
Fast Template Evaluation with Vector Quantization

Mohammad Amin Sadeghi
Department of Computer Science

University of Illinois at Urbana-Champaign
msadegh2@illinois.edu

David Forsyth
Department of Computer Science

University of Illinois at Urbana-Champaign
daf@illinois.edu

Abstract

Applying linear templates is an integral part of many object detection systems and
accounts for a significant portion of computation time. We describe a method that
achieves a substantial end-to-end speedup over the best current methods, without
loss of accuracy. Our method is a combination of approximating scores by vector
quantizing feature windows and a number of speedup techniques including cas-
cade. Our procedure allows speed and accuracy to be traded off in two ways: by
choosing the number of Vector Quantization levels, and by choosing to rescore
windows or not. Our method can be directly plugged into any recognition system
that relies on linear templates. We demonstrate our method to speed up the orig-
inal Exemplar SVM detector [1] by an order of magnitude and Deformable Part
models [2] by two orders of magnitude with no loss of accuracy.

1 Introduction

One core operation in computer vision involves evaluating a bank of templates at a set of sample
locations in an image. These sample locations are usually determined by sliding a window over the
image. This is by far the most computationally demanding task in current popular object detection
algorithms including canonical pedestrian [3] and face detection [4] methods (modern practice uses
a linear SVM); the deformable part models [2]; and exemplar SVMs [1]. The accuracy and flexibil-
ity of these algorithms has turned them into the building blocks of many modern computer vision
systems that would all benefit from a fast template evaluation algorithm. There is a vast literature
of models that are variants of these methods, but they mostly evaluate banks of templates at a set of
sample locations in images.

Because this operation is important, there is now a range of methods to speed up this process,
either by pruning locations to evaluate a template [7, 8] or by using fast convolution techniques.
The method we describe in this paper is significantly faster than any previous method, at little or
no loss of accuracy in comparison to the best performing reference implementations. Our method
does not require retraining (it can be applied to legacy models). Our method rests on the idea
that it is sufficient to compute an accurate, fixed-precision approximation to the value the original
template would produce. We use Vector Quantization speedups, together with a variety of evaluation
techniques and a cascade to exclude unpromising sample locations, to produce this approximation
quickly.

Our implementation is available online1 in the form of a MATLAB/C++ library. This library pro-
vides simple interfaces for evaluating templates in dense or sparse grids of locations. We used this
library to implement a deformable part model algorithm that runs nearly two orders of magnitude
faster than the original implementation [2]. This library is also used to obtain an order of magnitude
speed-up for the exemplar SVM detectors of [1]. Our library could also be used to speed up various
convolution-based techniques such as convolutional neural networks.

1http://vision.cs.uiuc.edu/ftvq

1

http://vision.cs.uiuc.edu/ftvq

As we discuss in section 4, speed comparisons in the existing literature are somewhat confusing.
Computation costs break into two major terms: per image terms, like computing HOG features;
and per (image×category) terms, where the cost scales with the number of categories as well as the
number of images. The existing literature, entirely properly, focuses on minimizing the per (image
× category) terms, and as a result, various practical overhead costs are sometimes omitted. We feel
that for practical systems, all costs should be accounted for, and we do so.

1.1 Prior Work

At heart, evaluating a deformable part model involves evaluating a bank of templates at a set of
locations in a scaled feature pyramid. There are a variety of strategies to speed up evaluation.

Cascades speed up evaluation by using cheap tests to identify sample points that do not require
further evaluation. Cascades have been very successful in face detection algorithms (eg. [5, 6]) For
example, Felzenszwalb et al. [7] evaluate root models, and then evaluate the part scores iteratively
only in high-chance locations. At each iteration it evaluates the corresponding template only if
the current score of the object is higher than a certain threshold (trained in advance), resulting in an
order of magnitude speed-up without significant loss of accuracy. Pedersoli et al. [8] follow a similar
approach but estimate the score of a location using a lower resolution version of the templates.

Transform methods evaluate templates at all locations simultaneously by exploiting properties of
the Fast Fourier Transform. These methods, pioneered by Dubout et al. [9], result in a several fold
speed-up while being exact; however, there is the per image overhead of computing an FFT at the
start, and a per (image × category) overhead of computing an inverse FFT at the end. Furthermore,
the approach computes the scores of all locations at once, and so is not random-access; it cannot be
efficiently combined with a cascade detection process. In contrast, our template evaluation algorithm
does not require batching template evaluations. As a result, we can combine our evaluation speedups
with the cascade framework of [7]. We show that using our method in a cascade framework leads to
two orders of magnitude speed-up comparing to the original deformable part model implementation.

Extreme category scaling methods exploit locality sensitive hashing to get a system that can detect
100,000 object categories in a matter of tens of seconds [10]. This strategy appears effective — one
can’t tell precisely, because there is no ground truth data for that number of categories, nor are
their baselines — and achieves a good speedup with very large numbers of categories. However,
the method cannot speedup detection of the 20 VOC challenge objects without significant loss of
accuracy. In contrast, because our method relies on evaluation speedups, it can speed up evaluation
of even a single template.

Kernel approximation methods: Maji and Berg showed how to evaluate a histogram intersection
kernel quickly [13]. Vedaldi et al. [12] propose a kernel approximation technique and use a new set
of sparse features that are naturally faster to evaluate. This method provides a few folds speed-up
with manageable loss of accuracy.

Vector Quantization offers speedups in situations where arithmetic accuracy is not crucial
(eg. [12, 14, 15, 16]). Jegou et al. [15] use Vector Quantization as a technique for approximate
nearest neighbour search. They represent a vector by a short code composed of a number of sub-
space quantization indices. They efficiently estimate the euclidean distance between two vectors
from their codes. This work has been very successful as it offers two orders of magnitude speedup
with a reasonable accuracy. Kokkinos [14] describes a similar approach to speed up dot-product.
This method can efficiently estimate the score of a template at a certain location by looking-up a
number of tables. Vector Quantization is our core speedup technique.

Feature quantization vs. Model quantization: Our method is similar to [12] as we both use Vector
Quantization to speed up template evaluation. However, there is a critical difference in the way we
quantize space. [12] quantizes the feature space and trains a new model using a high-dimensional
sparse feature representation. In contrast, our method uses legacy models (that were trained on a
low-dimensional dense feature space) and quantizes the space only at the level of evaluating the
scores. Our approach is simpler because it does not need to retrain a model; it also leads to higher
accuracy as shown in Table 2.

2

(a) Input Image (b) Original HOG

(c) 256 clusters (d) 16 clusters

Figure 1: Visualization of Vector Quantized HOG features. (a) is the original image, (b) is the HOG
visualization, (c) is the visualization of Vector Quantized HOG feature into c = 256 clusters, (d)
is the visualization of Vector Quantized HOG feature into c = 16 clusters. HOG visualizations are
produced using the inverse HOG algorithm from [19]. Vector Quantized HOG features into c = 256
clusters can often preserve most of the visual information.

2 Fast Approximate Scoring with Vector Quantization

The vast majority of modern object detectors work as follows:

• In a preprocessing stage, an image pyramid and a set of underlying features for each layer
of the pyramid are computed.

• For each location in each layer of the pyramid, a fixed size window of the image fea-
tures spanning the location is extracted. A set of linear functions of each such window is
computed. The linear functions are then assembled into a score for each category at that
location.

• A post processing stage rejects scores that are either not local extrema or under threshold.

Precisely how the score is computed from linear functions varies from detector to detector. For
example, exemplar SVMs directly use the score; deformable part models summarize a score from
several linear functions in nearby windows; and so on. The threshold for the post-processing stage
is chosen using application loss criteria. Typically, detectors are evaluated by marking true windows
in test data; establishing an overlap criterion to distinguish between false and true detects; plotting
precision as a function of recall; and then computing the average precision (AP; the integral of this
plot). A detector that gets a good AP does so by assigning high values of the score to windows that
strongly overlap the right answer. Notice that what matters here is the ranking of windows, rather
than the actual value of the score; some inaccuracy in score computation might not affect the AP.

In all cases, the underlying features are the HOG features, originally described by Dalal and
Triggs [3]. HOG features for a window consist of a grid of cells, where each cell contains a d-
dimensional vector (typically d = 32) that corresponds to a small region of the image (typically
8× 8 pixels).

The linear template is usually thought of as an m × n table of vectors. Each entry of the table
corresponds to a grid element, and contains a d dimensional vector w. The score at location (x, y)
is given by:

S(x, y) =

m∑
∆y=1

n∑
∆x=1

w(∆x,∆y) · h(x + ∆x− 1, y + ∆y − 1)

where w is a weight vector and h is the feature vector at a certain cell (both d-dimensional vectors).
We wish to compute an approximation to this score where (a) the accuracy of the approximation is

3

0 0.2 0.4 0.6 0.8
0.02

0.04

0.06

0.08

0.1

16

64
256

1024

4096

1

2

3 4 5
6

7 8 9 10

Computation Time (µs)

E
st

im
at

io
n

E
rr

or

Computation Time vs. Estimation Error

PCA
VQ

Principal Component Analysis, D = 2

True Score

E
st

im
at

ed
 S

co
re

−3 −2.6 −2.2 −1.8 −1.4 −1

−1

−1.4

−1.8

−2.2

−2.6

−3

Vector Quantization, C = 4096

True Score

E
st

im
at

ed
 S

co
re

−3 −2.6 −2.2 −1.8 −1.4 −1

−1

−1.4

−1.8

−2.2

−2.6

−3

Figure 2: The plot on the left side illustrates the trade-off between computation time and estimation
error |S(x, y)− S′(x, y) | using two approaches: Principal Component Analysis and Vector Quan-
tization. The time reported here is the average time required for estimating the score of a 12 × 12
template. The number of PCA dimensions and the number of clusters are indicated on the working
points. The two scatter-plots illustrate template score estimations using 107 sample points. The
working points D = 2 for PCA and c = 4096 for VQ are comparable in terms of running time.

relatively easily manipulated, so we can trade-off speed and performance and (b) the approximation
is extremely fast.

To do so, we quantize the feature vectors in each cell h(x, y) into c clusters using a basic k-means
procedure and encode each quantized cell q(x, y) using its cluster ID (which can range from 1 to
c). Figure 1 visualizes original and our quantized HOG features. We pre-compute the partial dot
product of each template cell w(∆x,∆y) with all 1 ≤ i ≤ c possible centroids and store them in a
lookup table T(∆x,∆y, i). We then approximate the dot product by looking up the table:

S′(x, y) =

m∑
∆y=1

n∑
∆x=1

T(∆x,∆y, q(x + ∆x− 1, y + ∆y − 1)).

This reduces per template computation complexity of exhaustive search from Θ(mnd) to Θ(mn). In
practice 32 multiplications and 32 additions are replaced by one lookup and one addition. This can
potentially speed up the process by a factor of 32. Table lookup is often slower than multiplication,
therefore gaining the full speed-up requires certain implementation techniques that we will explain
in the next section.

The cost of this approximation is that S′(x, y) 6= S(x, y), and tight bounds on the difference are
unavailable. However, as c gets large, we expect the approximation to improve. As figure 2 demon-
strates, the approximation is good in practice, and improves quickly with larger c. A natural alter-
native, offered by Felzenszwalb et al. [7] is to use PCA to compress the cell vectors. This approx-
imation should work well if high scoring vectors lie close to a low-dimensional affine space; the
approximation can be improved by taking more principal components. However, the approximation
will work poorly if the cell vectors have a “blobby” distribution, which appears to be the case here.
Our experimental analysis shows Vector Quantization is generally more effective than principal
component analysis for speeding-up dot product estimation. Figure 2 compares the time-accuracy
trade-offs posed by both techniques.

It should be obvious that this VQ approximation technique is compatible with a cascade. As results
below show, this approximate estimate of S(x, y) is in practice extremely fast, particularly when
implemented with a cascade. The value of c determines the trade-off between speed and accuracy.
While the loss of accuracy is small, it can be mitigated. Most object detection algorithms evaluate
for a small fraction of the scores that are higher than a certain threshold. Very low scores contribute
little recall, and do not change AP significantly either (because the contribution to the integral is
tiny). A further speed-accuracy tradeoff involves re-scoring the top scoring windows using the
exact evaluation of S(x, y). Our experimental results show that the described Vector Quantized
convolution coupled with a re-estimation step would significantly speed up detection process without
any loss of accuracy.

4

000000

0
0
0
0

000000
0
0
0
0

0 0 0 0 0 0
0
0
0
0

0 0 0 0 0 0

0
0
0
0

1

23

Spatial Padding Sapp Sdef S

Figure 3: Left: A single template can be zero-padded spatially to generate multiple larger templates.
We pack the spatially padded templates to evaluate several locations in one pass. Right: visualization
of Sapp, Sdef and S. to estimate the maximum score we start from center and move to the highest
scoring neighbour until we reach a local maximum. In this example, we take three iterations to reach
global maximum. In this example we compute the template on 17 locations in three steps (right most
image).

3 Fast Score Estimation Techniques

Implementing a Vector Quantization score estimation is straightforward, and is the primary source of
our speedup. However, a straightforward implementation cannot leverage the full speed-up potential
available with Vector Quantization. In this section we describe a few important techniques we used
to obtain further speed.

Exploiting Cascades: It should be obvious that our VQ approximation technique is compatible with
a cascade. We incorporated our Vector Quantization technique into the cascade detection algorithm
of [7], resulting in a few folds speed-up with no loss of accuracy. The cascade algorithm estimates
the root score and the part scores iteratively (based on a pre-trained order). At each iteration it
prunes out the locations lower than a certain score threshold. This process is done in two passes;
the first pass uses a fast score estimation technique while the second pass uses the original template
evaluation. Felzenswalb et al. [7] use PCA for the fast approximation stage. We instead use Vector
Quantization to estimate the scores. In the case of deformable part models this procedure limits the
process for both convolution and distance transform together. Furthermore, we use more aggressive
pruning thresholds because our estimation is more accurate.

Fast deformation estimates: To find the best deformation for a part template, Felzenswalb et al. [7]
perform an exhaustive search over a 9× 9 grid of locations and find the deformation (∆x,∆y) that
maximizes:

max
∆x,∆y

S(∆x,∆y) = Sapp(∆x,∆y) + Sdef (∆x,∆y) − 4 ≤ ∆x,∆y ≤ 4

where Sapp is the appearance score and Sdef is the deformation score. We observed that since Sdef

is convex and significantly influences the score, searching for a local minima would be a reason-
able approximation. In a hill-climbing process we start from S(0, 0) and iteratively move to any
neighbouring location that has the highest score among all neighbours. We stop when S(∆x,∆y)
is larger than all its 8 neighbouring cells (Figure 3). This process considerably limits the number of
locations to be processed and further speeds up the process without any loss in accuracy.

Packed Lookup Tables: Depending on the detailed structure of memory, a table lookup instruc-
tion could be a couple of folds slower than a multiplication instruction. When there are multiple
templates to be evaluated at a certain location we pack their corresponding lookup tables and index
them all in one memory access, thereby reducing the number of individual memory references. This
allow using SIMD instructions to run multiple additions in one CPU instruction.

Padding Templates: Packing lookup tables appears unhelpful when there is only one template
to evaluate. However, we can obtain multiple templates in this case by zero-padding the original
template (to represent various translates of that template; Figure 3). This allows packing the lookup
tables to obtain the score of multiple locations in one pass.

5

HOG features per image per (image×category) per category
Original DPM [2] 40ms 0ms 665ms 0ms
DPM Cascade [7] 40ms 6ms 84ms 3ms
FFLD [9] 40ms 7ms 91ms 43ms
Our+rescoring 40ms 76ms 21ms 6ms
Our-rescoring 40ms 76ms 9ms 6ms

Table 1: Average running time of the state-of-the-art detection algorithms on PASCAL VOC 2007
dataset. The running time is braked into four major terms. Feature computation, per image pre-
process, per (image×category) process and per category preprocess. The running times refer to a
parallel implementation using 6 threads on a XEON E5-1650 Processor.

Sparse lookup tables: Depending on the design of features and the clustering approach lookup
tables can be sparse in some applications. Packing p dense lookup tables would require a dense
c × p table. However, if the lookup tables are sparse each row of the table could be stored in a
sparse data structure. Thus, when indexing the table with a certain index, we just need to update the
scores of a small fraction of templates. This would both limit the memory complexity and the time
complexity for evaluating the templates.

Fixed point arithmetic: The most popular data type for linear classification systems is 32-bit single
precision floating point. In this architecture 24 bits are specified for mantissa and sign. Since the
template evaluation process in this paper does not involve multiplication, the power datum would
stay in about the same range so one could keep the data in fixed-point format as it requires simpler
addition arithmetic. Our experiments have shown that using 16-bit fixed point precision speeds up
evaluation without sacrificing the accuracy.

4 Computation Cost Model

In order to assess detection speed we need to understand the underlying computation cost. The
current literature is confusing because there is no established speed evaluation measure. Dean et
al. [10] report a running time for all 20 PASCAL VOC categories that include all the preprocessing.
Dubout et al. [9] only report convolution time and distance transform time. Felzenszwalb et al. [7]
compare single-core running time while others report multi-core running times.

Computation costs break into two major terms: per image terms, where the cost scales with the num-
ber of images and per (image×category) terms, where the cost scales with the number of categories
as well as the number of images. The total time taken is the sum of four costs:

• Computing HOG features is a mandatory, per image step, shared by all HOG-based de-
tection algorithms.

• per image preprocessing is any process on image data-structure except HOG feature ex-
traction. Examples include applying an FFT, or vector quantizing the HOG features.

• per category preprocessing establishes the required detector data-structure. This is not
usually a significant bottle-neck as there are often more images than categories.

• per (image×category) processes include convolution, distance transform and any post-
process that depends both on the image and the category.

Table 1 compares the performance of our approach with four major state-of-the-art algorithms. The
algorithms described are evaluated on various scales of the image with various root templates. We
compared algorithms based on parallel implementation. Reference codes published by the authors
(except [7]) were all implemented to use multiple cores. We parallelized [7] and the HOG feature ex-
traction function for fair comparison. We evaluate all running times on a XEON E5-1650 Processor
(6 Cores, 12MB Cache, 3.20 GHz).

6

Method mAP time
HSC [20] 0.343 180s*
WTA [10] 0.240 26s*
DPM V5 [22] 0.330 13.3s
DPM V4 [21] 0.301 13.2s
DPM V3 [2] 0.268 11.6s
Rigid templates [23] 0.31 10s*

Method mAP time
Vedaldi [12] 0.277 7s*
DPM V4 -parts 0.214 2.8s
FFLD [9] 0.323 1.8s
DPM Cascade [7] 0.331 1.7s
Our+rescoring 0.331 0.53s
Our-rescoring 0.298 0.29s

Table 2: Comparison of various different object detection methods on PASCAL VOC 2007 dataset.
The reported time here is the time to complete the detection of 20 categories starting from raw
image. The reference implementations of the marked (*) algorithms were not accessible so we used
published time statistics. These four works were published after 2012 and their baseline computers
are comparable to ours in terms of speed.

5 Experimental Results

We tested our template evaluation library for two well known detections methods. (a) Deformable
part models and (b) exemplar SVM detectors. We used PASCAL VOC 2007 dataset that is a estab-
lished benchmark for object detection algorithms. We also used legacy models from [1, 22] trained
on this dataset. We use the state-of-the-art baselines published in [1, 22].

We compare our algorithm using the 20 standard VOC objects. We report our average precision on
all categories and compare them to the baselines. We also report mean average precision (mAP) and
running time by averaging over categories (Table 3).

We run all of our experiments with c = 256 clusters. We perform an exhaustive search to find
the nearest cluster for all HOG pyramid cells that takes on average 76ms for one image. The
computation of our exhaustive nearest neighbour search linearly depends on the number of clusters.
In our experiments c = 256 is shown to be enough for preserving detection accuracy. However, for
more general applications one might need to consider a different c.

5.1 Deformable Part Models

Deformable part models algorithm is the standard object detection baseline. Although there is sig-
nificant difference between the latest version [22] and the earlier versions [2] various authors still
compare to the old versions. Table 2 compares our implementation to ten prominent methods includ-
ing the original deformable part models versions 3, 4 and 5. In this paper we compare the average
running time of the algorithms together with mean average precision of 20 categories. Detailed per
category average precisions are published in the reference papers.

The original DPM package comes with a number of implementations for convolution (that is the
dominant process). We compare to the fastest version that uses both CPU SIMD instructions and
multi-threading. All baseline algorithms are also multi-threaded. We present two versions of our
cascade method. The first version (FTVQ+rescoring) selects a pool of candidate locations by quickly
estimating scores. It then evaluates the original templates on the candidates to fine tune the scores.
The second version (FTVQ-rescoring) purely relies on Vector Quantization to estimate scores and
does not rescore templates. The second algorithm runs twice as fast with about 3% drop in mean
average precision.

5.2 Exemplar Detectors

Exemplar SVMs are important benchmarks as they deal with a large set of independent templates
that must be evaluated throughout the images. We first estimate template scores using our Vector
Quantization based library. For the convolution we get roughly 25 fold speedup comparing to the
baseline implementation. Both our library and the baseline convolution make use of SIMD opera-
tions and multi-threading. We re-estimate the score of the top 1% of locations for each category and
we are virtually able to reproduce the original average precisions (Table 3). Including MATLAB
implementation overhead, our version of exemplar SVM is roughly 8-fold faster than the baseline
without any loss in accuracy.

7

Method ae
ro

bi
cy

cl
e

bi
rd

bo
at

bo
ttl

e

bu
s

ca
r

ca
t

ch
ai

r
co

w

di
ni

ng
ta

bl
e

do
g

ho
rs

e

m
ot

or
bi

ke
pe

rs
on

po
tte

d
pl

an
t

sh
ee

p

so
fa

tr
ai

n

tv mAP time

DPM V5 [22] .33 .59 .10 .18 .25 .51 .53 .19 .21 .24 .28 .12 .57 .48 .43 .14 .22 .36 .47 .39 0.330 665ms
Ours+rescoring .33 .59 .10 .16 .27 .51 .54 .22 .20 .24 .27 .13 .57 .49 .43 .14 .21 .36 .45 .42 0.331 21ms
Ours-rescoring .26 .58 .10 .11 .22 .45 .53 .20 .17 .19 .21 .11 .53 .44 .41 .11 .19 .32 .43 .41 0.298 9ms

Exemplar [1] .19 .47 .03 .11 .09 .39 .40 .02 .06 .15 .07 .02 .44 .38 .13 .05 .20 .12 .36 .28 0.198 13.7ms
Ours .18 .47 .03 .11 .09 .39 .40 .02 .06 .15 .07 .02 .44 .38 .13 .05 .20 .12 .36 .28 0.197 1.7ms

Table 3: Comparison of our method with two baselines on PASCAL VOC 2007. The top three rows
refer to DPM implementation while the last two rows refer to exemplar SVMs. We test our algorithm
both with and without accurate rescoring. The two bottom rows compare the performance of our
exemplar SVM implementation with the baseline. For the top three rows running time refers to per
(image×category) time. For the two bottom rows running time refers to per (image×exemplar) time
that includes MATLAB overhead.

6 Discussion

In this paper we present a method to speed-up object detection by two orders of magnitude with little
or no loss of accuracy. The main contribution of this paper lies in the right selection of techniques
that are compatible and together lead to a major speedup in template evaluation. The implementation
of this work is available online to facilitate future research. This library is of special interest in large-
scale and real-time object detection tasks.

While our method is focussed on fast evaluation, it has implications for training. HOG features
require 32 × 4 = 128 bytes to store the information in each cell (more than 60GB for the entire
PASCAL VOC 2007 training set). This is why current detector training algorithms need to reload
images and recompute their feature vectors every time they are being used. Batching is not compat-
ible with the random-access nature of most training algorithms.

In contrast, Vector Quantized HOG features into 256 clusters would need 1 Byte per cell. This
makes storing the feature vectors of the whole PASCAL VOC 2007 training images in random access
memory entirely feasible (it would require about 1GB of memory). Doing so allows a SVM solver to
access points in the training set quickly. Our application specific implementation of PEGASOS [24]
solves a SVM classifier for a 12× 12 template with 108 training examples (uniformly distributed in
the training set) in a matter of one minute. Being able to access the whole training set plus faster
template evaluation could make hard negative mining either faster or unnecessary.

There are more opportunities for speedup. Notice that we pay a per image penalty computing the
Vector Quantization of the HOG features, on top of the cost of computing those features. We expect
that this could be sped up considerably, because we believe that estimating the Vector Quantized
center to which an image patch goes should be much faster than evaluating the HOG features, then
matching.

Acknowledgement

This work was supported in part by NSF Expeditions award IIS-1029035 and in part by ONR MURI
award N000141010934.

References

[1] T. Malisiewicz and A. Gupta and A. Efros. Ensemble of Exemplar-SVMs for Object Detection
and Beyond. In International Conference on Computer Vision, 2011.

8

[2] P. F. Felzenszwalb and R. B. Girshick and D. McAllester and D. Ramanan. Object Detection
with Discriminatively Trained Part Based Models. In IEEE Transactions on Pattern Analysis
and Machine Intelligence, 2010.

[3] N. Dalal and B. Triggs. Histograms of oriented gradients for human detection. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2005.

[4] H. Rowley and S. Baluja and T. Kanade. Neural Network-Based Face Detection. In IEEE
Transactions On Pattern Analysis and Machine intelligence, 1998.

[5] P. Viola, M. Jones. Rapid object detection using a boosted cascade of simple features in Con-
ference on Computer Vision and Pattern Recognition, 2001

[6] R. Sznitman, C. Becker, F. Fleuret, and P. Fua. Fast Object Detection with Entropy-Driven
Evaluation. in Conference on Computer Vision and Pattern Recognition, 2013

[7] P. F. Felzenszwalb and R. B. Girshick and D. McAllester. Cascade Object Detection with De-
formable Part Models. In IEEE Conference on Computer Vision and Pattern Recognition, 2010.

[8] M. Pedersoli and J. Gonzalez and A. Bagdanov and and JJ. Villanueva. Recursive Coarse-to-
Fine Localization for fast Object Detection. In European Conference on Computer Vision, 2010.

[9] C. Dubout and F. Fleuret. Exact Acceleration of Linear Object Detectors. In European Confer-
ence on Computer Vision, 2012.

[10] T. Dean and M. Ruzon and M. Segal and J. Shlens and S. Vijayanarasimhan and J. Yagnik.
Fast, Accurate Detection of 100,000 Object Classes on a Single Machine. In IEEE Conference
on Computer Vision and Pattern Recognition, 2013.

[11] P. Indyk and R. Motwani. Approximate nearest neighbours: Towards removing the curse of
dimensionality. In ACM Symposium on Theory of Computing, 1998.

[12] A. Vedaldi and A. Zisserman. Sparse Kernel Approximations for Efficient Classification and
Detection In IEEE Conference on Computer Vision and Pattern Recognition, 2012.

[13] S. Maji and A. Berg, J. Malik. Efficient Classification for Additive Kernel SVMs. In IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2013.

[14] I. Kokkinos. Bounding Part Scores for Rapid Detection with Deformable Part Models In 2nd
Parts and Attributes Workshop, in conjunction with ECCV, 2012.

[15] Herv Jgou and Matthijs Douze and Cordelia Schmid. Product quantization for nearest neigh-
bour search. In IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010.

[16] R. M. Gray and D. L. Neuhoff. Quantization. In IEEE Transactions on Information Theory,
1998.

[17] S. Singh, and A. Gupta and A. Efros. Unsupervised Discovery of Mid-level Discriminative
Patches. In European Conference on Computer Vision, 2012.

[18] I. Endres and K. Shih and J. Jiaa and D. Hoiem. Learning Collections of Part Models for
Object Recognition. In IEEE Conference on Computer Vision and Pattern Recognition, 2013.

[19] C. Vondrick and A. Khosla and T. Malisiewicz and A. Torralba. Inverting and Visualizing
Features for Object Detection. In arXiv preprint arXiv:1212.2278, 2012.

[20] X. Ren and D. Ramanan. Histograms of Sparse Codes for Object Detection. In IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2013.

[21] P. Felzenszwalb and R. Girshick and D. McAllester. Discriminatively Trained Deformable Part
Models, Release 4. In http://people.cs.uchicago.edu/ pff/latent-release4/.

[22] R. Girshick and P. Felzenszwalb and D. McAllester. Discriminatively Trained Deformable Part
Models, Release 5. In http://people.cs.uchicago.edu/ rbg/latent-release5/.

[23] S. Divvala and A. Efros and M. Hebert. How important are ‘Deformable Parts’ in the De-
formable Parts Model? In European Conference on Computer Vision, Parts and Attributes
Workshop, 2012

[24] S. Shalev-Shwartz and Y. Singer and N. Srebro. Pegasos: Primal Estimated sub-GrAdient
SOlver for SVM in Proceedings of the 24th international conference on Machine learning,
2007

9

