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Abstract

We study optimal image encoding based on a generative approach with non-linear
feature combinations and explicit position encoding. By far most approaches to
unsupervised learning of visual features, such as sparse coding or ICA, account
for translations by representing the same features at different positions. Some
earlier models used a separate encoding of features and their positions to facil-
itate invariant data encoding and recognition. All probabilistic generative mod-
els with explicit position encoding have so far assumed a linear superposition of
components to encode image patches. Here, we for the first time apply a model
with non-linear feature superposition and explicit position encoding for patches.
By avoiding linear superpositions, the studied model represents a closer match to
component occlusions which are ubiquitous in natural images. In order to account
for occlusions, the non-linear model encodes patches qualitatively very different
from linear models by using component representations separated into mask and
feature parameters. We first investigated encodings learned by the model using ar-
tificial data with mutually occluding components. We find that the model extracts
the components, and that it can correctly identify the occlusive components with
the hidden variables of the model. On natural image patches, the model learns
component masks and features for typical image components. By using reverse
correlation, we estimate the receptive fields associated with the model’s hidden
units. We find many Gabor-like or globular receptive fields as well as fields sen-
sitive to more complex structures. Our results show that probabilistic models that
capture occlusions and invariances can be trained efficiently on image patches, and
that the resulting encoding represents an alternative model for the neural encoding
of images in the primary visual cortex.

1 Introduction

Probabilistic generative models are used to mathematically formulate the generation process of ob-
served data. Based on a good probabilistic model of the data, we can infer the processes that have
generated a given data point, i.e., we can estimate the hidden causes of the generation. These hidden
causes are usually the objects we want to infer knowledge about, be it for medical data, biologi-
cal processes, or sensory data such as acoustic or visual data. However, real data are usually very
complex, which makes the formulation of an exact data model infeasible. Image data are a typical
example of such complex data. The true generation process of images involves, for instance, differ-
ent objects with different features at different positions, mutual occlusions, object shades, lighting
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Figure 1: An illustration of the generation process of our model.

conditions and reflections due to self-structure and nearby objects. Even if a generative model can
capture some of these features, an inversion of the model using Bayes’ rule very rapidly becomes
analytically and computationally intractable. As a consequence, generative modelers make compro-
mises to allow for trainability and applicability of their generative approaches.

Two properties that have, since long, been identified as crucial for models of images are object oc-
clusions [1–5] and the invariance of object identity to translations [6–13]. However, models incor-
porating both occlusions and invariances suffer from a very pronounced combinatorial complexity.
They could, so far, only be trained with very low dimensional hidden spaces [2, 14, 15]. At first
glance, occlusion modeling is, furthermore, mathematically more inconvenient. For these reasons,
many studies including style and content models [16], other bi-linear models [17, 18], invariant
sparse coding [19, 20], or invariant NMF [21] do not model occlusions. Analytical and computation
reasons are often explicitly stated as the main motivation for the use of the linear superposition of
components (see, e.g., [16, 17]).

In this work, we for the first time study the encoding of natural image patches using a model with
both non-linear feature combinations and translation invariances.

2 A Generative Model with Non-linear and Invariant Components

The model used to study image patch encoding assumes an exclusive component combination, i.e.,
for each pixel exclusively one cause is made responsible. It thus shares the property of exclusiveness
with visual occlusions. The model will later be shown to capture occluding components. We will,
however, not model explicit occlusion using a depth variable (compare [2]) but will focus on the
exclusiveness property. The applied model is a novel version of the invariant occlusive components
model studied for mid-level vision earlier [22]. We first briefly reiterate the basic model in the
following and discuss the main differences of the new version afterwards.

We consider image patches ~y with D2 observed scalar variables, ~y = (y1, . . . , yD2). An image
patch is assumed to contain a subset from a set of H components. Each component h can be located
at a different position denoted by an index variable xh ∈ {1, . . . , D2}, which is associated with a
set of permutation matrices that covers all the possible planar translations {T1, . . . , TD2} (similar
formulations have also been used in sprite models [14, 15]). Each component h is modeled to
appear in an image patch with probability πh ∈ (0, 1). Following [22], we do not model component
presence and absence explicitly but, for mathematical convenience, assign the special ‘position’ −1
to all the components which are not chosen to generate the patch. Assuming a uniform distribution
for the positions, the prior distribution for components and their positions is thus given by:

p(~x|~π) =
∏
h

p(xh|πh), p(xh|πh) =

{
1− πh, xh = −1
πh
D2 , otherwise

, (1)

where the hidden variable ~x = (x1, . . . , xH) contains the information on presence/absence and
position of all the image components.

In contrast to linear models, the studied approach requires two sets of parameters for the encod-
ing of image components: component masks and component features. Component masks describe
where an image component is located, and component features describe what a component encodes
(compare [2, 3, 14, 15]). High values of mask parameters ~αh encode the pixels most associated
with a component h but the encoding has to be understood relative to a global component position.
The feature parameters ~wh encode the values of a component’s features. Fig. 1 shows an example
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of the mask and feature parameters for two typical low-level visual features. Given a particular po-
sition, the mask and feature parameters of the component are transformed to the target position by
multiplying a corresponding translation matrix like Txh

~αh and Txh
~wh. When generating an image

patch, two or more components may occupy the same pixel, but according to occlusion the pixel
value is exclusively determined by only one of them. This exclusiveness is formulated by defining
a mask variable ~m = (m1, . . . ,mD2). For a pixel at a position d, md determines which component
is responsible for the pixel value. Therefore, md takes a value from the set of present components
Γ = {h|xh 6= −1} plus a special value “0” indicating background, and the prior distribution of ~m
is defined as:

p(~m|~x,A) =

D2∏
d=1

p(md|~x,A), p(md = h|~x,A) =


α0

α0+
∑

h′∈Γ(Tx
h′ ~αh′ )d

, h = 0
(Txh

~αh)d
α0+

∑
h′∈Γ(Tx

h′ ~αh′ )d
, h ∈ Γ

, (2)

where A = (~α1, . . . , ~αH) contains the mask parameters for all the components, and α0 defines the
mask parameter for background. The mask variable md chooses the component h with a high likeli-
hood if the translated mask parameter of the corresponding component is high at the position d. Note
that md follows a mixture model given the presence/absence and positions of all the components ~x.
This can be thought of as an approximation to the distribution of mask variables marginalizing the
depth orderings and pixel transparency in the exact occlusive model (see Supplement A for a com-
parison). After drawing the values of the hidden variables ~x and ~m, an image patch can be generated
with a Gaussian noise model, which is given by:

p(~y |~m, ~x,Θ) =

D2∏
d=1

p(yd|md, ~x,Θ), p(yd|md = h, ~x,Θ) =

{
N (yd;B, σ

2
B), h = 0

N (yd; (Txh ~wh)d, σ
2), h ∈ Γ

, (3)

where σ2 is the variance of components, and Θ = (~π,W,A, σ2, α0, B, σ
2
B) are all the model

parameters. The background distribution is a Gaussian distribution with mean B and variance σ2
B .

Compared to an occlusive model with exact EM (see Supplement A), our approach will use the
exclusiveness approximation and a truncated posterior approximation in order to make learning
tractable.

The model described in (1) to (3) has been optimized for the encoding of image patches. First,
feature variables are scalar to encode light intensities or input by the lateral geniculus nucleus (LGN)
rather than color features for mid-level vision. Second, to capture the frequency of presence for
individual components, we implement the learning of the prior parameter of presence ~π. Third, the
pre-selection function in the variational approximation (see below) has been adapted to the usage
of scalar valued features. As a scalar value is much less distinctive than the sophisticated image
features used in [22], the pre-selection of components has been changed to the complete component
instead of only salient features.

3 Efficient Likelihood Optimization

Given a set of image patches Y = (~y(1), . . . , ~y(n)), learning is formulated as inferring the best model
parameters w.r.t. the log-likelihood L = p(Y |Θ). Following the Expectation Maximization (EM)
approach, the parameter update equations are derived. The equations of the mask parameter ~αh, and
feature parameter ~wh are the same as in [22]. Additionally, we derived the update equation for the
prior parameter of presence:

πh =
1

N

N∑
n=1

∑
~x∈{xh 6=−1}

p(~x|~y(n),Θ). (4)

By learning the prior parameters πh, the probabilities of individual components’ presence can be
estimated. This allows us to gain more insights about the statistics of image components. In the
update equations, a posterior distribution has been estimated for each data point, which corresponds
to the E-step of an EM algorithm. The posterior distribution of our model can be decomposed as:

p(~m, ~x|~y,Θ) = p(~x|~y,Θ)
∏D2

d=1 p(md|~x, ~y,Θ), (5)

in which p(~x|~y,Θ) and p(md|~x, ~y,Θ) are estimated separately. Computing the exact distribution
of p(~x|~y,Θ) is intractable, as it includes the combinatorics of the presence/absence of components
and their positions. An efficient posterior approximation, Expectation Truncation (ET), has been
successfully employed. ET approximates the posterior distribution as a truncated distribution [23]:

p(~x|~y,Θ) ≈ p(~y, ~x|Θ)∑
~x′∈Kn

p(~y, ~x′|Θ)
, if ~x ∈ Kn, (6)

and zero otherwise. If Kn is chosen to be small but to contain the states with most posterior prob-
ability mass, the computation of the posterior distribution becomes tractable while a high accuracy
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Figure 2: Numerical Experiments on Artificial Data. (a) eight samples of the generated data sets.
(b) The parameters of the eight components used to generate the data set. The 1st row contains
the binary transparency parameters and the 2nd row shows the feature parameters. (c) The learned
model parameters (H = 9). The top plot shows the learned prior probabilities ~π. The 1st row shows
the mask parameters A; the 2nd row shows the feature parameters W ; the 3rd row gives a good
visualization of only the frequent used elements/pixels (setting the feature parameter whd of the
elements/pixels with αhd < 0.5 to zero). (d) The result of inference given a image patch (shown on
the left). The right side shows the four components inferred to be present (each takes a column). The
1st and 2nd rows show the mask and features parameters shifted according to the MAP inference
~xMAP, and the 3rd row shows the inferred posterior p(md|~xMAP, ~y,Θ). All the plots are heat map
(Jet color map) visualizations of scalar values.

of the approximations can be maintained [23]. To select a proper subspace Kn, τ features (pixel
intensities) are chosen according to their mask parameters. Based on the chosen features, a score
value S(xh) is computed for each component at each position (see [22]). We select H ′ components,
denoted as H, for the candidates that may appear in the given image according to the probabil-
ity p(~y, x̌h|Θ). x̌h corresponds to the vector ~x with xh = x∗h and the rest components absent
(xh′ = −1, h′ 6= h), where x∗h is the best position of the component h w.r.t. S(xh). This is different
from the earlier work [22], where Kn is constructed directly according to S(xh). For each compo-
nent, we select the set of its candidate positions Xh, xh ∈ Xh, which contains the p best positions
w.r.t. S(xh). Then the truncated subspace Kn is defined as:

Kn = {~x | (
∑
j

sj ≤ γ and si = 0, ∀i /∈ H) or
∑
j′

sj′ ≤ 1}, (7)

where sh represents the presence/absence state of the component h (sh = 0 if xh = −1∪ xh /∈ Xh

and sh = 1 if xh ∈ Xh). To avoid converging to local optima, we used the directional annealing
scheme [22] for our learning algorithm.

4 Numerical Experiments on Artificial Data

The goal of the experiment on artificial data is to verify that the model and inference method can
recover the correct parameters, and to investigate inference on the data generated according to occlu-
sions with explicit depth variable. We generated 4×4 gray-scale image patches. In the data set, eight
different components are used, which are four vertical ‘bars’ and four horizontal ‘bars’, and each bar
has a different intensity and has a binary vector indicating its ‘transparency’ (1 for non-transparent
and 0 for transparent, see Fig. 2b) . When generating an image patch, a subset of components is
selected according to their prior probabilities πh = 0.25, and the selected components are combined
according to a random depth ordering (flat priors on the ordering). A component with smaller depth
will occlude the components with larger depth, and for each image patch we sample a new depth-
ordering. For the pixels in which all the selected components are transparent, the value is determined
according to the background with zero intensity (B = 0). All the pixels generated by components
are subject to a Gaussian noise with σ = 0.02 and the pixels belonging to the background have a
Gaussian noise with σB = 0.001. In total, we generated N = 1, 000 image patches. Fig. 2a shows
eight samples. The artificial data is similar to data generated by the occlusive components analysis
model (OCA; [2]), except of the use of scalar features and the assumption of shift-invariance.

Fig. 2c shows the learned model parameters on the generated data set. We learned nine components
(H = 9). The initial feature value W was set to randomly selected data points. The initial mask
parameter A was independently and uniformly drawn from the interval (0, 1). The initial annealing
temperature was set to T = 5. After keeping constant for 20 iterations, the temperature linearly
decreased to 1 in 100 iterations. For the robustness of learning, σ decreased together with the
temperature from 0.2 to 0.02, and an additive Gaussian noise with zero mean and σw = 0.04 was
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injected intoW and σw gradually decreased to zero. The algorithm terminated when the temperature
was equal to 1 and the difference of the pseudo data log-likelihood of two consecutive iterations was
sufficiently small (less than 0.1%). The approximation parameters used in learning was H ′ = 8,
γ = 4, p = 2 and τ = 3. In this result, all the eight generative components have been successfully
learned. The 2nd to last component (see Fig. 2c) is a dumpy component (low πh, i.e., very rarely
used). Its single pixel structure is therefore an artifact. With the learned parameters, the model could
infer the present components, their positions and the pixel-to-component assignment. Fig. 2d shows
a typical example. Given an image patch on the left, the present components and their positions
are correctly inferred. Furthermore, as shown on the 3rd row, the posterior probabilities of the
mask variable p(md|~x, ~y,Θ) give a clear assignment of the contributing component for each pixel.
This information is potentially very valuable for tasks like parts-based object segmentation or to
infer the depth ordering among the components. We assess the reliability of our learning algorithm
by repeating the learning procedure with the same configuration but different random parameter
initializations. The algorithm recovers all the generative components in 11 out of 20 repetitive runs.
The 9 runs not recovering all bars did still recover reasonable solutions with usually 7 bars out of
8 bars represented. In general, optima of bar stimuli seem to have much more pronounced local
optima, e.g., compared to image patches.

5 Numerical Experiments on Image Patches

After we verified the inference and learning algorithm on artificial data, it was applied to patches of
natural images. As training set we used N = 100, 000 patches of size 16 × 16 pixels extracted at
random positions from random images of the van Hateren natural image database [24]. We modeled
the sensitivity of neurons in the LGN using a difference-of-Gaussians (DoG) filter for different
positions, i.e., we processed all patches by convolving them with a DoG kernel. Following earlier
studies (see [5] for references), the ratio between the standard deviation of the positive and the
negative Gaussian was chosen to be 1/3 and the amplitudes chosen to obtain a mean-free center-
surround filter. Fig. 3a shows some samples of the image patches after preprocessing.

Our algorithm learnedH = 100 components from the natural image data set. The model parameters
were initialized in the same way as for artificial data. The annealing temperature was initialized with
T = 10, kept constant for 10 iterations, the temperature linearly decreased to 1 in 100 iterations. σ
decreased together with the temperature from 0.5 to 0.2, and an additive Gaussian noise with zero
mean and σw = 0.2 was injected into W and σw gradually decreased to zero. The approximation
parameters used for learning were H ′ = 6, γ = 4, p = 2 and τ = 50. After 134 iterations, the
model parameters had essentially converged.

Figs. 3bc show the learned mask parameters and the learned feature values for all the 100 compo-
nents. Mask parameters define the frequently used areas within a component, and feature parameters
reveal the appearance of a component on image patches. As can be observed, image components
are very differently represented from linear models. See the component in Fig. 3d as an example:
mask parameters are localized and all positive; feature parameters have positive and negative values
across the whole patch. Masks and features can be combined to resemble a familiar Gabor func-
tion via point-wise multiplication (see Fig. 3d). All the above shown component representations are
sorted in descending order according to the learned prior probabilities of occurrence ~π (see Fig. 3e).

6 Estimation of Receptive Fields

For visualization, mask and feature parameters can be combined via point-wise multiplication. To
more systematically and quantitatively interpret the learned components and to compare them to
biological experimental findings, we estimated the predicted receptive fields (RFs). RFs estimates
were computed with reverse correlation based on the model inference results. Reverse correlation
can be defined as procedure to find the best linear approximation of the components’ presence given
an image patch ~y(n). More formally, we search for a set of predicted receptive fields ~Rh, h ∈
{1, . . . ,H} that minimize the following cost function:

f = 1
N

∑
n

∑
~x∈Kn

p(~x |~y(n),Θ)
∑
h(~RTh T̄xh~y

(n) − sh)2 + λ
∑
h
~RTh ~Rh, (8)

where ~y(n) is the nth stimulus and λ is the coefficient for L2 regularization. sh is a binary variable
representing the presence/absence state of the component h, where sh = 0 if xh = −1, and sh = 1
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Figure 3: The invariant occlusive components from natural image patches. (a) shows 20 samples of
the pre-processed image patches. (b) shows the mask parameter and (c) shows the feature parameter.
(d) shows an example of the relation with the learned model parameters and the estimated RFs. (e)
shows the learned prior probabilities ~π. (f) shows the estimated Receptive Fields (RF). The RFs were
fitted with 2 dimensional Gabor and DoG functions. The dashed line marks the RFs that have a more
globular structure. The solid lines mark the RFs the were fitted accurately by a Gabor function. The
dotted lines marks the RFs that were not approximated very well by the fitted function. All the
shown model parameters in (b-c) and receptive fields in (f) are sorted in descent according to ~π. The
plots (a-d) and (f) are heat map visualization with local scaling on individual fields (Jet color map),
and (a), (c) and (f) fix light green to be zero.

otherwise. As our model allows the components to be at different locations, the reverse correlation
is computed by shifting the stimuli according to the inferred location of each components. T̄xh

rep-
resents the transformation matrix applied to the stimulus for the component h, which is the opposite
transformation of the inferred transformation Txh

(T̄xh
Txh

= 1). For the absent components, the
stimulus is used without any transformations (T−1 = 1).

Due to the intractability of computing an exact posterior distribution, given a data point, the cost
function only sums across the truncated subspace Kn in the variational approximation (see Sec. 3).
By setting the derivative of the cost function to zero, ~Rh can be estimated as:

~Rh =
(
λN1 +

∑
n〈T̄xh~y

(n)(T̄xh~y
(n))T 〉qn

)−1(∑
n〈~s(T̄xh~y

(n))T 〉qn
)

(9)

where 〈·〉qn denotes the expectation value w.r.t. the posterior distribution p(~x |~y(n),Θ) and 1 is
an identity matrix. When solving ~Rh, we often observe that many of the eigenvalues of the data
covariance matrix

∑N
n=1〈T̄xh

~y(n)(T̄xh
~y(n))T 〉qn are close to zero, which makes the solution of ~Rh

very unstable. Therefore, we introduce a L2 regularization to the cost function. The regularization
coefficient λ is chosen between the minimum and maximum element of the data covariance matrix.
The estimated receptive fields are not sensitive to the value of the regularization coefficient λ as
long as λ is large enough to resolve the numerical instability (see Supplement for a comparison of
the receptive fields estimated with different λ values). From the experiments with artificial data and
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natural image patches, we observed that the L2 regularization successfully eliminated the numerical
stability problem.

Fig. 3f shows the RFs estimated according to our model. For further analysis, we matched the RFs
using Gabor functions and DoG functions as was suggested in [5]. If we factored in the occurrence
probabilities, we found that the model considered about 17% of all components of the patches to be
globular, 56% to be Gabor-like and 27% to have another structure (see Supplement for details). The
prevalence of ‘center-on’ globular fields may be a consequence of the prevalence of convex object
shapes.

7 Discussion

The encoding of image patches investigated in this study separates feature and position information
of visual components. Functionally, such an encoding has been found very useful, e.g., for the con-
struction of object recognition systems. Many state-of-the-art systems for visual object classification
make use of convolutional neural networks [12, 25, 26]. Such networks compute the responses of
a set of filters for all positions in a predefined area and use the maximal response for further pro-
cessing ([12] for a review). If we identify the predefined area with one image patch as processed by
our approach, then the encoding studied here is to some extent similar to convolutional networks:
(A) it uses like convolutional networks one set of component parameters for all positions; and (B) a
hidden component variable of the generative model integrates or ‘pools’ the information across all
positions. As the here studied approach is based on a generative data model, the integration across
positions can directly be interpreted as inversion of the generation process. Crucially, the inversion
can take occlusions of visual features into account while convolutional networks do not model occlu-
sions. Furthermore, the generative model uses a probabilistic encoding, i.e., it assigns probabilities
to positions and features of a joint feature and position space. Ambiguous visual input can therefore
be represented appropriately. In contrast, convolutional networks use one position for each feature
as representation. In this sense a convolutional encoding could be regarded as MAP estimate for the
feature position while the generative integration could be interpreted as probabilistic pooling. Many
bilinear models have also been applied to image patches, e.g., [17, 18]. Such studies do report that
neurally plausible receptive fields (RFs) in the form of Gabor functions emerge [17, 18]. Likewise,
invariant versions of NMF [21] or ICA (in the form of ISA [9] have been applied to image patches.

In addition to Gabors, we observed in our study a large variety of further types of RFs. Gabor filters
with different orientations, phase and frequencies, as well as globular fields and fields with more
complex structures (Fig. 3f). Gabors have been studied since several decades, globular and more
complex fields have attracted attention in the last couple of years. In particular, globular fields have
attracted attention [5, 27, 28] as they have been reported together with Gabors in macaques and
other species ([29] and [5] for further references). Such fields have been associated with occlusions
before [5, 28, 30]; and our study now for the first time reports globular fields for an occlusive and
translation invariant approach. The results may be taken as further evidence of the connection be-
tween occlusions and globular fields. However, also linear convolutional approaches have recently
reported such fields [19, 31]. Linear approaches seem to require a high degree of overcompleteness
or specific priors while globular fields naturally emerge for occlusion-like non-linearities. More con-
cretely: for non-invariant linear sparse coding, globular fields only emerged from a sufficiently high
degree of overcompleteness onwards [32, 33] or with specific prior settings and overcompleteness
[27]; for non-invariant occlusive models [5, 30] globular fields always emerge alongside Gabors
for any overcompleteness. The results reported here can be taken as confirming this observation
for position invariant encoding. The invariant non-linear model assigns high degrees of occurrences
(high πh) to Gabor-like and to globular fields (first rows in Fig. 3f). Components with more complex
structures are assigned lower occurrence frequencies. In total the model assumes a fraction between
10 and 20% of all data components to be globular. Such high percentages may be related to the
high percentages of globular fields (∼16-23%) measured in vivo ([29] and [5] for references). In
contrast, the highest degrees of occurrences, e.g., for convolutional matching pursuit [31] seems to
be assigned exclusively to Gabor features. Globular fields only emerge (alongside other non-Gabor
fields) for higher degrees of overcompleteness. A direct comparison in terms of occurrence frequen-
cies is difficult because the linear models to not infer occurrence frequencies from data. The closest
match to such frequencies would be an (inverse) sparsity which is set by hand for almost all linear
approaches. The reason is the use of MAP-based point-estimates while our approach uses a more
probabilistic posterior estimate.
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Because of their separate encoding of features and positions, all models with separate position en-
coding can represent high degrees of over-completeness. Convolutional matching pursuit [31] shows
results for up to 64 filters of size 8 × 8. With 8 horizontal and 8 vertical shifts, the number of non-
invariant components would amount to 8 × 8 × 64 = 3136. Convolutional sparse coding [19]
reports results by assuming 128 components for 9 × 9 patches.The number of non-invariant com-
ponents would therefore amount to 10, 368. For our network we obtained results for up to 100
components of size 16 × 16. With 16 horizontal and 16 vertical shift this amounts to 25, 600 non-
invariant components. In terms of components per observed variable, invariant models are therefore
now computationally feasible in a regime the visual cortex is estimated to operate in [33].

The hidden units associated with component feature are fully translation invariant. In terms of neu-
ral encoding, their insensitivity to stimulus shifts would therefore place them into the category of
V1 complex cells. Also globular fields or fields that seem sensitive to structures such as corners
would warrant such units the label ‘complex cell’. No hidden variable in the model can directly be
associated with simple cell responses. However, a possible neural network implementation of the
model is an explicit representation of component features at different positions. The weight sharing
of the model would be lost but units with explicit non-invariant representation could correspond to
simple cells. While such a correspondence can connect our predictions to experimental studies of
simple cells, recently developed approaches for the estimation of translation invariant cell responses
[34, 35] can represent a more direct connection. To approximately implement the non-linear gen-
erative model neurally, the integration of information would have to be a very active process. In
contrast to passive pooling mechanisms across units representing linear filters (such as simple cells),
it would involve neural units with explicit position encoding. Such units would control or ‘gate’
the information transfer from simple cells to downstream complex cells. As such our probabilistic
model can be related to ideas of active control units for individual components [6, 7, 10, 11, 36] (also
compare [37]). A notable difference to all these models is that the here studied approach allows to
interpret active control as optimal inference w.r.t. a generative model of translations and occlusions.

Future work can go in different directions. Different transformations could be considered or learned
[37], explicit modeling in time could be incorporated (compare [17]), and/or further hierarchical
stages could be considered. The crucial challenge all such developments face are computational
intractabilities due to large combinatorial hidden spaces. Base on the presented results, we believe,
however, that advances in analytical and computational training technology will enable an increas-
ingly sophisticated modeling of image patches in the future.
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tion invariant object recognition in the dynamic link architecture. IEEE Transactions on Computers,
42(3):300–311, 1993.

[9] A. Hyvärinen and P. Hoyer. Emergence of phase- and shift-invariant features by decomposition of natural
images into independent feature subspaces. Neural Computation, 12(7):1705–20, 2000.

[10] D. W. Arathorn. Map-Seeking circuits in Visual Cognition — A Computational Mechanism for Biological
and Machine Vision. Standford Univ. Press, Stanford, California, 2002.

8
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