
Pass-Efficient Unsupervised Feature Selection

Crystal Maung
Department of Computer Science
The University of Texas at Dallas
Crystal.Maung@gmail.com

Haim Schweitzer
Department of Computer Science
The University of Texas at Dallas
HSchweitzer@utdallas.edu

Abstract

The goal of unsupervised feature selection is to identify a small number of impor-
tant features that can represent the data. We propose a new algorithm, a modifica-
tion of the classical pivoted QR algorithm of Businger and Golub, that requires a
small number of passes over the data. The improvements are based on two ideas:
keeping track of multiple features in each pass, and skipping calculations that can
be shown not to affect the final selection. Our algorithm selects the exact same
features as the classical pivoted QR algorithm, and has the same favorable numer-
ical stability. We describe experiments on real-world datasets which sometimes
show improvements of several orders of magnitude over the classical algorithm.
These results appear to be competitive with recently proposed randomized algo-
rithms in terms of pass efficiency and run time. On the other hand, the randomized
algorithms may produce more accurate features, at the cost of small probability of
failure.

1 Introduction

Work on unsupervised feature selection has received considerable attention. See, e.g., [1, 2, 3, 4,
5, 6, 7, 8] . In numerical linear algebra unsupervised feature selection is known as the column
subset selection problem, where one attempts to identify a small subset of matrix columns that can
approximate the entire column space of the matrix. See, e.g., [9, Chapter 12]. The distinction
between supervised and unsupervised feature selection is as follows. In the supervised case one
is given labeled objects as training data and features are selected to help predict that label; in the
unsupervised case nothing is known about the labels.

We describe an improvement to the classical Businger and Golub pivoted QR algorithm [9, 10]. We
refer to the original algorithm as the QRP, and to our improved algorithm as the IQRP. The QRP
selects features one by one, using k passes in order to select k features. In each pass the selected
feature is the one that is the hardest to approximate by the previously selected features. We achieve
improvements to the algorithm run time and pass efficiency without affecting the selection and the
excellent numerical stability of the original algorithm. Our algorithm is deterministic, and runs in a
small number of passes over the data. It is based on the following two ideas:

1. In each pass we identify multiple features that are hard to approximate with the previously
selected features. A second selection step among these features uses an upper bound on
unselected features that enables identifying multiple features that are guaranteed to have
been selected by the QRP. See Section 4 for details.

2. Since the error of approximating a feature can only decrease when additional features are
added to the selection, there is no need to evaluate candidates with error that is already “too
small”. This allows a significant reduction in the number of candidate features that need to
be considered in each pass. See Section 4 for details.

1

2 Algorithms for unsupervised feature selection

The algorithms that we consider take as input large matrices of numeric values. We denote by m
the number of rows, by n the number of columns (features), and by k the number of features to be
selected. Criteria for evaluating algorithms include their run time and memory requirements, the
number of passes over the data, and the algorithm accuracy. The accuracy is a measure of the error
of approximating the entire data matrix as a linear combination of the selection. We review some
classical and recent algorithms for unsupervised feature selection.

2.1 Related work in numerical linear algebra

Businger and Golub QRP was established by Businger and Golub [9, 10]. We discuss it in detail
in Section 3. It requires k passes for selecting k features, and its run time is 4kmn− 2k2(m+ n) +
4k3/3. A recent study [11] compares experimentally the accuracy of the QRP as a feature selection
algorithm to some recently proposed state-of-the-art algorithms. Even though the accuracy of the
QRP is somewhat below the other algorithms, the results are quite similar. (The only exception was
the performance on the Kahan matrix, where the QRP was much less accurate.)

Gu and Eisenstat algorithm [1] was considered the most accurate prior to the work on randomized
algorithms that had started with [12]. It computes an initial selection (typically by using the QRP),
and then repeatedly swaps selected columns with unselected column. The swapping is done so that
the product of singular values of the matrix formed by the selected columns is increased with each
swapping. The algorithm requires random access memory, and it is not clear how to implement it
by a series of passes over the data. Its run time is O(m2n).

2.2 Randomized algorithms

Randomized algorithms come with a small probability of failure, but otherwise appear to be more
accurate than the classical deterministic algorithms. Frieze et al [12, 13] have proposed a randomized
algorithm that requires only two passes over the data. This assumes that the norms of all matrix
columns are known in advance, and guarantees only an additive approximation error. We discuss
the run time and the accuracy of several generalizations that followed their studies.

Volume sampling Deshpande et al [14] have studied a randomized algorithm that samples k-tuples
of columns with probability proportional to their “volume”. The volume is the square of the product
of the singular values of the submatrix formed by these columns. They show that this sampling
scheme gives rise to a randomized algorithm that computes the best possible solution in the Frobe-
nius norm. They describe an efficient O(kmn) randomized algorithm that can be implemented in k
passes and approximates this sampling scheme. These results were improved (in terms of accuracy)
in [15], by computing the exact volume sampling. The resulting algorithm is slower but much more
accurate. Further improvements to the speed of volume sampling in [6] have reduced the run time
complexity to O(km2n). As shown in [15, 6], this optimal (in terms of accuracy) algorithm can also
be derandomized, with a deterministic run time of O(km3n).

Leverage sampling The idea behind leverage sampling is to randomly select features with prob-
ability proportional to their “leverage”. Leverage values are norms of the rows of the n × k right
eigenvector matrix in the truncated SVD expansion of the data matrix. See [16, 2]. In particular,
the “two stage” algorithm described in [2] requires only 2 passes if the leverage values are known.
Its run time is dominated by the calculation of the leverage values. To the best of our knowledge
the currently best algorithms for estimating leverage values are randomized [17, 18]. One run takes
2 passes and O(mn log n + m3) time. This is dominated by the mn term, and [18] show that it
can be further reduced to the number of nonzero values. We note that these algorithms do not com-
pute reliable leverage in 2 passes, since they may fail at a relatively high (e.g., 1/3) probability. As
stated in [18] “the success probability can be amplified by independent repetition and taking the
coordinate-wise median”. Therefore, accurate estimates of leverage can be computed in constant
number of passes. But the constant would be larger than 2.

2

Input: The features (matrix columns) x1, . . . , xn, and an integer k ≤ n.
Output: An ordered list S of k indices.
1. In the initial pass compute:

1.1. For i = 1, . . . , n set x̃i = xi, vi = |x̃i|2. (x̃i is the error vector of
approximating xi by a linear combination of the columns in S.)

At the end of the pass set z1 = argmax
i

vi, and initialize S = (z1).

2. For each pass j = 2, . . . , k:
2.1. For i = 1, . . . , n set vi to the square error of

approximating xi by a linear combination of the columns in S.

At the end of pass j set zj = argmax
i

vi, and add zj to S.

Figure 1: The main steps of the QRP algorithm.

2.3 Randomized ID

In a recent survey [19] Halko et.al. describe how to compute QR factorization using their random-
ized Interpolative Decomposition. Their approach produces an accurate Q as a basis of the data
matrix column space. They propose an efficient “row extraction” method for computing R, that
works when k, the desired rank, is similar to the rank of the data matrix. Otherwise the row extrac-
tion introduces unacceptable inaccuracies, which led Halko et.al to recommend using an alternative
O(kmn) technique in such cases.

2.4 Our result, the complexity of the IQRP

The savings that the IQRP achieves depend on the data. The algorithm takes as input an integer value
l, the length of a temporary buffer. As explained in Section 4 our implementation requires temporary
storage of l + 1, which takes (l + 1)m floats. The following values depend on the data: the number
of passes p, the number of IO-passes q (explained below), and a unit cost of orthogonalization c (see
Section 4.3).

In terms of l and c the run time is 2mn + 4mnc + 4mlk. Our experiments show that for typical
datasets the value of c is below k. For l ≈ k our experiments show that the number of passes is
typically much smaller than k. The number of passes is even smaller if one considers IO-passes. To
explain what we mean by IO-passes consider as an example a situation where the algorithm runs
three passes over the data. In the first pass all n features are being accessed. In the second, only two
features are being accessed. In the third, only one feature is being accessed. In this case we take
the number of IO-passes to be q=1+ 3

n . We believe that q is a relevant measure of the algorithm pass
complexity when skipping is cheap, so that the cost of a pass over the data is the amount of data that
needs to be read.

3 The Businger Golub algorithm (QRP)

In this section we describe the QRP [9, 10] which forms the basis to the IQRP. The main steps
are described in Figure 1. There are two standard implementations for Step 2.1 in Figure 1. The
first is by means of the “Modified Gram-Schmidt” (e.g., [9]), and the second is by Householder
orthogonalization (e.g., [9]). Both methods require approximately the same number of flops, but
error analysis (see [9]) shows that the Householder approach is significantly more stable.

3.1 Memory-efficient implementations

The implementations shown in Figure 2 update the memory where the matrix A is stored. Specifi-
cally, A is overwritten by the R component of the QR factorization. Since we are not interested in
R, overwriting A may not be acceptable. The procedure shown in Figure 3 does not overwrite A,
but it is more costly. The flops count is dominated by Steps 1 and 2, which cost at most 4(j − 1)mn
at pass j. Summing up for j = 1, . . . , k this gives a total flops count of approximately 2k2mn flops.

3

Compute zj , qj , Qj

for i = 1, . . . , n
1. wi = qTj−1x̃i.
2. x̃i ← x̃i − wiqj−1.
3. vi ← vi − w2

i .
At the end of the pass:
4. zj = argmax

i
vi.

5. qj = xzj/|xzj |.
6. Qj = (Qj−1, qj).

Compute zj , hj , Hj

for i = 1, . . . , n
1. x̃i ← hj−1x̃i.
2. wi = x̃i(j) (the j’th coordinate of x̃i).
3. vi ← vi − w2

i .
At the end of the pass:
4. zj = argmax

i
vi.

5. Create the Householder matrix hj from x̃j .
6. Hj = Hj−1hj .

Modified Gram-Schmidt Householder orthogonalization

Figure 2: Standard implementations of Step 2.1 of the QRP

Compute zj , qj , Qj

for i = 1, . . . , n
1. wi = QT

j−1xi.
2. vi = |xi|2 − |wi|2.
At the end of the pass:
3. zj = argmax

i
vi.

4. q̃j = xzj −Qj−1wzj , qj = q̃j/|q̃j |.
5. Qj = (Qj−1, qj).

Compute zj , hj , Hj

for i = 1, . . . , n
1. yi = Hj−1xi.
2. vi =

∑m
t=j+1 y

2
i (t).

At the end of the pass:
3. zj = argmax

i
vi.

4. Create hj from yzj .
5. Hj = Hj−1hj .

Modified Gram-Schmidt Householder orthogonalization

Figure 3: Memory-efficient implementations of Step 2.1 of the QRP

4 The IQRP algorithm

In this section we describe our main result: the improved QRP. The algorithm maintains three or-
dered lists of columns: The list F is the input list containing all columns. The list S contains
columns that have already been selected. The list L is of size l, where l is a user defined parameter.

For each column xi in F the algorithm maintains an integer value ri and a real value vi. These
values can be kept in core or a secondary memory. They are defined as follows:

ri ≤ |S|, vi = vi(ri) = ‖xi −QriQ
T
rixi‖

2 (1)

where Qri = (q1, . . . , qri) is an orthonormal basis to the first ri columns in S. Thus, vi(ri) is
the (squared) error of approximating xi with the first ri columns in S. In each pass the algorithm
identifies the l candidate columns xi corresponding to the l largest values of vi(|S|). That is, the vi
values are computed as the error of predicting each candidate by all columns currently in S. The
identified l columns with the largest vi(|S|) are stored in the list L. In addition, the value of the
l+1’th largest vi(|S|) is kept as the constant BF . Thus, after a pass is terminated the following
condition holds:

vα(rα) ≤ BF for all xα ∈ F \ L. (2)

The list L and the value BF can be calculated in one pass using a binary heap data structure, with
the cost of at most n log(l + 1) comparisons. See [20, Chapter 9]. The main steps of the algorithm
are described in Figure 4.

Details of Steps 2.0, 2.1 of the IQRP. The threshold value T is defined by:

T =

{
−∞ if the heap is not full.
top of the heap if the heap is full.

(3)

4

Input: The matrix columns (features) x1, . . . , xn, and an integer k ≤ n.
Output: An ordered list S of k indices.
1. (The initial pass over F .)

1.0. Create a min-heap of size l+1.
In one pass go over xi, i = 1, . . . , n:

1.1. Set vi(0) = |xi|2, ri = 0.
Fill the heap with the candidates corresponding to the l+1 largest vi(0).

1.2. At the end of the pass:
Set BF to the value at the top of the heap.
Set L to heap content excluding the top element.
Add to S as many candidates from L as possible using BF .

2. Repeat until S has k candidates:
2.0. Create a min-heap of size l+1.

Let T be defined by (3).
In one pass go over xi, i = 1, . . . , n:

2.1. Skip xi if vi(ri) ≤ T . Otherwise update vi, ri, heap.
2.2. At the end of the pass:

Set BF = T .
Set L to heap content excluding the top element.
Add to S as many candidates from L as possible using BF .

Figure 4: The main steps of the IQRP algorithm.

Thus, when the heap is full, T is the value of v associated with the l+1’th largest candidate encoun-
tered so far. The details of Step 2.1 are shown in Figure 5. Step A.2.2.1 can be computed using
either Gram-Schmidt or Householder, as shown in Figures 3 and 4.

A.1. If vi(ri) ≤ T skip xi.
A.2. Otherwise check ri:

A.2.1. If ri = |S| conditionally insert xi into the heap.
A.2.2. If ri < |S|:

A.2.2.1. Compute vi(|S|). Set ri = |S|.
A.2.2.2. Conditionally insert xi into the heap.

Figure 5: Details of Step 2.1

Details of Steps 1.2 and 2.2 of the IQRP. Here we are given the list L and the value of BF
satisfying (2). To move candidates from L to S run the QRP on L as long as the pivot value is above
BF . (The pivot value is the largest value of vi(|S|) in L.) The details are shown in Figure 6.

B.1. z = argmax
i∈L

vi(|S|)

B.2. If vz(|S|) < BF , we are done exploiting L.
B.3. Otherwise:

B.3.1. Move z from L to S.
B.3.2. Update the remaining candidates in L using either Gram-Schmidt or

the Householder procedure.
For example, with Householder:
B.3.2.1. Create the Householder matrix hj from xz .
B.3.2.2. for all x in L replace x with hjx.

Figure 6: Details of Steps 1.2 and 2.2

5

4.1 Correctness

In this section we show that the IQRP computes the same selection as the QRP. The proof
is by induction on j, the number of columns in S. For j = 0 the QRP selects xj with
vj = |xj |2 = max

i
|xi|2. The IQRP selects v′j as the largest among the l largest values in F . There-

fore v′j = maxxi∈L |xi|2 = maxxi∈F |xi|2 = vj . Now assume that for j = |S| the QRP and the
IQRP select the same columns in S (this is the inductive assumption). Let vj(|S|) be the value of
the j+1’th selection by the QRP, and let v′j(|S|) be the value of the j+1’th selection by the IQRP. We
need to show that v′j(|S|) = vj(|S|). The QRP selection of j satisfies: vj(|S|) = maxxi∈F vi(|S|).
Observe that if xi ∈ L then ri = |S|. (Initially L is created from the heap elements that have
ri = |S|. Once S is increased in Step B.3.1 the columns in L are updated according to B.3.2 so that
they all satisfy ri = |S|.) The IQRP selection satisfies:

v′j(|S|) = max
xi∈L

vi(|S|) and v′j(|S|) ≥ BF . (4)

Additionally for all xα ∈ F \ L:

BF ≥ vα(rα) ≥ vα(|S|). (5)

This follows from (2), the observation that vα(r) is monotonically decreasing in r, and rα ≤ |S|.
Therefore, combining (4), and (5) we get

v′j(|S|) = max
xi∈F

vi(|S|) = vj(|S|).

This completes the proof by induction.

4.2 Termination

To see that the algorithm terminates it is enough to observe that at least one column is selected in
each pass. The condition at Step B.2 in Figure 6 cannot hold at the first time in a new L. The value
of BF is the l+1 largest vi(|S|), while the maximum at B.1 is among the l largest vi(|S|).

4.3 Complexity

The formulas in this section describe the complexity of the IQRP in terms of the following:

n the number of features (matrix columns) m the number of objects (matrix rows)
k the number of selected features l user provided parameter. 1 ≤ l ≤ n
p number of passes q number of IO-passes
c a unit cost of orthogonalizing F

The value of c depends on the implementation of Step A.2.2.1 in Figure 5. We write cmemory for the
value of c in the memory-efficient implementation, and cflops for the faster implementation (in terms
of flops). We use the following notation. At pass j the number of selected columns is kj , and the
number of columns that were not skipped in Step 2.1 of the IQRP (same as Step A.1) is nj .

The number of flops in the memory-efficient implementation can be shown to be

flopsmemory = 2mn+ 4mnc+ 4mlk, where c =

p∑
j=2

nj
n

j−1∑
j′=1

kj′ (6)

Observe that c ≤ k2/2, so that for l < n the worst case behavior is the same as the memory-
optimized QRP algorithm, which is O(k2mn). We show in Section 5 that the typical run time is
much faster. In particular, the dependency on k appears to be linear and not quadratic.

For the faster implementation that overwrites the input it can be shown that:

flopstime = 2mn+ 4m

n∑
i=1

r̃i, where r̃i is the value of ri at termination. (7)

Since r̃i ≤ k − 1 it follows that flopstime ≤ 4kmn. Thus, the worst case behavior is the same as the
flops-efficient QRP algorithm.

6

Memory in the memory-efficient implementation requires km in-core floats, and additional memory
for the heap, that can be reused for the list L. Additional memory to store and manipulate vi, ri
for i = 1, . . . , n is roughly 2n floats. Observe that these memory locations are being accessed
consecutively, and can be efficiently stored and manipulated out-of-core. The data itself, the matrix
A, is stored out-of-core. When the method of Figure 3 is used in A.2.2.1, these matrix values are
read-only.

IO-passes. We wish to distinguish between a pass where the entire data is accessed and a pass where
most of the data is skipped. This suggests the following definition for the number of IO-passes:
q =

∑p
j=1

nj

n = 1 +
∑p
j=2

nj

n .

Number of floating point comparisons. Testing for the skipping and manipulating the heap requires
floating point comparisons. The number of comparisons is n(p− 1 + (q − 1) log2(l + 1)). This
does not affect the asymptotic complexity since the number of flops is much larger.

5 Experimental results

We describe results on several commonly used datasets. “Day1”, with m = 20, 000 and n =
3, 231, 957 is part of the ”URL reputation” collection at the UCI Repository. “thrombin”, with
m = 1, 909 and n = 139, 351 is the data used in KDD Cup 2001. “Amazon”, with m = 1, 500
and n = 10, 000 is part of the “Amazon Commerce reviews set” and was obtained from the UCI
Repository. “gisette”, with m = 6, 000 and n = 5, 000 was used in NIPS 2003 selection challenge.

Measurements. We vary k, and report the following: flopsmemory, flopstime are the ratios between
the number of flops used by the IQRP and kmn, for the memory-efficient orthogonalization and
the time-efficient orthogonalization. # passes is the number of passes needed to select k features.
IO-passes is discussed in sections 2.4 and 4.3. It is the number of times that the entire data is read.
Thus, the ratio between the number of IO-passes and the number of passes is the fraction of the data
that was not skipped.

Run time. The number of flops of the QRP is between 2kmn and 4kmn. We describe experiments
with the list size l taken as l = k. For Day1 the number of flops beats the QRP by a factor of more
than 100. For the other datasets the results are not as impressive. There are still significant savings
for small and moderate values of k (say up to k = 600), but for larger values the savings are smaller.
Most interesting is the observation that the memory-efficient implementation of Step 2.1 is not much
slower than the optimization for time. Recall that the memory-optimized QRP is k times slower than
the time-optimized QRP. In our experiments they differ by no more than a factor of 4.

Number of passes. We describe experiments with the list size l taken as l = k, and also with
l = 100 regardless of the value of k. The QRP takes k passes for selecting k features. For the
Day1 dataset we observed a reduction by a factor of between 50 to 250 in the number of passes. For
IO-passes, the reduction goes up to a factor of almost 1000. Similar improvements are observed for
the Amazon and the gisette datasets. For the thrombin it is slightly worse, typically a reduction by
a factor of about 70. The number of IO-passes is always significantly below the number of passes,
giving a reduction by factors up to 1000. For the recommended setting of l = k we observed the
following. In absolute terms the number of passes was below 10 for most of the data; the number of
IO-passes was below 2 for most of the data.

6 Concluding remarks

This paper describes a new algorithm for unsupervised feature selection. Based on the experiments
we recommend using the memory-efficient implementation and setting the parameter l = k. As
explained earlier the algorithm maintains 2 numbers for each column, and these can also be kept
in-core. This gives a 2(km+ n) memory footprint.

Our experiments show that for typical datasets the number of passes is significantly smaller than
k. In situations where memory can be skipped the notion of IO-passes may be more accurate than
passes. IO-passes indicate the amount of data that was actually read and not skipped.

7

Day1, m = 20, 000, n = 3, 231, 957

0 200 400 600 800 1,000

1

2

3

4

·10−2

k (l = k)

flo
ps
/
k
m
n

flopsmemory
flopstime

0 200 400 600 800 1,000

1

2

3

4

5

k (l = k)

nu
m

be
ro

fp
as

se
s

#passes
#IO-passes

0 200 400 600 800 1,000

0

5

10

15

20

k (l = 100)

nu
m

be
ro

fp
as

se
s

#passes
#IO-passes

thrombin, m = 1, 909, n = 139, 351

0 200 400 600 800 1,000

0

1

2

3

k (l = k)

flo
ps
/
k
m
n

flopsmemory
flopstime

0 200 400 600 800 1,000
0

5

10

15

k (l = k)

nu
m

be
ro

fp
as

se
s

#passes
#IO-passes

0 200 400 600 800 1,000

0

20

40

k (l = 100)

nu
m

be
ro

fp
as

se
s

#passes
#IO-passes

Amazon, m = 1, 500, n = 10, 000

0 200 400 600 800 1,000

0

1

2

3

4

k (l = k)

flo
ps
/
k
m
n

flopsmemory
flopstime

0 200 400 600 800 1,000

1

2

3

4

5

k (l = k)

nu
m

be
ro

fp
as

se
s

#passes
#IO-passes

0 200 400 600
0

5

10

15

k (l = 100)

nu
m

be
ro

fp
as

se
s

#passes
#IO-passes

gisette, m = 6, 000, n = 5, 000

0 200 400 600 800 1,000

0.5

1

1.5

2

2.5

3

k (l = k)

flo
ps
/k

m
n

flopsmemory
flopstime

0 200 400 600 800 1,000

1

2

3

4

5

k (l = k)

nu
m

be
ro

fp
as

se
s

#passes
#IO-passes

0 200 400 600 800 1,000
0

5

10

15

k (l = 100)

nu
m

be
ro

fp
as

se
s

#passes
#IO-passes

Figure 7: Results of applying the IQRP to several datasets with varying k, and l = k.

The performance of the IQRP depends on the data. Therefore, the improvements that we observe
can also be viewed as an indication that typical datasets are “easy”. This appears to suggest that
worst case analysis should not be considered as the only criterion for evaluating feature selection
algorithms. Comparing the IQRP to the current state-of-the-art randomized algorithms that were
reviewed in Section 2.2 we observe that the IQRP is competitive in terms of the number of passes
and appears to outperform these algorithms in terms of the number of IO-passes. On the other hand,
it may be less accurate.

8

References
[1] M. Gu and S. C. Eisenstat. Efficient algorithms for computing a strong rank-revealing QR factorization.

SIAM J. Computing, 17(4):848–869, 1996.

[2] C. Boutsidis, M. W. Mahoney, and P. Drineas. An improved approximation algorithm for the column
subset selection problem. In Claire Mathieu, editor, Proceedings of the Twentieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2009, New York, NY, USA, January 4-6, 2009, pages 968–
977. SIAM, 2009.

[3] C. Boutsidis, P. Drineas, and M. Magdon-Ismail. Near-optimal column-based matrix reconstruction,
February 2011. arXiv e-print (arXiv:1103.0995).

[4] A. Dasgupta, P. Drineas, B. Harb, V. Josifovski, and M. W. Mahoney. Feature selection methods for text
classification. In Pavel Berkhin, Rich Caruana, and Xindong Wu, editors, KDD, pages 230–239. ACM,
2007.

[5] C. Boutsidis, P. Drineas, and M. Magdon-Ismail. Sparse features for PCA-like linear regression. In John
Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett, Fernando C. N. Pereira, and Kilian Q. Weinberger,
editors, NIPS, pages 2285–2293, 2011.

[6] V. Guruswami and A. K. Sinop. Optimal column-based low-rank matrix reconstruction. In Yuval Rabani,
editor, Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2012, Kyoto, Japan, January 17-19, 2012, pages 1207–1214. SIAM, 2012.

[7] Z. Li, Y. Yang, J. Liu, X. Zhou, and H. Lu. Unsupervised feature selection using nonnegative spectral
analysis. In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, July 22-26, 2012,
Toronto, Ontario, Canada. AAAI Press, 2012.

[8] S. Zhang, H.S. Wong, Y. Shen, and D. Xie. A new unsupervised feature ranking method for gene expres-
sion data based on consensus affinity. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics, 9(4):1257–1263, July 2012.

[9] G. H. Golub and C. F. Van-Loan. Matrix computations. The Johns Hopkins University Press, third edition,
1996.

[10] P. Businger and G. H. Golub. Linear least squares solutions by Householder transformations. Numer.
Math., 7:269–276, 1965.

[11] A. Çivril and M. Magdon-Ismail. Column subset selection via sparse approximation of SVD. Theoretical
Computer Science, 421:1–14, March 2012.

[12] A. M. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for finding low-rank approxima-
tions. In IEEE Symposium on Foundations of Computer Science, pages 370–378, 1998.

[13] A. M. Frieze, R. Kannan, and S. Vempala. Fast Monte-Carlo algorithms for finding low-rank approxima-
tions. Journal of the ACM, 51(6):1025–1041, 2004.

[14] A. Deshpande, L. Rademacher, S. Vempala, and G. Wang. Matrix approximation and projective clustering
via volume sampling. Theory of Computing, 2(12):225–247, 2006.

[15] A. Deshpande and L. Rademacher. Efficient volume sampling for row/column subset selection. In FOCS,
pages 329–338. IEEE Computer Society Press, 2010.

[16] M. W. Mahoney and P. Drineas. CUR matrix decompositions for improved data analysis. Proceedings
of the National Academy of Sciences, 106(3):697–702, 2009.

[17] P. Drineas, M. Magdon-Ismail, M. W. Mahoney, and D. P. Woodruff. Fast approximation of matrix
coherence and statistical leverage. Journal of Machine Learning Research, 13:3441–3472, 2012.

[18] K. L. Clarkson and D. P. Woodruff. Low rank approximation and regression in input sparsity time. arXiv
e-print (arXiv:1207.6365v4), April 2013.

[19] N. Halko, P. G. Martinsson, and J. A. Tropp. Finding structure with randomness: Probabilistic algorithms
for constructing approximate matrix decompositions. SIAM Review, 53(2):217–288, 2011.

[20] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms. MIT Press and McGraw-Hill
Book Company, third edition, 2009.

9

