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Abstract

A common classifier for unlabeled nodes on undirected graphs uses label propaga-
tion from the labeled nodes, equivalent to the harmonic predictor on Gaussian ran-
dom fields (GRFs). For active learning on GRFs, the commonly used V-optimality
criterion queries nodes that reduce the L? (regression) loss. V-optimality satis-
fies a submodularity property showing that greedy reduction produces a (1 —1/e)
globally optimal solution. However, L? loss may not characterise the true nature
of 0/1 loss in classification problems and thus may not be the best choice for active
learning.

We consider a new criterion we call ¥-optimality, which queries the node that
minimizes the sum of the elements in the predictive covariance. -optimality
directly optimizes the risk of the surveying problem, which is to determine the
proportion of nodes belonging to one class. In this paper we extend submodularity
guarantees from V-optimality to X-optimality using properties specific to GRFs.
We further show that GRFs satisfy the suppressor-free condition in addition to
the conditional independence inherited from Markov random fields. We test X-
optimality on real-world graphs with both synthetic and real data and show that it
outperforms V-optimality and other related methods on classification.

1 Introduction

Real-world data are often presented as a graph where the nodes in the graph bear labels that vary
smoothly along edges. For example, for scientific publications, the content of one paper is highly
correlated with the content of papers that it references or is referenced by, the field of interest of a
scholar is highly correlated with other scholars s/he coauthors with, etc. Many of these networks
can be described using an undirected graph with nonnegative edge weights set to be the strengths of
the connections between nodes.

The model for label prediction in this paper is the harmonic function on the Gaussian random field
(GRF) by|Zhu et al.|(2003)). It can generalize two popular and intuitive algorithms: label propagation
(Zhu & Ghahramani, [2002), and random walk with absorptions (Wu et al.l |2012). GRFs can be
seen as a Gaussian process (GP) (Rasmussen & Williams, [2006) with its (maybe improper) prior
covariance matrix whose (pseudo)inverse is set to be the graph Laplacian.

Like other learning problems, labels may be insufficient and expensive to gather, especially if one
wants to discover a new phenomenon on a graph. Active learning addresses these issues by making
automated decisions on which nodes to query for labels from experts or the crowd. Some popular
criteria are empirical risk minimization (Settles, 2010; |[Zhu et al.l 2003)), mutual information gain
(Krause et al., 2008)), and V-optimality (Ji & Hanl |2012). Here we consider an alternative criterion,
Y-optimality, and establish several related theoretical results. Namely, we show that greedy reduc-
tion of X-optimality provides a (1 — 1/¢) approximation bound to the global optimum. We also show



that Gaussian random fields satisfy the suppressor-free condition, described below. Finally, we show
that X-optimality outperforms other approaches for active learning with GRFs for classification.

1.1 V-optimality on Gaussian Random Fields

Ji & Han| (2012) proposed greedy variance minimization as a cheap and high profile surrogate active
classification criterion. To decide which node to query next, the active learning algorithm finds the
unlabeled node which leads to the smallest average predictive variance on all other unlabeled nodes.
It corresponds to standard V-optimality in optimal experiment design.

We will discuss several aspects of V-optimality on GRFs below: 1. The motivation behind V-
optimality can be paraphrased as the expected risk minimization with the L?-surrogate loss (Sec-
tion[2.1). 2. The greedy solution to the set optimization problem in V-optimality is comparable to
the global solution up to a constant (Theorem [I)). 3. The greedy application of V-optimality can
also be interpreted as a heuristic which selects nodes that have high correlation to nodes with high
variances (Observation ).

Some previous work is related to point 2 above. Nemhauser et al.[(1978) shows that any submodular,
monotone and normalized set function yields a (1 — 1/e) global optimality guarantee for greedy
solutions. Our proof techniques coincides with |[Friedland & Gaubert| (2011) in principle, but we
are not restricted to spectral functions. Krause et al.| (2008 showed a counter example where the
V-optimality objective function with GP models does not satisfy submodularity.

1.2 X-optimality on Gaussian Random Fields

We define -optimality on GRFS to be another variance minimization criterion that minimizes the
sum of all entries in the predictive covariance matrix. As we will show in Lemma[7] the predictive
covariance matrix is nonnegative entry-wise and thus the definition is proper. X-optimality was orig-
inally proposed by |Garnett et al.|(2012) in the context of active surveying, which is to determine the
proportion of nodes belonging to one class. However, we focus on its performance as a criterion in
active classification heuristics. The survey-risk of X-optimality replaces the L2-risk of V-optimality
as an alternative surrogate risk for the 0/1-risk.

We also prove that the greedy application of Y-optimality has a similar theoretical bound as V-
optimality. We will show that greedily minimizing >-optimality empirically outperforms greedily
minimizing V-optimality on classification problems. The exact reason explaining the superiority of
Y-optimality as a surrogate loss in the GRF model is still an open question, but we observe that
Y-optimality tends to select cluster centers whereas V-optimality goes after outliers (Section [3.1)).
Finally, greedy application of both 3-optimality and V-optimality need O(N) time per query candi-
date evaluation after one-time inverse of a N x N matrix.

1.3  GRFs Are Suppressor Free

In linear regression, an explanatory variable is called a suppressor if adding it as a new variable
enhances correlations between the old variables and the dependent variable (Walker, 2003} Das &
Kempe, 2008). Suppressors are persistent in real-world data. We show GRFs to be suppressor-
free. Intuitively, this means that with more labels acquired, the conditional correlation between
unlabeled nodes decreases even when their Markov blanket has not formed. That GRFs present
natural examples for the otherwise obscure suppressor-free condition is interesting.

2 Learning Model & Active Learning Objectives

We use Gaussian random field/label propagation (GRF/LP) as our learning model. Suppose the
dataset can be represented in the form of a connected undirected graph G = (V, E') where each
node has an (either known or unknown) label and each edge e;; has a fixed nonnegative weight
w;;(= wjy;) that reflects the proximity, similarity, etc. between nodes v; and v;. Define the graph
Laplacian of G to be L = diag(W1) — W, ie., l;; = Ej w;; and l;; = —w;; when ¢ # j. Let
Ls = L + 61 be the generalized Laplacian obtained by adding self-loops. In the following, we will
write L to also encompass 3L for the set of hyper-parameters 5 > 0 and § > 0.



The binary GRF is a Bayesian model to generate y; € {0, +1} for every node v; according to,
B 1
p(y) ocexp{ — 2(;10“(% —yj)2—|—5zi:yf)} = exp —inLy . 2.1

Suppose nodes £ = {uvy, , ..., v, } are labeled as ye = (v, ,---,Ye,, )" s A GRF infers the output
distribution on unlabeled nodes, Y., = (Yu,, - - -, Yup, )T by the conditional distribution given yy, as

Pr(yu‘yl) X N('guvL;l) = N(gua L(_,Ul_g))a (2.2)

where G, = ( 7L;1Lu[ye) is the vector of predictive means on unlabeled nodes and L,, is the
principal submatrix consisting of the unlabeled row and column indices in L, that is, the lower-right
block of L = LL Ze LLe“ > . By convention, L(_vl_ ¢) Means the inverse of the principal submatrix.
We use L,_g) and L,, interchangeably because £ and u partition the set of all nodes v.

Finally, GRF, or GRF/LP, is a relaxation of the binary GRF to continuous outputs, because the latter is
computationally intractable even for a-priori generations. LP stands for label propagation, because
the predictive mean on a node is the probability of a random walk leaving that node hitting a positive
label before hitting a zero label. For multi-class problems, [Zhu et al.[(2003) proposed the harmonic
predictor which looks at predictive means in one-versus-all comparisons.

Remark: An alternative approximation to the binary GRF is the GRF-sigmoid model, which draws
the binary outputs from Bernoulli distributions with means set to be the sigmoid function of the GRF
(latent) variables. However, this alternative is very slow to compute and may not be compatible with
the theoretical results in this paper.

2.1 Active Learning Objective 1: L? Risk Minimization (V-Optimality)

Since in GRFs, regression responses are taken directly as probability predictions, it is computation-
ally and analytically more convenient to apply the regression loss directly in the GRF as in{Ji & Han
(2012)). Assume the L? loss to be our classification loss. The risk function, whose input variable is
the labeled subset £, is:

RV(E) = Evevu Z (yu1 - g’U.i)Q =E|E

u;EU

Z (Yu, — gui)2

uU; EU

ZMH = tr(Ly,"). (2.3)

This risk is written with a subscript V' because minimizing (2.3) is also the V-optimality criterion,
which minimizes mean prediction variance in active learning.

In active learning, we strive to select a subset £ of nodes to query for labels, constrained by a given
budget C', such that the risk is minimized. Formally,

argmin  R(€) = Ry (€) = tr(L}

(v—l))' 2.4)
L |e|<C

2.2 Active Learning Objective 2: Survey Risk Minimization (3-Optimality)

Another objective building on the GRF model (2.2)) is to determine the proportion of nodes belonging
to class 1, as would happen when performing a survey. For active surveying, the risk would be:

.82 L \2 _
Re(€) =B (> yu, = > fu,) =E[E[(17yu —17gu) |ve]] =17L,"1, 25
u; EU u; EW

which could substitute the risk R(£) in (2.4) and yield another heuristic for selecting nodes in batch

active learning. We will refer to this modified optimization objective as the X-optimality heuristic:
argmin  R(£) = Rs(£) = 1L, 1. (2.6)
£ [g)<C

Further, we will also consider the application of ¥-optimality in active classification because (2.6) is

another metric of the predictive variance. Surprisingly, although both (2.3) and (2.5)) are approxima-

tions of the real objective (the 0/1 risk), greedy reduction of the X-optimality criterion outperforms

greedy reduction of the V-optimality criterion in active classification (Section 3.1 and [5.), as well

as several other methods including expected error reduction.



2.3 Greedy Sequential Application of V/X-Optimality

Both and are subset optimization problems. Calculating the global optimum may be
intractable. As will be shown later in the theoretical results, the reduction of both risks are submod-
ular set functions and the greedy sequential update algorithm yields a solution that has a guaranteed
approximation ratio to the optimum (Theorem ).

At the k-th query decision, denote the covariance matrix conditioned on the previous (k — 1) queries
as C = (L(v,eugfl)))_l. By Shur’s Lemma (or the GP-regression update rule), the one-step look-
ahead covariance matrix conditioned on £*~) U {v}, denoted as C/ = (L(wp—(etk-nuf})) > has

the following update formula:
¢ o 1
(0 O) =C- va . C:’L)CU27 (27)

where without loss of generality v was positioned as the last node. Further denoting C;; = p;j0;0;,
we can put (2.7) inside Ry (-) and Ry (-) to get the following equivalent criteria:

Cut)?
V-optimality : o = arg max Zteg# =Y p?o? (2.8)
vEY VU teu
C 2
Y -optimality : ¥ = arg max (2:7560“71”&) = (Z Potor)?. (2.9)
veu Vv tew

3 Theoretical Results & Insights

For the general GP model, greedy optimization of the L? risk has no guarantee that the solution
can be comparable to the brute-force global optimum (taking exponential time to compute), because
the objective function, the trace of the predictive covariance matrix, fails to satisfy submodularity
in all cases (Krause et al., 2008). However, in the special case of GPs with kernel matrix equal to
the inverse of a graph Laplacian (with £ # () or § > 0), the GRF does provide such theoretical
guarantees, both for V-optimality and X-optimality. The latter is a novel result.

The following theoretical results concern greedy maximization of the risk reduction function (which

is shown to be submodular): R (€) = R(0) — R(#) for either R(-) = Ry (-) or Rx(+).

Theorem 1 (Near-optimal guarantee for greedy applications of V/¥-optimality). In risk reduction,
Ra(£g) > (1—1/e) - Ra(L.), 3.1)

where Ra(¢) = R(0) — R({) for either R(-) = Ry (:) or Rx(-), e is Euler’s number, £, is the

greedy optimizer, and £, is the true global optimizer under the constraint [€,| < |£,|.

According toNemhauser et al.|(1978)), it suffices to show the following properties of Ra (£):

Lemma 2 (Normalization, Monotonicity, and Submodularity). V¢, C €5 C v,v € v,

RA (D) =0, 3.2)
RA(£2) > Ra(£q), (3.3)
RA (21 U {U}) — RA(El) > RA (22 U {U}) — RA(eg). (3.4)

Another sufficient condition for Theorem which is itself an interesting observation, is the
suppressor-free condition. [Walker| (2003)) describes a suppressor as a variable, knowing which will
suddenly create a strong correlation between the predictors. An example is y; + y; = yx. Knowing
any one of these will create correlations between the others. Walker further states that suppressors
are common in regression problems. Das & Kempe| (2008)) extend the suppressor-free condition to
sets and showed that this condition is sufficient to prove (2.3). Formally, the condition is:

|corr(ys, y; | €1 U £s)| < |corr(yi, y; | £1)]
V’Ui,Uj € ’U,Vel,ﬂg Cw. 3.5
It may be easier to understand (3.5) as a decreasing correlation property. It is well known for
Markov random fields that the labels of two nodes on a graph become independent given labels of

their Markov blanket. Here we establish that GRF boasts more than that: the correlation between any
two nodes decreases as more nodes get labeled, even before a Markov blanket is formed. Formally:



Theorem 3 (Suppressor-Free Condition). (3.3) holds for pazrs of nodes in the GRF model. Note
that since the conditional covariance of the GRF model is L(v ¢y We can properly define the corre-

sponding conditional correlation to be

corr(yu|€) = D3L;} , D™%, with D = diag (L@)l_e)) . (3.6)

3.1 Insights From Comparing the Greedy Applications of the >/V-Optimality Criteria

Both the V/X-optimality are approximations to the 0/1 risk minimization objective. Unfortunately,
we cannot theoretically reason why greedy X-optimality outperforms V-optimality in the experi-
ments. However, we made two observations during our investigation that provide some insights. An
illustrative toy example is also provided in Section[5.1]

Observation 4. Eq. (2.8) and (2.9) suggest that both the greedy >/V-optimality selects nodes that
(1) have high variance and (2) are highly correlated to high-variance nodes, conditioned on the
labeled nodes. Notice Lemmal[7|proves that predictive correlations are always nonnegative.

In order to contrast 3/V-optimality, rewrite (2.9) as:

(S-optimality) : argmax (3°,c,, Put0t)? = D jca Po07 + Doty £ty Pots Pty 0, 0ty (3.7)
veEw

Observation 5. -optimality has one more term that involves cross products of (pyt,0+,) and
(put,0t,) (Which are nonnegative according to Lemma @]} By the Cauchy-Schwartz Inequality,
the sum of these cross products are maximized when they are equal. So, the Y-optimality addition-
ally favors nodes that (3) have consistent global influence, i.e., that are more likely to be in cluster
centers.

4 Proof Sketches

Our results predicate on and extend to GPs whose inverse covariance matrix meets Proposition [6]

Proposition 6. L satisfies the following. F_]

# Textual description Mathematical expression
1 L has proper signs. lij > 0ifi=jandl;; <0ifi#j.
2 L is undirected and connected. l” = 1;iVi,jand 3, 4, (—lij) > 0.
3 Node degree no less than number of edges.  1;; > Z#Z( lij) = ij;éi(_lji) > 0, Vi.
4 L is nonsingular and positive-definite. Jio lig >3 5(—lij) = 22 (=1:) > 0.

Although the properties of V-optimality fall into the more general class of spectral functions (Fried-
land & Gaubert, [201 1)), we have seen no proof of either the suppressor-free condition or the submod-
ularity of ¥-optimality on GRFs. We write the ideas behind the proofs. Details are in the append1xl

Lemma 7. For any L satisfying ( ﬂg]l 4), L1 >0 entry-wzse.ﬂ

Proof. Sketch: Suppose L = D — W = D(I — D='W), with D = diag (L). Then we can show
the convergence of the Taylor expansion (Appendix A.1):

L' =[I+>2 (D7'W)" DL 4.1
It suffices to observe that every term on the right hand side (RHS) is nonnegative. O
Corollary 8. The GRF prediction operator L;' Ly maps ye € [0,1]%¥ to §, = —L7'Luye €

[0,1]1®l. When L is singular, the mapping is onto.

1Property @4 holds after the first query is done or when the regularizor 6 > 0 in (2.1).
2Available at http: //www.autonlab.org/autonweb/21763.html
3In the following, for any vector or matrix A, A > 0 always stands for A being (entry-wise) nonnegative.


http://www.autonlab.org/autonweb/21763.html

Proof. For yg = 1, (Lu,Ly) -1 > 0and L' > 0imply (I, L;'Ly) -1 > 0, ie. 1 >
_L;1Lu11 = :gu‘

Asboth L,, > 0and —L,; > 0, we have yp > 0 = 9o, > 0 and yg > y; = Gu > G- O

Liy Lys

Lemma 9. Suppose L = (L21 Las

-1
). Then L™ — (L(l)l 8) > 0 and is positive-semidefinite.
Proof. As L1 > 0 and is PSD, the RHS below is term-wise nonnegative and the middle term PSD
-1 —1
(Appendix A.2): L~!— (L(l)l 8) - (Ln (;LH)) (Laz—Lo1 Lii Lna) ™t ((—Lon) L7, 1) O

As a corollary, the monotonicity in (3:3) for both R(-) = Ry (+) or Rx(+) can be shown. O

Both proofs for submodularity in (3:4) and Theorem 3|result from more careful execution of matrix
inversions similar to Lemma D] (detailed in Appendix A.4). We sketch Theorem 3] for example.

Proof. Without loss of generality, let w = v — £ = {1,..., k}. By Shur’s Lemma (Appendix A.3):

Au  ba Cov(yi,yell)  (Diw_sp)ik - ,
L(v—l) = (bﬂ CU> (y yk| ) - s = (A 1(_bU))i»VZ?ék 4.2)

—1
Var(ykw) (L(,Ufz))kk: “

where the LHS is a reparamatrization with c,, being a scaler. Lemma |§| shows that u; D us =

A;ll > A;; at corresponding entries. Also notice that —b,,, > —b,,, at corresponding entries and

so the RHS of ([@2) is larger with w;. It suffices to draw a similar inequality in the other direction,

Cov(yk, yil€)/ Var(yi|£). =

5 A Toy Example and Some Simulations

5.1 Comparing V-Optimality and >-Optimality: Active Node Classification on a Graph

To visualize the intuitions described in Sec- O dass1
tion 31} Figure [I] shows the first few nodes - X class 2
selected by different optimality criteria. This + class3
graph is constructed by a breadth-first search .

D > -optimality

from a random node in a larger DBLP coau-
Vv—optimality

thorship network graph that we will introduce /+
in the next section. On this toy graph, both cri-
teria pick the same center node to query first.
However, for the second and third queries, V-
optimality weighs the uncertainty of the can-

didate node more, choosing outliers, whereas

Y-optimality favors nodes with universal influ-
ence over the graph and goes to cluster centers. S
5.2 Simulating Labels on a Graph

Figure 1: Toy graph demonstrating the behavior
To further investigate the behavior of 3- and V-  of X-optimality vs. V-optimality.
optimality, we conducted experiments on syn-
thetic labels generated on real-world network graphs. The node labels were first simulated using the
model in order to compare the active learning criteria directly without raising questions of model fit.
We carry out tests on the same graphs with real data in the next section.

We simulated the binary labels with the GRF-sigmoid model and performed active learning with
the GRF/LP model for predictions. The parameters in the generation phase were § = 0.01 and
0 = 0.05, which maximizes the average classification accuracy increases from 50 random training
nodes to 200 random training nodes using the GRF/LP model for predictions. Figure [] shows the
binary classification accuracy versus the number of queries on both the DBLP coauthorship graph
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Figure 2: Simulating binary labels by the GRF-Sigmoid; learning with the GRF/LP, 480 repetitions.

and the CORA citation graph that we will describe below. The best possible classification results are
indicated by the leave-one-out (LOO) accuracies given under each plot.

Figure 2| can be a surprise due to the reasoning behind the L? surrogate loss, especially when the
predictive means are trapped between [—1, 1], but we see here that our reasoning in Sections
and[5.T) can lead to the greedy survey loss actually making a better active learning objective.

We have also performed experiments with different values of 5 and . Despite the fact that larger
[ and ¢ increase label independence on the graph structure and undermine the effectiveness of both
V/X¥-optimality heuristics, we have seen that whenever the V-optimality establishes a superiority
over random selections, 2-optimality yields better performance.

6 Real-World Experiments

The active learning heuristics to be compared areﬂ

. The new -optimality with greedy sequential updates: min, (17 (Lum\ o) ™ 1).

. Greedy V-optimality (Ji & Han| 2012): min, tr ((Ly ) ") -

. Mutual information gain (MIG) quause et al.|,|2008l): max, (L), o/ (Lesogeny) ™), 0
. Uncertainty sampling (US) picking the largest prediction margin: max,, g}fj}) - g)g)

. Expected error reduction (EER) (Settles, 2010} [Zhu et al, 2003). Selected nodes maximize

)

1 O

the average prediction confidence in expectation: max,. E, , szeug&l)

6. Random selection with 12 repetitions.
Comparisons are made on three real-world network graphs.

1. DBLP coauthorship networkﬂ The nodes represent scholars and the weighted edges are the
number of papers bearing both scholars’ names. The largest connected component has 1711
nodes and 2898 edges. The node labels were hand assigned in to one of the
four expertise areas of the scholars: machine learning, data mining, information retrieval, and
databases. Each class has around 400 nodes.

2. Cora citation networkﬂ This is a citation graph of 2708 publications, each of which is classified
into one of seven classes: case based, genetic algorithms, neural networks, probabilistic methods,
reinforcement learning, rule learning, and theory. The network has 5429 links. We took its
largest connected component, with 2485 nodes and 5069 undirected and unweighted edges.

4CodeavaﬂaMeathttp://www.autonlab.org/autonweb/21763
51’1ttp ://www.informatik.uni-trier.de/~ley/db/
6http ://www.cs.umd.edu/projects/lings/projects/lbc/index.html


http://www.autonlab.org/autonweb/21763
http://www.informatik.uni-trier.de/~ley/db/
http://www.cs.umd.edu/projects/linqs/projects/lbc/index.html

0.65

0.6r
0.7
0.551

0.5F 0.6

0.451
0.5

0.4r

0.4

0.35F H
O z-opt O >—-opt
0.3f Vv V-opty 4 vV V-opt]
Rand Rand
" MG | MIG
0204 + Unc ) + Unc
* EER * EER
0 16 26 Sb 40 50 O'10 16 2‘0 3‘0 40 50 0 £0 2‘0 3‘0 40 50
(a) DBLP. 84% LOO accuracy. (b) CORA. 86& LOO accuracy. (c) CITESEER 76% LOO accuracy.

Figure 3: Classification accuracy vs the number of queries. 5 = 1,§ = 0. Randomized first query.

3. CiteSeer citation network.® This is another citation graph of 3312 publications, each of which
is classified into one of six classes: agents, artificial intelligence, databases, information retrieval,
machine learning, human computer interaction. The network has 4732 links. We took its largest
connected component, with 2109 nodes and 3665 undirected and unweighted edges.

On all three datasets, 2-optimality outperforms other methods by a large margin especially during
the first five to ten queries. The runner-up, EER, catches up to X-optimality in some cases, but EER
does not have theoretical guarantees.

The win of X-optimality over V-optimality has been intuitively explained in Section [5.1] as -
optimality having better exploration ability and robustness against outliers. The node choices by
both criteria were also visually inspected after embedding the graph to the 2-dimensional space us-
ing OpenOrd method developed by Martin et al| (2011). The analysis there was similar to Figure ]

We also performed real-world experiments on the root-mean-square-error of the class proportion es-
timations, which is the survey risk that the >-optimality minimizes. >-optimality beats V-optimality.
Details were omitted for space concerns.

7 Conclusion

For active learning on GRFs, it is common to use variance minimization criteria with greedy one-
step lookahead heuristics. V-optimality and Y -optimality are two criteria based on statistics of the
predictive covariance matrix. They both are also risk minimization criteria: V-optimality minimizes
the L? risk (2.3), whereas Y-optimality minimizes the survey risk (23).

Active learning with both criteria can be seen as subset optimization problems (2.4), (2.6). Both
objective functions are supermodular set functions. Therefore, risk reduction is submodular and the
greedy one-step lookahead heuristics can achieve a (1 — 1/e) global optimality ratio. Moreover, we
have shown that GRFs serve as a tangible example of the suppressor-free condition.

While the V-optimality on GRFs inherits from label propagation (and random walk with absorptions)
and have good empirical performance, it is not directly minimizing the 0/1 classification risk. We
found that the 3-optimality performs even better. The intuition is described in Section[5.1}

Future work include deeper understanding of the direct motivations behind >-optimality on the GRF
classification model and extending the GRF to continuous spaces.
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