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Abstract

We consider the stochastic approximation problem wherenaecofunction has
to be minimized, given only the knowledge of unbiased edtisaf its gradients
at certain points, a framework which includes machine legrmethods based
on the minimization of the empirical risk. We focus on prahtewithout strong
convexity, for which all previously known algorithms acléea convergence rate
for function values ofD(1/+/n) aftern iterations. We consider and analyze two
algorithms that achieve a rate 6f(1/n) for classical supervised learning prob-
lems. For least-squares regression, we show dakiatagedstochastic gradient
descentvith constant step-sizachieves the desired rate. For logistic regression,
this is achieved by a simple novel stochastic gradient &lgarthat (a) constructs
successive local quadratic approximations of the losstioms, while (b) preserv-
ing the same running-time complexity as stochastic gradieacent. For these
algorithms, we provide a non-asymptotic analysis of theegalization error (in
expectation, and also in high probability for least-sqagrand run extensive ex-
periments showing that they often outperform existing apphes.

1 Introduction

Large-scale machine learning problems are becoming ubigsiin many areas of science and en-
gineering. Faced with large amounts of data, practitiohgrigally prefer algorithms that process
each observation only once, or a few times. Stochastic appation algorithms such as stochastic
gradient descent (SGD) and its variants, although intredunore than sixty years aga [1], still
remain the most widely used and studied method in this co(der, e.g., (2, 3/ 4, 5, 6, 7]).

We consider minimizing convex functiory§ defined on a Euclidean spade given by f(6) =
E[{(y, (0, 2))], where(z,y) € F x R denotes the data arfddenotes a loss function that is con-
vex with respect to the second variable. This includes tagend least-squares regression. In
the stochastic approximation framework, independent dadtically distributed pairéz,,, y,,) are
observed sequentially and the predictor defined syupdated after each pair is seen.

We partially understand the propertiesfothat affect the problem difficultyStrong convexityi.e.,

when f is twice differentiable, a uniform strictly positive lowbound;: on Hessians of) is a key
property. Indeed, aftet observations and with the proper step-sizes, averaged $6Bvas the
rate ofO(1/pun) in the strongly-convex case! [5, 4], while it achieves o6lyl/./n) in the non-
strongly-convex casel[5], with matching lower-bounds [8].

The main issue with strong convexity is that typical machéaening problems are high-dimensional
and have correlated variables so that the strong convesitgtanty is zero or very close to zero,
and in any case smaller th@1/+/n). This then makes the non-strongly convex methods better.
In this paper, we aim at obtaining algorithms that may deé#harbitrarily small strong-convexity
constants, but still achieve a rate@f1/n).



Smoothnegslays a central role in the context of deterministic optiatian. The known convergence

rates for smooth optimization are better than for non-simogtimization (e.g., see![9]). However,

for stochastic optimization the use of smoothness onlydéadmprovements on constants (e.g.,
see [10]) but not on the rate itself, which remain&l /\/n) for non-strongly-convex problems.

We show that for the square loss and for the logistic loss, &g use the smoothness of the loss and
obtain algorithms that have a convergence rate(df/») without any strong convexity assumptions.
More precisely, for least-squares regression, we showdtid®g2 thataveragedstochastic gradient
descentvith constant step-sizchieves the desired rate. For logistic regression thishseaed by

a novel stochastic gradient algorithm that (a) construstsassive local quadratic approximations
of the loss functions, while (b) preserving the same ruritimg complexity as stochastic gradi-
ent descent (see Sectibh 3). For these algorithms, we gavitbn-asymptotic analysis of their
generalization error (in expectation, and also in high phility for least-squares), and run exten-
sive experiments on standard machine learning benchmhdysirsg in Section ¥ that they often
outperform existing approaches.

2 Constant-step-size least-mean-square algorithm

In this section, we consider stochastic approximation éaist-squares regression, where SGD is
often referred to as the least-mean-square (LMS) algoriffime novelty of our convergence result
is the use of the constant step-size with averaging, whichalr@ady considered by [11], but now
with an explicit non-asymptotic rat@(1/n) without any dependence on the lowest eigenvalue of
the covariance matrix.

2.1 Convergence in expectation

We make the following assumptions:
(A1) Fis ad-dimensional Euclidean space, wifle> 1.
(A2) The observationér,,, z,,) € F x F are independent and identically distributed.

(A3) E||z,||?> andE| z,|* are finite. Denote byd = E(z, ® x,) the covariance operator from
F to F. Without loss of generalityl{ is assumed invertible (by projecting onto the minimal
subspace where, lies almost surely). However, its eigenvalues may be antiigrsmall.

(A4) The global minimum off () = (1/2)E[(6, z.)? — 2(0, z,)] is attained at a certaift, € F.
We denote by, = z, — (0., ,,)z, the residual. We havg[¢,,| = 0, but in general, it is not
true thatk [¢,, | z,,] = 0 (unless the model is well-specified).

(A5) We study the stochastic gradient (a.k.a. least mean sguenesion defined as

On =01 —y({(On—1,20)T0 — 20) = (I — YTy, @ )01 + V2n, Q)
started frond, € F. We also consider the averaged iterdtgs= (n + 1)~! Soro Ok

(A6) There exists® > 0 ando > 0 such thaE[¢, ® &,] < 0?H andE(||z,| %z, ® 2,) < R?H,
where< denotes the the order between self-adjoint operatorsdi.&. B if and only if B — A
is positive semi-definite.

Discussion of assumptions.AssumptiongA1-5) are standard in stochastic approximation (see,
e.g., [12,8]). Note that for least-squares problemsjs of the formy, z,, wherey, € R is

the response to be predicted as a linear function,of We consider a slightly more general case
than least-squares because we will need it for the quadrppicoximation of the logistic loss in
Sectior 3.1L. Note that in assumptit®), we do not assume that the model is well-specified.

Assumption(A6) is true for least-square regression with almost surely Hedndata, since, if
zn|*> < R? almost surely, thefi( ||z, ||*z, ® z,) < E(R*z, ® z,) = R*H; a similar inequality
holds for the output variableg,. Moreover, it also holds for data with infinite supports, Is&s
Gaussians or mixtures of Gaussians (where all covariantgcemof the mixture components are
lower and upper bounded by a constant times the same matiatg that the finite-dimensionality
assumption could be relaxed, but this would require notsnslar to degrees of freedom [13],
which is outside of the scope of this paper.

The goal of this section is to provide a non-asymptotic boemthe expectatioR | f(6,,) — f(6.)],
that (a) does not depend on the smallest non-zero eigervaliiéwhich could be arbitrarily small)
and (b) still scales a®(1/n).



Theorem 1 AssumgA1-6). For any constant step-size< 1/R?, we have
L7 0nr) ~ 10.)] < g [TV 4 Rl 0 ||#]2
n—1 * X mn 1— \/W 0 * \/W .

Wheny = 1/(4R?), we obtainE [ (8, -1) — f(6.)] < 2 [ov/d+ R — 0.

)
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Proof technique. We adapt and extend a proof technique fram [14] which is baseadhon-
asymptotic expansions in powers-fWe also use a result frormi [2] which studied the recursion in
Eq. @), withz,, ® z,, replaced by its expectatiaii. See([15] for details.

Optimality of bounds. Our bound in Eq[{2) leads to a rate®{1/n), which is known to be optimal
for least-squares regression (i.e., under reasonablengsisms, no algorithm, even more complex
than averaged SGD can have a better dependengdli]. The termo2d/n is also unimprovable.

Initial conditions. If ~ is small, then the initial condition is forgotten more slgwiNote that with
additional strong convexity assumptions, the initial dtind would be forgotten faster (exponen-
tially fast without averaging), which is one of the tradita uses of constant-step-size LMSI[17].

Specificity of constant step-sizes.The non-averaged iterate sequeriég) is a homogeneous
Markov chain; under appropriate technical conditionss t#arkov chain has a unique stationary
(invariant) distribution and the sequence of iteratés) converges in distribution to this invari-
ant distribution; seel [18, Chapter 17]. Denote by the invariant distribution. Assuming that

the Markov Chain is Harris-recurrent, the ergodic theoremHarris Markov chain shows that

o1 = n~' Y77, 6, converges almost-surely @, def [ 07, (d#), which is the mean of the

stationary distribution. Taking the expectation on botilesof Eq. [1), we gek&[d,] — 6. =
(I — vH)(E[fn-1] — 0.), which shows, using thdtm,, . E[¢,,] = 0, that HO, = H0. and
therefored, = 6. sinceH is invertible. Under slightly stronger assumptions, it tanshown that

lim,, 0 nE[(6,, — 0.)%] = Vary (6) + 25—, Covr, (0o, 0k) ,
whereCov. (6o, 0)) denotes the covariance & andd, when the Markov chain is started from

stationarity. This implies thalfim,, ., nE[f(6,,) — f(6.)] has a finite limit. Therefore, this in-
terpretation explains why the averaging produces a seguanestimators which converges to the
solutiond,. pointwise, and that the rate of convergenc&pf(6,,)— f(6.)] is of orderO(1/n). Note
that (a) our result is stronger since it is independent ofdtest eigenvalue off, and (b) for other
losses than quadratic, the same properties &atépthat the mean under the stationary distribution
does not coincide with, and its distance t6, is typically of ordery? (see Sectiohl3).

2.2 Convergence in higher orders

We are now going to consider an extra assumption in orderuodthep-th moment of the excess
risk and then get a high-probability bound. lpdbe a real number greater than

(A7) There exists® > 0, x > 0 andr > o > 0 such that, for alh > 1, ||z,,||*> < R? a.s., and
El¢. )P < PR and E[¢, ®¢&,] < 0°H, (3)
Ve F, Elz,wn)* < w(B(z,20)%)° = (2, H2)?. (4)

The last condition in Eq[{4) says that tkartosisof the projection of the covariates, on any
directionz € F is bounded. Note that computing the constartappens to be equivalent to the
optimization problem solved by the FastICA algorithm [Mhich thus provides an estimaterafin
Table1, we provide such an estimate for the non-sparseatatahich we have used in experiments,
while we consider only directionsalong the axes for high-dimensional sparse datasets. Ese th
datasets where a given variable is equal to zero except fewabservations; is typically quite
large. Adapting and analyzing normalized LMS techniqué&j {@ this set-up is likely to improve
the theoretical robustness of the algorithm (but note thstlts in expectation from Theoréd 1 do
not usex). The next theorem provides a bound for ghth moment of the excess risk.

Theorem 2 AssumégA1-7). For any realp > 1, and for a step-size < 1/(12pxR?), we have:

2
(El5Gor) - 701" < L (v + RIG -0 3+ 22) . ®)
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For v = 1/(12prR?), we get:(E|f (B,_1) — £(6.)]") /" < & (Trvd + 6/5R|00 — 6.]])°.

Note that to control the-th order moment, a smaller step-size is needed, whichseale'p. We

can now provide a high-probability bound; the tails decalypomially as1/(né'27*E*) and the
smaller the step-sizg, the lighter the tails.

Corollary 1 For any step-size such that< 1/(12xR?), anyé € (0,1),

) 1 [7rVd+ R|6 - 0.1(V3 + V24r))?
P(fwn—l) — f(0.) > no12VRR? 24~vKkR? )

<9 (6)

3 Beyond least-squares: M-estimation

In Sectiori 2, we have shown that for least-squares regressieraged SGD achieves a convergence
rate of O(1/n) with no assumption regarding strong convexity. For all ésssvith a constant step-
size~, the stationary distributiorr., corresponding to the homogeneous Markov ch@in does
always satisfy[ f’(#)m,(df) = 0, wheref is the generalization error. When the gradigfis linear
(i.e., f is quadratic), then this implies that( [ 67.,(df)) =0, i.e., the averaged recursion converges
pathwise td., = [ 6. (dd) which coincides with the optimal valuk (defined througlf’(6..)=0).
When the gradienf’ is no longer linear, therf f(6)x,(df) # f'([ 6, (d6)). Therefore, for
generalM -estimation problems we should expect that the averagedeseg still converges at rate
O(1/n) to the mean of the stationary distributié, but not to the optimal predictek.. Typically,

the average distance betwegnandd. is of ordery (see Sectiohl4 and [21]), while for the averaged
iterates that converge pointwise @9, it is of order~? for strongly convex problems under some
additional smoothness conditions on the loss functionssg@hare satisfied, for example, by the
logistic loss[[22]).

Since quadratic functions may be optimized with r@{@ /n) under weak conditions, we are going
to use a quadratic approximation around a well chosen stippint, which shares some similarity
with the Newton procedure (however, with a non trivial adadiph to the stochastic approximation

framework). The Newton step fgraround a certain poirtis equivalent to minimizing a quadratic
def

surrogatey of f aroundd, i.e.,g(8) = f(6) + (f'(6),0 —6) + 3(6 — 6, f"(6)(6 — ). If f,(6) =

U(yn, (0, 2n)), theng(6) = Eg,, (0), with g, (0) = (0)+(f,(0),0—0)+ 5(0—0, f/(6)(0—0)); the
Newton step may thus be solved approximately with stoohagproximation (here constant-step
size LMS), with the following recursion:

On = O0n1 — VGn(On—1) = On1 — v [0 (0) + f1(0) (01 — 0)]. )

This is equivalent to replacing the gradiefit6,,—1) by its first-order approximation arourtd A
crucial point is that for machine learning scenarios whgrés a loss associated to a single data
point, its complexity is only twice the complexity of a reguktochastic approximation step, since,
with f,,(0) = £(yn, (xn,0)), [/ (0) is a rank-one matrix.

Choice of support points for quadratic approximation. An important aspect is the choice of the

support poind. In this paper, we consider two strategies:

— Two-step procedure for convex losses, averaged SGD with a step-size decayioqlg /n)
achieves a rate (up to logarithmic terms)@f1/+/n) [5,l6]. We may thus use it to obtain a first
decent estimate. The two-stage procedure is as followsfaeskn observations)n steps of

averaged SGD with constant step sigex 1//n to obtaind, and then averaged LMS for the
Newton step around. As shown below, this algorithm achieves the régl /n) for logistic
regression. However, it is not the most efficient in practice

— Support point = current average iterate: we simply consider the current averaged itefate;
as the support poirtt, leading to the recursion:

On =6On—1 — 'Y[frlz(énfﬂ + fg(énfl)(onfl - 9_7171)]- (8)

Although this algorithm has shown to be the most efficientriactice (see Sectidd 4) we cur-
rently have no proof of convergence. Given that the behafitine algorithms does not change
much when the support point is updated less frequently thah #eration, there may be some

connections to two-time-scale algorithms (see, €.gl)[28]Sectio #, we also consider several
other strategies based on doubling tricks.



Interestingly, for non-quadratic functions, our algomitimposes a new bias (by replacing the true
gradient by an approximation which is only valid clos&ja ;) in order to reach faster convergence
(due to the linearity of the underlying gradients).

Relationship with one-step-estimators. One-step estimators (see, e.q.,l [24]) typically take any
estimator withO(1/n)-convergence rate, and make a full Newton step to obtainfanesit estima-

tor (i.e., one that achieves the Cramer-Rao lower boundhofigh our novel algorithm is largely
inspired by one-step estimators, our situation is sligtifferent since our first estimator has only
convergence rat®(1/4/n) and is estimated on different observations.

3.1 Self-concordance and logistic regression

We make the following assumptions:
(B1) F is ad-dimensional Euclidean space, wifh> 1.
(B2) The observationge,,,y,) € F x {—1, 1} are independent and identically distributed.

(B3) We considerf(§) = E|[{(yn, (z,,0))], with the following assumption on the loss functién
(whenever we take derivatives @fthis will be with respect to the second variable):

V(y,9) e {-L1} xR, O(y,9) <1, £"(y,9) <1/4, |7 (y,9)| < "(y,9).
We denote by, a global minimizer off, which we thus assume to exist, and we denote by
H = f"(0,) the Hessian operator at a global optimam
(B4) We assume that there exigts> 0, x > 0 andp > 0 such thaf|z,,||> < R? almost surely, and

E[In ® a:n] < pE [é"(yn, (0s, Tp )Ty ® xn] = pH, (9)
V2 € F,0 € F, E[0"(yn, (0,22)) (2, 20)*] < 6(E[" (Y, (0, 20)) (2, 20)2])°. (10)

Assumption(B3) is satisfied for the logistic loss and extends to all geneedliinear models (see
more details in[[22]), and the relationship between thaltberivative and second derivative of the
loss/ is often referred to aself-concordancésee [9) 25] and references therein). Note moreover
that we must have > 4 andx > 1.

A loose upper bound fop is 1/ inf,, £/ (yn, (6, z,)) but in practice, it is typically much smaller
(see Tablgll). The condition in Ef.{10) is hard to check beedis uniform ind. With a slightly
more complex proof, we could restriétto be close td@.; with such constraints, the value efwe
have found is close to the one from Secfiod 2.2 (i.e., withlo@terms ir¢”’ (y,, (6, x,,))).

Theorem 3 AssuméB1-4), and consider the vectdy, obtained as follows: (a) perform steps of
averaged stochastic gradient descent with constant steg £2 R2+/n, to getd,,, and (b) perforrm
step of averaged LMS with constant step-siz&? for the quadratic approximation gf around®,,.
If n> (19 + 9R||60 — 0.]))%, then
Ef(Gn) = f(6:) < (16R[|6p — 6.]| + 19)". (11)

We get arO(1/n) convergence rate without assuming strong convexity, exeallly, thus improving
on results from([22] where the the rate is proportional fon\,in(H)). The proof relies on self-
concordance properties and the sharp analysis of the Nestgpr(see [15] for details).
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4 Experiments
4.1 Synthetic data

Least-mean-square algorithm.We consider normally distributed inputs, with covariancetix H
that has random eigenvectors and eigenvalyésk = 1, ...,d. The outputs are generated from a
linear function with homoscedastic noise with unit sigrahbise-ratio. We considet = 20 and
the least-mean-square algorithm with several settingse$tep size,,, constant or proportional to
1//n. Here R? denotes thaverage radius of the datae., R? = tr H. In the left plot of Figuréll,
we show the results, averaged over 10 replications.

Without averaging, the algorithm with constant step-siaesinot converge pointwise (it oscillates),
and its average excess risk decays as a linear functigr{infieed, the gap between each values of
the constant step-size is closddg;,,(4), which corresponds to a linear function-ji
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Figure 1: Synthetic data. Left: least-squares regresdiiddle: logistic regression with averaged
SGD with various step-sizes, averaged (plain) and nonagest (dashed). Right: various Newton-

based schemes for the same logistic regression problent.sBes in color; see text for details.

With averaging, the algorithm with constant step-size domw/erge at rat€(1/n), and for all
values of the constant, the rate is actually the same. Moreover (although it is hot in the
plots), the standard deviation is much lower.

With decaying step-size,, = 1/(2R?,/n) and without averaging, the convergence rate is
O(1/+/n), and improves t@(1/n) with averaging.

Logistic regression.We consider the same input data as for least-squares, biugemsvates outputs
from the logistic probabilistic model. We compare sevetgbdathms and display the results in
Figure[1 (middle and right plots).

On the middle plot, we consider SGD; without averaging, igerthm with constant step-size does
not converge and its average excess risk reaches a conataatwhich is a linear function of
(indeed, the gap between each values of the constant geessilose tdog,,(4)). With averaging,
the algorithm does converge, but as opposed to least-suara point which is not the optimal
solution, with an error proportional t¢> (the gap between curves is twice as large).

On the right plot, we consider various variations of our oalNewton-approximation scheme. The
“2-step” algorithm is the one for which our convergence tadéds ( being the total number of
examples, we perform/2 steps of averaged SGD, theri2 steps of LMS). Not surprisingly, it is
not the best in practice (in particular@at2, when starting the constant-size LMS, the performance
worsens temporarily). It is classical to use doubling itk remedy this problem while preserving
convergence rates [26], this is done in “2-step-dbl.”, vatagoids the previous erratic behavior.

We have also considered getting rid of the first stage wheaim plveraged stochastic gradient is
used to obtain a support point for the quadratic approxiznatiVe now consider only Newton-steps
but change only these support points. We consider upddtegupport point at every iteration, i.e.,
the recursion from Eq[{8), while we also consider updattreyery dyadic point (“dbl.-approx”).
The last two algorithms perform very similarly and achigve®(1/n) early. In all experiments on
real data, we have considered the simplest variant (whiofesponds to Eq[(8)).

4.2 Standard benchmarks

We have considered 6 benchmark datasets which are ofterirusechparing large-scale optimiza-
tion methods. The datasets are described in Tdble 1 andvasjies ofd, n and sparsity levels.
These are alffinite binary classification datasets with outputs{inl, 1}. For least-squares and lo-
gistic regression, we have followed the following experniaprotocol: (1) remove all outliers (i.e.,
sample points;,, whose norm is greater than 5 times the average norm), (3editie dataset in two
equal parts, one for training, one for testing, (3) samptaiwithe training dataset with replacement,
for 100 times the number of observations in the trainingthést Corresponds tb00 effective passes;
in all plots, a black dashed line marks the first effectivespa@) compute averaged costs on training
and testing data (based on 10 replications). All the cogtslaown in log-scale, normalized to that
the first iteration leads t@(6y) — f(6.) = 1.

All algorithms that we consider (ours and others) have a-siep, and typically a theoretical value
that ensures convergence. We consider two settings: (1yhaa this theoretical value is used, (2)
one with the best testing error after one effective passitjiidhe data (testing powersfimes the
theoretical step-size).



Here, we only considarovertypealpha, sidoandnews as well as test errors. For all training errors
and the two other datasetguantumrcvl), seel[15].

Least-squares regressionWe compare three algorithms: averaged SGD with constapisite,
averaged SGD with step-size decaying(@sk?,/n, and the stochastic averaged gradient (SAG)
method which is dedicated to finite training data sets [2THicw has shown state-of-the-art perfor-
mance in this set-up. We show the results in the two left pbtSigure2 and Figuriel 3.

Averaged SGD with decaying step-size equal{oi?,/n is slowest (except fosido). In particu-
lar, when the best consta6tis used (right columns), the performance typically staststrease
significantly. With that step size, even after 100 pass&setls no sign of overfitting, even for the
high-dimensional sparse datasets.

SAG and constant-step-size averaged SGD exhibit the bbawioe, for the theoretical step-sizes
and the best constants, with a significant advantage for cotistap-size SGD. The non-sparse
datasets do not lead to overfitting, even close to the glgi@hoam of the (unregularized) training
objectives, while the sparse datasets do exhibit some tiregfafter more than 10 passes.

Logistic regression.We also compare two additional algorithms: our Newton-tiasehnique and
“Adagrad” [7], which is a stochastic gradient method withoanii a diagonal scalifiigthat allows to
reduce the convergence rate (which is still in theory propoal toO(1/+/n)). We show results in
the two right plots of FigurEl2 and Figure 3.

Averaged SGD with decaying step-size proportional t&?,/n has the same behavior than for
least-squares (step-size harder to tune, always infegidopnance except f@ido).

SAG, constant-step-size SGD and the novel Newton techriéneeto behave similarly (good with
theoretical step-size, always among the best methods)y differ notably in some aspects: (1)
SAG converges quicker for the training errors (shown.in J1jile it is a bit slower for the testing
error, (2) in some instances, constant-step-size ave@@&ddoes underfitpvertypealpha news,
which is consistent with the lack of convergence to the dloipimum mentioned earlier, (3) the
novel online Newton algorithm is consistently better.

On the non-sparse datasets, Adagrad performs similarhetdlewton-type method (often better in
early iterations and worse later), except for #iphadataset where the step-size is harder to tune
(the best step-size tends to have early iterations that miekeost go up significantly). On sparse
datasets likecvl, the performance is essentially the same as Newton. Csidbelata set, Adagrad
(with fixed steps size, left column) achieves a good testiisg fuickly then levels off, for reasons
we cannot explain. On theewsdataset, it is inferior without parameter-tuning and a bitér with.
Adagrad uses a diagonal rescaling; it could be combinedauittiechnique, early experiments show
that it improves results but that it is more sensitive to theice of step-size.

Overall, even withd and s very large (where our bounds are vacuous), the performahoero
algorithm still achieves the state of the art, while beingerobust to the selection of the step-size:
finer quantities likes degrees of freedam/[13] should be &htgiantify more accurately the quality
of the new algorithms.

5 Conclusion

In this paper, we have presented two stochastic approxamatigorithms that can achieve rates
of O(1/n) for logistic and least-squares regression, without stroomvexity assumptions. Our

analysis reinforces the key role of averaging in obtainisgf fates, in particular with large step-
sizes. Our work can naturally be extended in several waysar(aanalysis of the algorithm that

updates the support point of the quadratic approximati@vety iteration, (b) proximal extensions
(easy to implement, but potentially harder to analyze)afaptive ways to find the constant-step-
size; (d) step-sizes that depend on the iterates to increlasstness, like in normalized LMS [20],

and (e) non-parametric analysis to improve our theoretesllts for large values of.
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!Since a bound ofi¢. || is not available, we have used step-sizes proportionsf top,, ||z ||o-



Table 1: Datasets used in our experiments. We report theoptiop of non-zero entries, as well
as estimates for the constantand p used in our theoretical results, together with the nonyshar
constant which is typically used in analysis of logistic negsion and which our analysis avoids
(these are computed for non-sparse datasets only).

Name d n | sparsity| « P 1/inf, 07 (yn, (O, xy))
quantum 79| 50000 100%]| 5.8x10% | 16 | 8.5x10?
covertype 55| 581012| 100% | 9.6x102% | 160 | 3 x10'2
alpha 501 | 500000 100% | 6 18 | 8 x104
sido 4933| 12678 10% | 1.3x10* | x X
rcvl 47237 20242 0.2% | 2 x10% X X
news 1355192 19996| 0.03%| 2 x10* X X
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sido square C=1 test sido square C=opt test sido logistic C=1 test sido logistic C=opt test
—uR? —CcIR? —uR? —CIR?
_ 0 —— 1/R2n12 0 —— C/RM2 _ 0 — R2n12 0 —C/IR?nY2
= —SAG —SAG ] —SAG —SAG
= = —— Adagrad —— Adagrad
g 05 -05 & 05 —Newton |05 — Newton
3 3
j=2} j=2}
K=] K=]
-1 -1
-1 -1
2 4 0 2 4 0 2 4 0 2 4
log, ,(n) log, ,(n) log, ,(n) log, ,(n)
news square C=1 test news square C=opt test news logistic C=1 test news logistic C=opt test
0.2 0.2 0.2 0.2
0 0 0 0
g -02 -0.2 g 02 0.2
g 04 04 g o4 _l/Rz 172 o4 _CIRE 172
o o
= ] S —1/R°n - —CIRn
8 -06l|—uR? -0.6|| —CIR? 8 0% _onG 08l __cac
sl 1/R?n12 08 —C/R%n*? -0.8| — Adagrad -0.8| — Adagrad
“I|—SAG “||—SAG = Newton Y | Newton
0 2 4 0 2 4 0 2 4 0 2 4
log, ,(n) log, ,(n) log, ,(n) log, ,(n)
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