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Abstract

We present a novel non-parametric method for finding a subspace of stimulus fea-
tures that contains all information about the response of a system. Our method
generalizes similar approaches to this problem such as spike triggered average,
spike triggered covariance, or maximally informative dimensions. Instead of max-
imizing the mutual information between features and responses directly, we use
integral probability metrics in kernel Hilbert spaces to minimize the information
between uninformative features and the combination of informative features and
responses. Since estimators of these metrics access the data via kernels, are easy
to compute, and exhibit good theoretical convergence properties, our method can
easily be generalized to populations of neurons or spike patterns. By using a par-
ticular expansion of the mutual information, we can show that the informative
features must contain all information if we can make the uninformative features
independent of the rest.

1 Introduction

An important aspect of deciphering the neural code is to determine those stimulus features popula-
tions of sensory neurons are most sensitive to. Approaches to that problem include white noise anal-
ysis [2, 14], in particular spike-triggered average [4] or spike-triggered covariance [3, 19], canonical
correlation analysis or population receptive fields [12], generalized linear models [18, 15], or max-
imally informative dimensions [22]. All these techniques have in common that they optimize a
statistical dependency measure between stimuli and spike responses over the choice of a linear sub-
space. The particular algorithms differ in the dimensionality of the subspace they extract (one- vs.
multi-dimensional), the statistical measure they use (correlation, likelihood, relative entropy), and
whether an extension to population responses is feasible or not. While spike-triggered average uses
correlation and is restricted to a single subspace, spike-triggered covariance and canonical correla-
tion analysis can already extract multi-dimensional subspaces but are still restricted to second-order
statistics. Maximally informative dimensions is the only technique of the above that can extract
multiple dimensions that are informative also with respect to higher-order statistics. However, an
extension to spike patterns or population responses is not straightforward because of the curse of di-
mensionality. Here we approach the problem from a different perspective and propose an algorithm
that can extract a multi-dimensional subspace containing all relevant information about the neural
responses Y in terms of Shannon’s mutual information (if such a subspace exists). Our method
does not commit to a particular parametric model, and can easily be extended to spike patterns or
population responses.
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In general, the problem of finding the most informative subspace of the stimuli X about the re-
sponses Y can be described as finding an orthogonal matrix Q (a basis for Rn) that separates X
into informative and non-informative features (U ,V )

>
= QX . Since Q is orthogonal, the mutual

information I [X : Y ] betweenX and Y can be decomposed as [5]

I [Y : X] = I [Y : U ,V ] = EX,Y

[
log

p (U ,V ,Y )

p (U ,V ) p (Y )

]
= I [Y : U ] + EY ,V

[
log

p (Y ,V | U)

p (Y | U) p (V | U)

]
= I [Y : U ] + EU [I [Y | U : V | U ]] . (1)

Since the two terms on the right hand side of equation (1) are always positive and sum up to the
mutual information between Y andX , two ways to obtain maximally informative featuresU about
Y would be to either maximize I [Y : U ] or to minimize EU [I [Y |U : V |U ]] via the choice of Q.

The first possibility is along the lines of maximally informative dimensions [22] and involves direct
estimation of the mutual information. The second possibility which avoids direct estimation has
been proposed by Fukumizu and colleagues [5, 6] (we discuss both in Section 3). Here, we explore
a third possibility, which trades practical advantages against a slightly more restrictive objective. The
idea is to obtain maximally informative features U by making V as independent as possible from
the combination of U and Y . For this reason, we name our approach least informative dimensions
(LID). Formally, least informative dimensions tries to minimize the mutual information between the
pair Y ,U and V . Using the chain rule for multi information we can write it as (see supplementary
material)

I [Y ,U : V ] = I [Y : X] + I [U : V ]− I [Y : U ] . (2)

This means that minimizing I [Y ,U : V ] is equivalent to maximizing I [Y : U ] while simultane-
ously minimizing I [U : V ]. Note that I [Y ,U : V ] = 0 implies I [U : V ] = 0. Therefore, if Q
can be chosen such that I [Y ,U : V ] = 0 equation (2) reduces to I [Y : X] = I [Y : U ], pushing
all information about Y into U .

Since each new choice of Q requires the estimation of the mutual information between (potentially
high-dimensional) variables, direct optimization is hard or unfeasible. For this reason, we resort to
another dependency measure which is easier to estimate but shares its minimum with mutual infor-
mation, that is, it is zero if and only if the mutual information is zero. The objective is to choose Q
such that (Y ,U) and V are independent in that dependency measure. If we can find such a Q, then
we know that I [Y ,U : V ] is zero as well, which means thatU are the most informative features in
terms of the Shannon mutual information. This will allow us to obtain maximally informative fea-
tures without ever having to estimate a mutual information. The easier estimation procedure comes
at the cost of only being able to link the alternative dependency measure to the mutual information
if both of them are zero. If there is no Q that achieves this, we will still get informative features in
the alternative measure, but it is not clear how informative they are in terms of mutual information.

2 Least informative dimensions

This section describes how to efficiently find a Q such that I [Y ,U : V ] = 0 (if such a Q exists).
Unless noted otherwise, (U ,V )

>
= QX where U denotes the informative and V the uninforma-

tive features. The mutual information is a special case of the relative entropy

DKL [p || q] = EX∼p

[
log p (X)

log q (X)

]
between two distribution p and q. While being linked to the rich theoretical background of Shannon
information theory, the relative entropy is known to be hard to estimate [25]. Alternatives to relative
entropy of increasing practical interest are the integral probability metrics (IPM), defined as [25, 17]

γF (X : Z) = sup
f∈F
|EX [f (X)]− EZ [f (Z)]| . (3)

Intuitively, the metric in equation (3) searches for a function f , which can detect a difference in
the distributions of two random variables X and Z. If no such witness function can be found, the
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distributions must be equal. If F is chosen to be a sufficiently rich reproducing kernel Hilbert space
H [21], then the supremum in equation (3) can be computed explicitly and the divergence can be
computed in closed form [7]. This particular type of IPM is called maximum mean discrepancy
(MMD) [9, 7, 10].

A kernel k : X × X → R is a symmetric function such that the matrix Kij = k (xi,xj) is positive
(semi)-definite for every selection of points x1, ...,xm ∈ X [21]. In that case, the functions k (·,x)
are elements of a reproducing kernel Hilbert space (RKHS) of functions H. This space is endowed
with a dot product 〈·, ·〉H with the so called reproducing property 〈k (·,x) , f〉H = f (x) for f ∈ H.
In particular, 〈k (·,x) , k (·,x′)〉H = k (x,x′). When setting F in equation (3) to be the unit ball in
H, then the IPM can be computed in closed form as the norm of the difference between the mean
functions inH [7, 10, 8, 26]:

γH (X : Z) = ‖EX [k (·,X)]− EZ [k (·,Z)]‖H (4)

=
(
EX,X′

[
k
(
X,X ′

)]
− 2EX,Z [k (X,Z)] + EZ,Z′

[
k
(
Z,Z ′

)]) 1
2 ,

where the first equality is derived in [7], and second equality uses the bi-linearity of the dot product
and the reproducing property of k. Furthermore, (X,X ′) ∼ PX×PX and (Z,Z ′) ∼ PZ×PZ are
two independent random variables drawn from the marginal distributions ofX and Z, respectively.

The function EX [k (·,X)] is an embedding of the distribution of X into the RKHS H via
X 7→ EX [k (·,X)]. If this map is injective, that is, if it uniquely represents the probability distribu-
tion of X , then equation (4) is zero if and only if the probability distributions of X and X ′ are the
same. Kernels with that property are called characteristic in analogy to the characteristic function
φX (t) 7→ EX

[
exp

(
it>X

)]
[26, 27]. This means that for characteristic kernels MMD is zero

exactly if the relative entropy DKL [p‖q] is zero as well. Since the mutual information is the relative
entropy between the joint distribution and the products of the marginals, we can use MMD to search
for a Q such that γH (PY ,U ,V : PY ,U × PV ) is zero1, which then implies that I [Y ,U : V ] = 0
as well. The finite sample version of (4) is simply given by replacing the expectations with the
empirical mean (and possibly some bias correction) [7, 10, 8]. The estimation of γH therefore only
involves summation over three kernel matrices and can be done in a few lines of code. Unlike for
the relative entropy, the empirical estimation of MMD is therefore much more feasible. Further-
more, the residual error of the empirical estimator can be shown to decrease on the order of 1/

√
m

where m is the number of data points [25]. Note in particular, that this rate does not depend on the
dimensionality of the data.

Objective function The objective function for our optimization problem now has the following
form: We transform input examples xi into features ui and vi via (ui,vi) = Qxi. Then we use a
kernel k

(
(ui,vi,yi) ,

(
uj ,vj ,yj

))
to compute and minimize MMD with respect to the choice of

Q. In order to do that efficiently, a few adaptations are required. First, without loss of generality, we
minimize the squared MMD instead of MMD itself

γ2H (Z1,Z2) = EZ1,Z′
1

[
k
(
Z1,Z

′
1

)]
− 2EZ1,Z2

[k (Z1,Z2)] + EZ2,Z′
2

[
k
(
Z2,Z

′
2

)]
, (5)

where Z1 = (Y ,U ,V ) ∼ PY ,U ,V and Z2 = (Y ,U ,V ) ∼ PY ,U × PV .

Second, in order to get samples from PY ,U × PV , we assume that our kernel takes the form
k
(
(ui,vi,yi) ,

(
uj ,vj ,yj

))
= k1

(
(ui,yi) ,

(
uj ,yj

))
· k2 (vi,vj). For this special case, one can

incorporate the independence assumption between U ,Y and V directly by using the fact that for
independent random variables, the expectation of the product is equal to the product of expectations,
that is,

E
[
k1
(
(ui,yi) ,

(
uj ,yj

))
· k2 (vi,vj)

]
= E

[
k1
(
(ui,yi) ,

(
uj ,yj

))]
E [k2 (vi,vj)] .

This special case of MMD is equivalent to the Hilbert-Schmidt Independence Criterion (HSIC)
[9, 23] and can be computed as

γ̂2hs =
1

(m− 1)
2 tr (K1HK2H) , (6)

where K1 and K2 denote the matrices of pairwise kernel values between the data sets {(ui,yi)}
m
i=1

and {vi}mi=1, respectively, and Hij = δij −m−1.
1With some abuse of notation, we wrote MMD as a function of the probability measures.
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Note, however, that one could in principle also optimize (5) for a non-factorizing kernel by simply
shuffling the (ui,yi) and vi across examples. We can also use shuffling to assess whether the
optimal value γ̂2hs found during the optimization is significantly different from zero by comparing
the value to a null distribution over γ̂2hs obtained from datasets where the (ui,yi) and vi have been
permuted across examples.

Minimization procedure and gradients For optimizing (6) with respect to Q we use gradient
descent over the orthogonal group SO(n). The optimization can be carried out by computing the
unconstrained gradient ∇Qγ of the objective function with respect to Q (treating Q as an ordinary
matrix), projecting that gradient onto the tangent space of SO (n), and performing a line search
along the gradient direction. We now present the necessary formulae to implement the optimization
in a modular fashion. We first show how to compute the gradient ∇Qγ in terms of the gradients
∇ui,vi

γ̂2hs, then we show how to compute the∇ui,vi
γ̂2hs in terms of derivatives of kernel functions,

and finally demonstrate how the formulae change when approximating the kernel matrices with an
incomplete Cholesky decomposition.

Given the unconstrained gradient ∇Qγ the projection onto the tangent space is given by ζ =
Q∇Qγ>Q − ∇Qγ [13, eq. (22)]. The function is then minimized by performing a line-search
along π (Q+ tζ), where π is the projection onto SO (n) which can easily be computed via singular
value decomposition of Q+ tζ and setting the singular values to one [13, prop. 7].

This means that all we need for the gradient descent on SO(n) is the unconstrained gradient ∇Qγ.
This gradient takes the form of a sum of outer products [16, eq. (20)]

∇Qγ̂2hs =

m∑
i=1

∂γ̂2hs
∂ (ui,vi)

· x>i = J>Ξ, J =

(
∂γ̂2hs

∂ (ui,vi)

)
i

,

where the matrix Ξ contains the stimuli xi in its rows.

The first k columns J (u)
η corresponding to the dimension of the featuresui and the last n−k columns

J (v) corresponding to the dimension of the features vi are given by

J (u)
η =

2

(m− 1)
2 diag

(
HK2HD

(u)>
η

)
and J (v)

η =
2

(m− 1)
2 diag

(
HK1HD

(v)>
η

)
,

where (
D(u)
η

)
ij

=

(
∂

∂uiη
k
(
(ui,vi,yi) ,

(
uj ,vj ,yj

)))
ij

contains the partial derivatives of the kernel with respect to the ηth dimension of u (and analogously
for v) in the first argument (see supplementary material for the derivation).

Efficient implementation with incomplete Cholesky decomposition of the kernel matrix So
far, the evaluation of HSIC requires the computation of two m×m kernel matrices in each step. For
larger datasets this can quickly become computationally prohibitive. In order to speed up computa-
tion time, we approximate the kernel matrices by an incomplete Cholesky decompositionK = LL>,
where L ∈ Rm×` is a “tall” matrix [1]. In that case, HSIC can be computed much faster as the trace
of a product of two `× ` matrices because

tr (K1HK2H) = tr
(
L>1 H

2L2L
>
2 H

2L1

)
,

where HLk can be efficiently computed by centering Lk on its row mean. Also in this case, the
matrix J can be computed efficiently in terms of derivatives of sub-matrices of the kernel matrix
(see supplementary material for the exact formulae).

3 Related work

Kernel dimension reduction in regression [5, 6] Fukumizu and colleagues find maximally in-
formative features U by minimizing EU [I [V | U : Y | U ]] in equation (1) via conditional kernel
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covariance operators. They show that the covariance operator equals zero if and only if Y is con-
ditionally independent of V given U , that is, Y ⊥⊥V | U . In that case, U carries all information
about Y . Although their approach is closest to ours, it differs in a few key aspects: In contrast to our
approach, their objective involves the inversion of a—potentially large—kernel matrix which needs
additional regularization in order to be invertible. A conceptual difference is that we are optimizing
a slightly more restrictive problem because their objective does not attempt to make U independent
of V as well. However, this will not make a difference in many practical cases, since many stimulus
distributions are Gaussian for which the dependencies between U and V can be removed by pre-
whitening the stimulus data before training LID. In that case I [U : V ] = 0 for every choice of Q
and equation (2) becomes equivalent to maximizing the mutual information betweenU and Y . The
advantage of our formulation of the problem is that it allows us to detect and quantify independence
by comparing the current γ̂hs to its null distribution obtained by shuffling the (yi,ui) against vi
across examples. This is hardly possible in the conditional case. Also note that for spherically sym-
metric data I [U : V ] = const. for every choice of Q. In that case equation (2) becomes equivalent
to maximizing I [Y : U ]. However, a residual redundancy remains which would show up when
comparing γ̂2hs to its null distribution. Finally, the use of kernel covariance operators is bound to
kernels that factorize. In principle, our method is also applicable to non-factorizing kernels if we use
γH instead of γhs and obtain the samples from the product distribution of PY ,U ×PV via shuffling.

Maximally informative dimensions [22] Sharpee and colleagues maximize the relative entropy
Ispike = DKL

[
p
(
v>s|spike

)
|| p
(
v>s

)]
between the distribution of stimuli projected onto infor-

mative dimensions given a spike, to the marginal distribution of the projection. This relative entropy
is the part of the mutual information which is carried by the arrival of a single spike, since

I
[
v>s : {spike, no spike}

]
= p (spike) · Ispike + p (no spike) Ino spike.

Their method is also completely non-parametric and captures higher order dependencies between
a stimulus and a single spike. However, by focusing on single spikes and the spike triggered den-
sity only, it neglects the dependencies between spikes and the information carried by the silence
of the neuron [28]. Additionally, the generalization to spike patterns or population responses is
non-trivial because the information between the projected stimuli and spike patterns$1, ...,$` be-
comes I

[
v>s : $

]
=
∑
i p ($i) · I$i . This requires the estimation of a conditional distribution

p
(
v>s|$i

)
for each pattern$i which can quickly become prohibitive when the number of patterns

grows exponentially.

4 Experiments

In all the experiments below, we demonstrate the validity of our methods on controlled artificial
examples and on P-unit recordings from electric fish. We use an RBF kernel on the vi and a tensor
RBF kernel on the (ui,yi):

k (vi,vj) = exp

(
−‖vi − vj‖

2

σ2

)
and k

(
(ui,yi) ,

(
uj ,yj

))
= exp

(
−
‖uiy>i − ujy>j ‖2

σ2

)
.

The derivatives of the kernels can be found in the supplementary material. Unless noted otherwise
the σ were chosen to be the median of pairwise Euclidean distances between data points. In all
artificial experiments, Q was chosen randomly.

Linear Non-Linear Poisson Model (LNP) In this experiment, we trained LID on a simple linear
nonlinear Poisson (LNP) neuron yi ∼ Poisson

(
b〈w,xi〉 − θc+

)
with an exponentially decaying

filter and a rectifying non-linearity (see Figure 1, left). We used m = 5000 data points xi from
a 20-dimensional standard normal distribution N (0, I) as input. The offset was chosen such that
approximately 35% non-zero spike counts in the yi were obtained. We used one informative and 19
non-informative dimensions, and set σ = 1 for the tensor kernel.

After optimization, the first dimension q1 of Q converged to the filter w (Figure 1). We compared
the HSIC values γ̂hs

[
{(yi,ui)}i=1,...,m : {vi}i=1,...,m

]
before and after the optimization to their

null distribution obtained by shuffling. Before the optimization, the dependence of (Y ,U) and V
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Figure 1: Left: LNP Model. The informative dimension (gray during optimization, black after op-
timization) converges to the true filter of an LNP model (blue line). Before optimization (Y ,U) and
V are dependent as shown by the left inset (null distribution obtained via shuffling in gray, dashed
line shows actual HSIC value). After the optimization (right inset) the HSIC value is even below
the null distribution. Right: Two state neuron. LID correctly identifies the subspace (blue dashed)
in which the two true filters (solid black) reside since projections of the filters on the subspace (red
dashed) closely resemble the original filters.

is correctly detected (Figure 1, left, insets). After convergence the actual HSIC value lies left to the
null distribution’s domain. Since the appropriate test for independence would be one-sided, the null
hypothesis “(Y ,U) is independent of V ” would not be rejected in this case.

Two state neuron In this experiment, we simulated a neuron with two states that were both at-
tained in 50% of the trials (see Figure 1, right). This time, the output consisted of four “bins”
whose statistics varied depending on the state. In the first—steady rate—state, the four bins con-
tained spike counts drawn from an LNP neuron with exponentially decaying filter as above. In the
second—burst—state, the first two bins were drawn from Poisson distribution with a fixed base rate
independent of the stimulus. The second two bins were drawn from an LNP neuron with a modu-
lated exponential filter and higher gain. We used m = 8000 input stimuli from a 20-dimensional
standard normal distribution. We use two informative dimensions and set σ of the tensor kernel to
two times the median of the pairwise distances. LID correctly identified the subspace associated
with the two filters also in this case (Figure 1, right).

Artificial complex cell In a second experiment, we estimated the two-dimensional subspace as-
sociated with a artificial complex cell. We generated a quadrature pair w1 and w2 of two 10-
dimensional filters (see Figure 2, left). We used m = 8000 input points from a standard nor-
mal distribution. Responses were generated from a Poisson distribution with the rate given by
λi = 〈w1,xi〉2 + 〈w2,xi〉2. This led to about 34% non-zero neural responses. When using two
informative subspaces, LID was able to identify the subspace correctly (Figure 2, left). When com-
paring the HSIC value against the null distribution found via shuffling, the final value indicated no
further dependencies. When only a one-dimensional subspace was used (Figure 2, right), LID did
not converge to the correct subspace. Importantly, the HSIC value after optimization was clearly
outside the support of the null distribution, thereby correctly indicating residual dependencies.

P-Unit recordings from weakly electric fish Finally, we applied our method to P-unit recordings
from the weakly electric fish Eigenmannia virescens. These weakly electric fish generate a dipole-
like electric field which changes polarity with a frequency at about 300Hz. Sensors in the skin of the
fish are tuned to this carrier frequency and respond to amplitude changes caused by close-by objects
with different conductive properties than water [20]. In the present recordings, the immobilized fish
was stimulated with 10s of 300 − 600Hz low-pass filtered full field frozen Gaussian white noise
amplitude modulations of its own field. Neural activity was recorded intra-cellularly from the P-unit
afferents.

Spikes were binned with 1ms precision. We selected m = 8400 random time points in the spike
response and the corresponding preceding 20ms of the input (20 dimensions). We used the same
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Figure 2: Artificial Complex Cell. Left: The original filters are 90° phase shifted Gabor filters
which form an orthogonal basis for a two-dimensional subspace. After optimization, the two infor-
mative dimensions of LID (first two rows of Q) converge to that subspace and also form a pair of
90° phase shifted filters (note that even if the filters are not the same, they span the same subspace).
Comparing the HSIC values before and after optimization shows that this subspace contains the
relevant information (left and right inset). Right: If only a one-dimensional informative subspace
is used, the filter only slightly converges to the subspace. After optimization, a comparison of the
HSIC value to the null distribution obtained via shuffling indicates residual dependencies which are
not explained by the one-dimensional subspace (left and right inset).

Figure 3: Most informative feature for a weakly electric fish P-Unit: A random filter (blue trace)
exhibits HSIC values that are clearly outside the domain of the null distribution (left inset). Using
the spike triggered average (red trace) moves the HSIC values of the first feature of Q already inside
the null distribution (middle inset). Further optimization with LID refines the feature (black trace)
and brings the HSIC values closer to zero (right inset). After optimization, the informative feature
U is independent of the features V because the first row and column of the covariance matrix of the
transformed Gaussian input show no correlations. The fact that one informative feature is sufficient
to bring the HSIC values inside the null distribution indicates that a single subspace captures all
information conveyed by these sensory neurons.

kernels as in the experiment on the LNP model. We initialized the first row in Q with the normal-
ized spike triggered average (STA; Figure 3, left, red trace). We neither pre-whitened the data for
computing the STA nor for the optimization of LID. Unlike a random feature (Figure 3, left, blue
trace), the spike triggered average already achieves HSIC values within the null distribution (Figure
3, left and middle inset). The most informative feature corresponding to U looks very similar to the
STA but shifts the HSIC value deeper into the domain of the null distribution (Figure 3, right inset).
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This indicates that one single subspace in the input is sufficient to carry all information between the
input and the neural response.

5 Discussion

Here we presented a non-parametric method to estimate a subspace of the stimulus space that con-
tains all information about a response variable Y . Even though our method is completely generic
and applicable to arbitrary input-output pairs of data, we focused on the application in the con-
text of sensory neuroscience. The advantage of the generic approach is that Y can in principle be
anything from spike counts, to spike patterns or population responses. Since our method finds the
most informative dimensions by making the complement of those dimensions as independent from
the data as possible, we termed it least informative dimensions (LID). We use the Hilbert-Schmidt
independence criterion to minimize the dependencies between the uninformative features and the
combination of informative features and outputs. This measure is easy to implement, avoids the
need to estimate mutual information, and its estimator has good convergence properties independent
of the dimensionality of the data. Even though our approach only estimates the informative features
and not mutual information itself, it can help to estimate mutual information by reducing the number
of dimensions.

As in the approach by Fukumizu and colleagues, it might be that no Q exists such that
I [Y ,U : V ] = 0. In that situation, the price to pay for an easier measure is that it is hard to
make definite statements about the informativeness of the features U in terms of the Shannon infor-
mation, since γH = I [Y ,U : V ] = 0 is the point that connects γH to the mutual information. As
demonstrated in the experiments, we can detect this case by comparing the actual value of γ̂H to an
empirical null distribution of γ̂H values obtained by shuffling the vi against the ui,yi pairs. How-
ever, if γH 6= 0, theoretical upper bounds on the mutual information are unfortunately not available.
In fact, using results from [25] and Pinsker’s inequality one can show that γ2H bounds the mutual
information from below. One might now be tempted to think that maximizing γH [Y ,U ] might be a
better way to find informative features. While this might be a way to get some informative features
[24], it is not possible to link the features to informativeness in terms of Shannon mutual informa-
tion, because the point that builds the bridge between the two dependency measures is where both
of them are zero. Anywhere else the bound may not be tight so the maximally informative features
in terms of γH and in terms of mutual information can be different.

Another problem our approach shares with many algorithms that detect higher-order dependencies
is the non-convexity of the objective function. In practice, we found that the degree to which this
poses a problem very much depends on the problem at hand. For instance, while the subspaces of
the LNP or the two state neuron were detected reliably, the two dimensional subspace of the artificial
complex cell seems to pose a harder problem. It is likely that the choice of kernel has an influence
on the landscape of the objective function. We plan to explore this relationship in more detail in the
future. In general, a good initialization of Q helps to get close to the global optimum.

Beyond that, however, integral probability metric approaches to maximally informative dimensions
offer a great chance to avoid many problems associated with direct estimation of mutual information,
and to extend it to much more interesting output structures than single spikes.
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