( (n

k

+ ↵g

k

)�  (↵g

k

))

@

@✓

g

k

, (7)

@L

@↵

=

X

k

g

k

( (n

k

+ ↵g

k

)�  (↵g

k

)) +  (↵)�  (N + ↵) , (8)

where  denotes the digamma function. Note that the summation terms vanish when we have no
observations (n

k

= 0), so we only need to consider the words observed in the dataset.

Note also that in the limit ↵ ! 1, dL
d✓ converges to

P
nk
gk

@

@✓

g

k

, the derivative of the logarithm
of the base measure with respect to ✓. On the other hand, in the limit ↵ ! 0, the derivative
goes to

P 1
gk

@

@✓

g

k

, reflecting the fact that the number of observations n
k

is ignored: the likelihood
effectively reflects only a single draw from the base distribution with probability g

k

.

Even when the likelihood defined by the base measure is a convex or log-convex in ✓, the UBM
likelihood is not guaranteed to be convex. Hence, we optimize by a coordinate ascent procedure that
alternates between optimizing ↵ and ✓.

2.2 Hyper-prior

When modeling large populations of neurons, the number of parameters ✓ of the base measure grows
and over-fitting becomes a concern. Since the UBM relies on the base measure to provide smoothing
over words, it is critical to properly regularize our estimate of ✓.

1 Technically, the mode of ⇡ is G✓ only for ↵ � 1, and for ↵ < 1, the distribution is symmetric around G✓ ,
but the probability mass is concentrated on the corners of the simplex.
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We place a hyper-prior p(✓|�) on ✓ for regularization. We consider both l2 and l1 regularization,
which correspond to Gaussian and double exponential priors, respectively. With regularization, the
loss function for optimization is L � �k✓kp

p

, where p = 1, 2. In a typical multi-neuron recording,
the connectivity is known to be sparse and lower order [1, 3], and so we assume the connectivity is
sparse. The l1 prior in particular promotes sparsity.

3 Base measures

The scalability of UBM hinges on the scalability of its base measure. We describe two computation-
ally efficient base measures.

3.1 Independent Bernoulli model

We consider the independent Bernoulli model which assumes (statistically) independent spiking
neurons. It is often used as a baseline model for its simplicity [4, 3]. The Bernoulli base measure
takes the form,

G

✓

(k) = p(x1, . . . , xm

|✓) =
mY

i

p

xi
i

(1� p

i

)

1�xi
, (9)

where p

i

� 0 and ✓ = (p1, . . . , pm). The distribution has full support on K spike words as long
as all p

i

’s are non-zero. Although the Bernoulli model cannot capture the higher-order correlation
structure of the spike word distribution with only m parameters, inference is fast and memory-
efficient.

3.2 Cascaded logistic model

To introduce a rich dependence structure among the neurons, we assume the joint firing probability
of each neuron factors with a cascaded structure (see Fig. 1D):

p(x1, x2, . . . , xm

) = p(x1)p(x2|x1)p(x3|x1, x2) · · · p(xm

|x1, x2, . . . , xm�1). (10)

Along with a parametric form of conditional distribution p(x

i

|x1, . . . , pi�1), it provides a proba-
bilistic model of spike words.

A natural choice of the conditional is the logistic-Bernoulli linear model—a widely used model for
binary observations [2].

p(x

i

= 1|x1:i�1, ✓) = logistic(h

i

+

X

j<i

w

ij

x

j

) (11)

where ✓ = (h

i

, w

ij

)

i,j<i

are the parameters. The combination of the factorization and the likeli-
hoods give rise to the cascaded logistic (Bernoulli) model2, which can be written as,

G

✓

(k) = p(x1, . . . , xm

|✓) =
mY

i=1

p(x

i

|x1:i�1) (12)

p(x

i

|x1:i�1, ✓) =

h
1 + exp

⇣
�(2x

i

� 1)

⇣
h

i

+

P
i�1
j=1wij

x

j

⌘⌘i�1
(13)

The cascaded logistic model and the Ising model (second order maxent model) have the same num-
ber of parameters m(m+1)

2 , but a different parametric form. The Ising model can be written as3,

p(x1, . . . , xm

|✓) = 1

Z(J)

exp

0

@
X

i,ji

J

ij

x

i

x

j

1

A (14)

where ✓ = J is a upper triangular matrix of parameters, and Z(J) is the normalizer. However, unlike
the cascaded logistic model, it is difficult to evaluate the likelihood of the Ising model, since it does
not have a computationally tractable normalizer (partition function). Hence, fitting an Ising model
is typically challenging. Since each conditional can be independently fit with a logistic regression (a
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Figure 2: Tight relation between cascaded logistic model and the Ising model. (A) A cascaded
logistic model depicted as a graphical model with at most two conditioning (incoming arrow) per
node (see Theorem 2). The h

i

parameters are given in the nodes and the interaction terms, w
ij

are shown on the arrows between nodes. (B) Parameter matrix J of an Ising model equivalent to
(A). (C) A scatter plot of three simulated Ising models fit with cascaded logistic (blue tone) and
independent Bernoulli (red tone) models. Each point is a word in the m = 15 spike word space. The
x-axis gives probability of the word under the actual Ising model and the y-axis shows the estimated
probability from the fit model. The Ising model parameters were sparsely connect and generated
randomly. The diagonal terms (J

ii

) were drawn from a standard normal. 80% of the off-diagonal
(J

ij

, i 6= j) terms were set to 0 and the rest drawn from a normal with mean 0 and standard deviation
3. Both models were fit by maximum likelihood using 10

7 samples. (D) A histogram of the Jensen-
Shannon (JS) divergence between 100 random pairs of sparse Ising model and the fit models. (E,F)
Same as (C,D) for Ising models generated with dense connectivity. The diagonal terms in the Ising
model parameters were constant -2. The off-diagonal terms were drawn from a standard normal
distribution.

convex optimization), cascaded logistic model’s estimation is computationally tractable for a large
number of neurons [2].

Despite these differences, remarkably, the Ising model and the cascaded logistic models overlap
substantially. Up to m = 3 neurons, Ising model and cascaded logistic model are equivalent. For
larger populations, the following theorem describes the intersection of the two models.
Theorem 1 (Pentadiagonal Ising model is a cascaded logistic model). An Ising model with J

ij

= 0

for j < i�2 or j > i+2, is also a cascaded logistic model. Moreover, the parameter transformation

is bijective.

The mapping between models parameters is given by

J

m,m

= h

m

(15)
J

m�1,m = w

m,m�1 (16)

J

m�1,m�1 = h

m�1 + log

✓
1 + exp(h

m

)

1 + exp(h

m

+ w

m,m�1)

◆
(17)

J

i,i

= h

i

+ log

✓
1 + exp(h

i+1)

1 + exp(h

i+1 + w

i+1,i)

◆
+ log

✓
1 + exp(h

i+2)

1 + exp(h

i+2 + w

i+2,i)

◆
(18)

J

i,i+1 = w

i+1,i + log

✓
(1 + exp(h

i+2 + w

i+2,i))(1 + exp(h

i+2 + w

i+2,i+1))

(1 + exp(h

i+2))(1 + exp(h

i+2 + w

i+2,i+1 + w

i+2,i))

◆
(19)

J

i,i+2 = w

i+2,i (20)

for 1  i  n� 2, for a symmetric J . Proof can be found in the supplemental material.

2Also known as the logistic autoregressive network. See [15], chapter 3.2.
3Note that for xi 2 {0, 1}, the mean hi’s can be incorporated as the diagonal of J .
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Figure 3: 3rd order maxent distribution experiment. (A) Convergence in Jensen-Shannon (JS)
divergence between the fit model and the true model. Error bar represents SEM over 10 repeats.
(B) Histogram of the number of spikes per word. (C) Scatter plots of the log-likelihood ratio
log(Pemp(k)) � log(Pmodel(k)) for each model (column), and two sample sizes of N = 1000 and
N = 100000 (rows). Note the scale difference on the y-axes. Error line represents twice the standard
deviation over 10 repeats. Shaded area represents frequentist 95% confidence interval for histogram
estimator assuming the same amount of data. The number on the bottom right is the JS divergence.

Unlike the Ising model, the order of the neurons plays a role in the formulation of the cascaded
logistic model. Since a permutation of a pentadiagonal matrix is not necessarily pentadiagonal,
this poses a potential challenge to the application of this equivalency. However, the Cuthill-McKee
algorithm can be used as a heuristic to find a permutation of J with the lowest bandwidth (i.e.,
closest to pentadiagonal) [18].

This theorem can be generalized to sparse, structured cascaded logistic models.
Theorem 2 (Intersection between cascaded logistic model and Ising model). A cascaded logistic

model with at most two interactions with other neurons is also an Ising model.

For example, cascaded logistic with a sparse cascade p(x1)p(x2|x1)p(x3|x1)p(x4|x1, x3)p(x5|x2, x4)

is an Ising model (Fig. 2A)4. We remark that although the cascaded logistic model can be written
as an exponential family form, the cascaded logistic does not correspond to a simple family of
maximum entropy models in general.

The theorems show that only a subset of Ising models are equivalent to cascaded logistic models.
However, cascaded logistic models generally provide good approximations to the Ising model. We
demonstrate this by drawing random Ising models (both with sparse and dense pairwise coupling J),
and then fitting with a cascaded logistic model (Fig. 2C-F). Since Ising models are widely accepted
as effective models of neural populations, the cascaded logistic model presents a computationally
tractable alternative.

4 Simulations

We compare two parametric models (independent Bernoulli and cascaded logistic model) with three
nonparametric models (two universal binary models centered on the parametric models, and a naive
histogram estimator) on simulated data with 15 neurons. We find the MAP solution as the parameter
estimate for each model. We use an l1 regularization to fit the cascaded logistic model and the cor-
responding UBM. The l1 regularizer � was selected by scanning on a grid until the cross-validation
likelihood started decreasing on 10% of the training data.

In Fig. 3, we simulate a maximum entropy (maxent) distribution with a third order interaction. As
the number of samples increases, Jensen-Shannon (JS) divergence between the estimated model and
true maxent model decreases exponentially for the nonparametric models. The JS-divergence of the

4We provide MATLAB code to convert back and forth between a subset of Ising models and the correspond-
ing subset of cascaded logistic models (see online supplemental material).
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Figure 4: Synchrony histogram model. Each word with the same number of total spikes regardless
of neuron identity has the same probability. Both Bernoulli and cascaded logistic models do not
provide a good approximation in this case and saturate, in terms of JS divergence. Same format as
Fig. 3.
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Figure 5: Ising model with 1-D nearest neighbor interaction. Same format as Fig. 3. Note that
cascaded logistic and UBM with cascaded logistic base measure perform almost identically, and
their convergence does not saturate (as expected by Theorem 1).

parametric models saturates since the actual distribution does not lie within the same parametric
family. The cascaded logistic model and the UBM centered on it show the best performance for the
small sample regime, but eventually other nonparametric models catch up with the cascaded logistic
model.

The scatter plot (Fig. 3C) displays the log-likelihood ratio log(Ptrue) � log(Pmodel) to quantify the
accuracy of the predictive distribution. Where significant deviations from the base measure model
can be observed in Fig. 3C, the corresponding UBM adapts to account for those deviations.

In Fig. 4, we draw samples from a distribution with higher-order dependences; Each word with the
same number of total spikes are assigned the same probability. For example, words with exactly
10 neurons spiking (and 5 not spiking, out of 15 neurons) occur with high probability as can be
seen from the histogram of the total spikes (Fig. 4B). Neither the Bernoulli model nor the cascaded
logistic model can capture this structure accurately, indicated by a plateau in the convergence plots
(Fig. 4A,C). In this case, all three nonparameteric models behave similarly: both UBMs converge
with the histogram.

In addition, we see that if the data comes from the model class assumed by the base measure, then
UBM is just as good as the base measure alone (Fig. 5). Together, these results suggest that UBM
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Figure 6: Various models fit to a population of ten retinal ganglion neurons’ response to naturalistic
movie [3]. Words consisted of 20 ms, binarized responses. 1 ⇥ 10

5 samples were reserved for
testing. (A) JS divergence between the estimated model, and histogram constructed from the test
data. Ising model is included, and its trace is closely followed by the cascaded logistic model. (B)
Histogram of number of spikes per word. (C) Log-likelihood ratio scatter plot for the models trained
with 10

5 randomized observations. (D) The concentration parameter ↵ as a function of sample size.

supplements the base measure to model flexibly the observed firing patterns, and performs at least
as well as the histogram in the worst case.

5 Neural data

We apply UBMs to a simultaneously recorded population of 10 retinal gangilion cells, and compare
to the Ising model. In Fig. 6A we evaluate the convergence of each model. Three models—cascaded
logistic, its corresponding UBM, and the Ising model—initially perform similarly, however, as more
data is provided, UBM predicts the probabilities better. In panel C, we confirm that the cascaded
logistic UBM gives the best fit. The decrease in corresponding ↵, shown in panel D, indicates
that the cascaded logistic UBM is becoming less confident that the data is from an actual cascaded
logistic model as we obtain more data.

6 Conclusion

We proposed universal binary models (UBMs), a nonparametric framework that extends parametric
models of neural recordings. UBMs flexibly trade off between smoothing from the base measure and
“histogram-like” behavior. The Dirichlet process can incorporate deviations from the base measure
when supported by the data, even as the base measure buttresses the nonparametric approach with
desirable properties of parametric models, such as fast convergence and interpretability. Unlike the
reliable interaction model [3], which aims to provide the same features in a heuristic manner, the
UBM is a well-defined probabilistic model.

Since the main source of smoothing is the base measure, UBM’s ability to extrapolate is limited
to repeatedly observed words. However, UBM is capable of adjusting the probabilities of the most
frequent words to focus on fitting the regularities of small probability events.

We proposed the cascaded logistic model for use as a powerful, but still computationally tractable,
base measure. We showed, both theoretically and empirically, that the cascaded logistic model is
an effective, scalable alternative to the Ising model, which is usually limited to smaller populations.
The UBM model class has the potential to reveal complex structure in large-scale recordings without
the limitations of a priori parametric assumptions.
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