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Abstract

We consider the general problem of Multiple Model Learning (MML) from data,
from the statistical and algorithmic perspectives; this problem includes clustering,
multiple regression and subspace clustering as special cases. A common approach
to solving new MML problems is to generalize Lloyd’s algorithm for clustering
(or Expectation-Maximization for soft clustering). However this approach is un-
fortunately sensitive to outliers and large noise: a single exceptional point may
take over one of the models.

We propose a different general formulation that seeks for each model a distribu-
tion over data points; the weights are regularized to be sufficiently spread out.
This enhances robustness by making assumptions on class balance. We further
provide generalization bounds and explain how the new iterations may be com-
puted efficiently. We demonstrate the robustness benefits of our approach with
some experimental results and prove for the important case of clustering that our
approach has a non-trivial breakdown point, i.e., is guaranteed to be robust to a
fixed percentage of adversarial unbounded outliers.

1 Introduction

The standard approach to learning models from data assumes that the data were generated by a
certain model, and the goal of learning is to recover this generative model. For example, in linear
regression, an unknown linear functional, which we want to recover, is believed to have generated
covariate-response pairs. Similarly, in principal component analysis, a random variable in some
unknown low-dimensional subspace generated the observed data, and the goal is to recover this
low-dimensional subspace. Yet, in practice, it is common to encounter data that were generated by a
mixture of several models rather than a single one, and the goal is to learn a number of models such
that any given data can be explained by at least one of the learned models. It is also common for the
data to contain outliers: data-points that are not well explained by any of the models to be learned,
possibly inserted by external processes.

We briefly explain our approach (presented in detail in the next section). At its center is the problem
of assigning data points to models, with the main consideration that every model be consistent with
many of the data points. Thus we seek for each model a distribution of weights over the data
points, and encourage even weights by regularizing these distributions (hence our approach is called
Regularized Weighting; abbreviated as RW). A data point that is inconsistent with all available
models will receive lower weight and even sometimes be ignored. The value of ignoring difficult
points is illustrated by contrast with the common approach, which we consider next.



The arguably most widely applied approach for multiple model learning is the minimum loss ap-
proach, also known as Lloyd’s algorithm [1] in clustering, where the goal is to find a set of models,
associate each data point to one model (in so called “soft” variations, one or more models), such
that the sum of losses over data points is minimal. Notice that in this approach, every data point
must be explained by some model. This leaves the minimum loss approach vulnerable to outliers
and corruptions: If one data point goes to infinity, so must at least one model.

Our remedy to this is relaxing the requirement that each data point must be explained. Indeed,
as we show later, the RW formulation is provably robust in the case of clustering, in the sense of
having non-zero breakdown point [2]. Moreover, we also establish other desirable properties, both
computational and statistical, of the proposed method. Our main contributions are:

1. A new formulation of the sub-task of associating data points to models as a convex op-
timization problem for setting weights. This problem favors broadly based models, and
may ignore difficult data points entirely. We formalize such properties of optimal solutions
through analysis of a strongly dual problem. The remaining results are characteristics of
this approach.

2. Outlier robustness. We show that the breakdown point of the proposed method is bounded
away from zero for the clustering case. The breakdown point is a concept from robust
statistics: it is the fraction of adversarial outliers that an algorithm can sustain without
having its output arbitrarily changed.

3. Robustness to fat tailed noise. We show, empirically on a synthetic and real world datasets,
that our formulation is more resistant to fat tailed additive noise.

4. Generalization. Ignoring some of the data, in general, may lead to overfitting. We show that
when the parameter « (defined in Section 2) is appropriately set, this essentially does not
occur. We prove this through uniform convergence bounds resilient to the lack of efficient
algorithms to find near-optimal solutions in multiple model learning.

5. Computational complexity. As almost every method to tackle the multiple model learning
problem, we use alternating optimization of the models and the association (weights), i.e.,
we iteratively optimize one of them while fixing the other. Our formulation for optimizing
the association requires solving a quadratic problem in kn variables, where k is the number
of models and n is the number of points. Compared to O(kn) steps for some formulations,
this seems expensive. We show how to take advantage of the special problem structure and
repetition in the alternating optimization subproblems to reduce this cost.

1.1 Relation to previous work

Learning multiple models is by no means a new problem. Indeed, special examples of multi-model
learning have been studied, including k-means clustering [3, 4, 5] (and many other variants thereof),
Gaussian mixture models (and extensions) [6, 7] and subspace segmentation problem [8, 9, 10]; see
Section 2 for details. Fewer studies attempt to cross problem type boundaries. A general treatment
of the sample complexity of problems that can be interpreted as learning a code book (which en-
compasses some types of multiple model learning) is [11]. Slightly closer to our approach is [12],
whose formulation generalizes a common approach to different model types and permits for prob-
lem specific regularization, giving both generalization results and algorithmic iteration complexity
results. A probabilistic and generic algorithmic approach to learning multiple models is Expectation
Maximization [13].

Algorithms for dealing with outliers and multiple models together have been proposed in the context
of clustering [14]. Reference [15] provides an example of an algorithm for outlier resistance in
learning a single subspace, and partly inspires the current work. In contrast, we abstract almost
completely over the class of models, allowing both algorithms and analysis to be easily reused to
address new classes.

2 Formulation

In this section we show how multi-model learning problems can be formed from simple estimation
problem (where we seek to explain weighted data points by a single model), and imposing a par-



ticular joint loss. We contrast the joint loss proposed here to a common one through the weights
assigned by each and their effects on robustness.

n

We refer throughout to n data points from X’ by (z;),_, = X € X", which we seek to explain
by k£ models from M denoted (mj)]C | = M € MF. A data set may be weighted by a set of k

Jj=
distributions (wj);f [ =We (A")k where A™ C R" is the simplex.

Definition 1. A base weighted learning problem is a tuple (X, M, ¢, A), where £ : X x M — R,
is a non-negative convex function, which we call a base loss function and A : A" x X" — M
defines an efficient algorithm for choosing a model. Given the weight w and data X, A obtains
low weighted empirical loss >, w;¢ (x;,m) (the weighted empirical loss need not be minimal,
allowing for regularization which we do not discuss further).

We will often denote the losses of a model m over X as a vector 1 = (¢(x;,m));,. In the context
of a set of models M, we similarly associate the loss vector 1; and the weight vector w; with the

model m;; this allows us to use the terse notation ij 1; for the weighted loss of model j.

Given a base weighted learning problem, one may pose a multi-model learning problem

Example 1. The multi-model learning problem covers many examples, here we list a few:

o In k-means clustering, the goal is to partition the training samples into k subsets, where
each subset of samples is “close” to their mean. In our terminology, a multi-model learning

problem where the base learning problem is (Rd, R%, (z,m) v ||z —m]|; ,A) where A

finds the weighted mean of the data. The weights allow us to compute each cluster center
according to the relevant subset of points.

o In subspace clustering, also known as subspace segmentation, the objective is to group
the training samples into subsets, such that each subset can be well approximated by a
low-dimensional affine subspace. This is a multi-model learning problem where the corre-
sponding single-model learning problem is PCA.

® Regression clustering [16] extends the standard linear regression problem in that the train-
ing samples cannot be explained by one linear function. Instead, multiple linear function
are sought, so that the training samples can be split into groups, and each group can be
approximated by one linear function.

o Gaussian Mixture Model considers the case where data points are generated by a mixture
of a finite number of Gaussian distributions, and seeks to estimate the mean and variance
of each of these distribution, and simultaneously to group the data points according to the
distribution that generates it. This is a multi-model learning problem where the respective
single model learning problem is estimating the mean and variance of a distribution.

The most common way to tackle the multiple model learning problem is the minimum loss approach,
i.e, to minimize the following joint loss

L(X,M):l min ¢ (z,m). 2.1)
n eX meM

In terms of weighted base learning problems, each model gives equal weight to all points for which
it is the best (lowest loss) model. For example, when M = X = R" with {(z,m) = ||z — m||§
the squared Euclidean distance loss yields k£ means clustering. In this context, alternating between
choosing for each x its loss minimizing model, and adjusting each model to minimized the squared
Euclidean loss, yields Lloyd’s algorithm (and its generalizations for other problems).

The minimum loss approach requires that every point is assigned to a model, this can potentially
cause problems in the presence of outliers. For example, consider the clustering case where the data
contain a single outlier point ;. Let ; tend to infinity; there will always be some m; that is closest
to x;, and is therefore (at equilibrium) the average of x; and some other data points. Then m; will
tend to infinity also. We call this phenomenon mode I of sensitivity to outliers; it is common also



to such simple estimators as the mean. Mode II of sensitivity is more particular: as m; follows x;
to infinity, it stops being the closest to any other points, until the model is associated only to the
outlier and thus matches it perfectly. Thus under Eq. (2.1) outliers tend to take over models. Mode
IT of sensitivity is not clustering specific, and Fig. 2.1 provides an example in multiple regression.
Neither mode is avoided by spreading a point’s weight among models as in mixture models [6].

To overcome both modes of sensitivity, we propose a different joint loss, in which the hard constraint
is only that for each model we produce a distribution over data points. A penalty term discourages
the concentration of a model on few points and thus mode II sensitivity. Deweighting difficult points
helps mitigate mode I. For clustering this robustness is formalized in Theorem 2.

Robust and Lloyds association methods, quadratic regression.
. T . : —~

+ Data
- = Minimum loss 0.20 correct on 34 points
- = Minimum loss 0.20 correct on 4 points
— Robust joint loss 0.20 correct on 29 points
35| —  Robust joint loss 0.20 correct on 37 points
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Figure 2.1: Data is a mixture of two quadratics, with positive fat tailed noise. Under a minimum loss
approach an off-the-chart high-noise point suffices to prevent the top broken line from being close
to many other data points. Our approach is free to better model the bulk of data. We used a robust
(mean absolute deviation) criterion to choose among the results of multiple restarts for each model.

Definition 2. Let u € A" be the uniform distribution. Given k weight vectors, we denote their aver-
agev(W) =k7! Z§=1 w;, and just v when W is clear from context. The Regularized Weighting

multiple model learning loss is a function L, : X™ x MF¥ x (A”)k — R defined as

k
Lo (X, M,W) = aflu—v (W[5 + k13 1w, 2.2)
Jj=1
which in particular defines the weight setting subproblem:
Lo(X,M)= min L, (X,M,W). (2.3)
We(An)k

As its name suggests, our formulation regularizes distributions of weight over data points; specifi-
cally, w; are controlled by forcing their average v to be close to the uniform distribution u. Our goal
is for each model to represent many data points, so weights should not be concentrated. We avoid
this by penalizing squared Euclidean distance from uniformity, which emphasizes points receiving
weight much higher than the natural n~!, and essentially ignores small variations around n~*. The
effect is later formalized in Lemma 1, but to illustrate we next calculate the penalties for two stylized
cases. This will also produce the first of several hints about the appropriate range of values for .

In the following examples, we will consider a set of ynk~—! data points, recalling that nk~" is the
natural number of points per model. To avoid letting a few high loss outliers skew our models (mode
I of sensitivity), we prefer instead to give them zero weight. Take v < k/2, then the cost of ignoring
some ynk~! points in all models is at most an~! - 2yk~! < an~!. In contrast, basing a model
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Figure 2.2: For each location (horizontal) of a data point, the vertical locations of corresponding
markers gives the weights assigned by each model. The left cluster is half as populated as the right,
thus must give weights about twice as large. Within each model, weights are affine in the loss
(see Section 2.1), causing the concave parabolas. The gap allowed between the maximal weights
of different models allows a point from the right cluster to be adopted by the left model, lowering
overall penalty at a cost to weighted losses.

on very few points (mode II of sensitivity) should be avoided. If the jth model is fit to only ynk~!
points for v < 1, the penalty from those points will be at least (approximately) an~! - v~ 1k~
We can make the first situation cheap and the second expensive (per model) in comparison to the
empirical weighted loss term by choosing

k
an”' m k7Y wll; (2.4)
j=1

On the flip side, highly unbalanced classes in the data can be challenging to our approach. Consider
the case where a model has low loss for fewer than n/(2k) points: spreading its weight only over
them can incur very high costs due to the regularization term, which might be lowered by including
some higher-loss points that are indeed better explained by another model (see Figure 2.2 on page
5 for an illustration). This challenge might be solved by explicitly and separately estimating the
relative frequencies of the classes, and penalizing deviations from the estimates rather than from
equal frequencies, as is done in mixture models [6]; this is left for future study.

2.1 Two properties of Regularized Weighting

Two properties of our formulation result from an analysis (in Appendix A for lack of space) of a
dual problem of the weight setting problem (2.3). These provide the basis for later theory by relating
v, losses and «v. The first illustrates the uniform control of v:

Lemma 1. Let all losses be in [0, B], then in an optimal solution to (2.3), we have
[v—ull, < B/(2a).

This strengthens the conclusion of (2.4): if outliers are present and an~' > 2B where B bounds
losses on all points including outliers, weights will be almost uniform (enabling mode I of sensi-



tivity). On the positive side, this lemma plays an important role in the generalization and iteration
complexity results presented in the sequel. A more detailed view of v; for individual points is
provided by the second property.

By P we denote the orthogonal projection mapping into a convex set C.
Lemma 2. For an optimal solution to (2.3), there exists t € R¥ such that:

v=Par (w-min(; - )/ (20).

where min; should be read as operating element-wise, and in particular w;; > 0 implies that j
minimizes the ith element.

This establishes that average weight (when positive) is affine in the loss; the concave parabolas
visible in Figure 2.2 on page 5 are an example. We also learn the role of « in solutions is determining
the coefficient in the affine relation. Distinct ¢ allow for different densities of points around different
models. One observation from this lemma is that if a particular model j gives weight to some point ¢,
then every point with lower loss £ (x;/,m;) under that model will receive at least that much weight.
This property plays a key role in the proof of robustness to outliers in clustering.

2.2 An alternating optimization algorithm

The RW multiple model learning loss, like other MML losses, is not convex. However the weight
setting problem (2.3) is convex when we fix the models, and an efficient procedure A is assumed
for solving a weighted base learning problem for a model, supporting an alternating optimization
approach, as in Algorithm 1; see Section 5 for further discussion.

Data: X
Result: The model-set M
M + initial M odels (X);
repeat
M' « M;
W « argminy Ly (X, M, W');
mj < A(w;, X) (V5 €[k]);
until L (X, M') — L(X, M) < ¢&;

Algorithm 1: Alternating optimization for Regularized Weighting

3 Breakdown point in clustering

Our formulation allows a few difficult outliers to be ignored if the right models are found; does this
happen in practice? Figure 2.1 on page 4 provides a positive example in regression clustering, and
a more substantial empirical evaluation on subspace clustering is in Appendix B. In the particular
case of clustering with the squared Euclidean loss, robustness benefits can be proved.

We use “breakdown point” — the standard robustness measure in the literature of robust statistics [2],
see also [17, 18] and many others — to quantify the robustness property of the proposed formula-
tion. The breakdown point of an estimator is the smallest fraction of bad observations that can
cause the estimator to take arbitrarily aberrant values, i.e., the smallest fraction of outliers needed to
completely break an estimator.

For the case of clustering with the squared Euclidean distance base loss, the min-loss approach
corresponds to k-means clustering which is not robust in this sense; its breakdown point is 0. The
non robustness of k-means has led to the development of many formulations of robust clustering,
see a review by [14]. In contrast, we show that our joint loss yields an estimator that has a non-zero
breakdown point, and is hence robust.

In general, a squared loss clustering formulation that assigns equal weight to different data points
cannot be robust — as one data point tends to infinity so must at least one model. This applies to
our model if « is allowed to tend to infinity. On the other hand if « is too low, it becomes possible



for each model to assign all of its weight to a single point, which may well be an outlier tending
to infinity. Thus, it is well expected that the robustness result below requires « to belong to a data
dependent range.

Theorem 2. Let X = M be a Euclidean space in which we perform clustering with the loss

C(xzi,mj) = ||m; — ;||* and k centers. Denote by R the radius of any ball containing the inliers,
and 1 < k=2 /22 the proportion of outliers allowed to be outside the ball. Denote also by r a radius
such that there exists M' = {m/,--- ,m}.} such that each inlier is within a distance r of some

model m/; and each m; approximates (i.e., within a distance ) at least n/(2k) inliers; this always
holds for some r < R.

For any a € n|[r?,13R?| let (M,W) be minimizers of Lo (X,M,W). Then we have
lm; — x;||, < 6R for every model m; and inlier x;.

Theorem 2 shows that when the number of outliers is not too high, then the learned model, regardless
of the magnitude of the outliers, is close to the inliers and hence cannot be arbitrarily bad. In
particular, the theorem implies a non-zero breakdown point for any a > nr?; taking too high an
o merely forces a larger but still finite . If the inliers are amenable to balanced clustering so that
r < R, the regime of non-zero breakdown is extended to smaller .

The proof follows three steps. First, due to the regularization term, for any model, the total weight
on the few outliers is at most 1/3. Second, an optimal model must thus be at least twice as close to
the weighted average of its inlier as it is to the weighted average of its outliers. This step depends
critically on squared Euclidean loss being used. Lastly, this gap in distances cannot be large in
absolute terms, due to Lemma 2; an outlier that is much farther from the model than the inliers must
receive weight zero. For the proof see Appendix C of the supplementary material.

4 Regularized Weighting formulation sample complexity

An important consideration in learning algorithms is controlling overfitting, in which a model is
found that is appropriate for some data, rather than for the source that generates the data. The
current formulation seems to be particularly vulnerable since it allows data to be ignored, in contrast
to most generalization bounds that assume equal weight is given to all data.

Our loss L, (X, M) differs from common losses in allowing data points to be differently weighted.
Thus, to obtain the sample complexity of our formulation we need to bound the difference that a
single sample can make to the loss. For a common empirical average loss this is bounded by Bn~!
where B is the maximal value of the non-negative loss on a single data point, and in our case by
B ||v]| . because if X, X" differ only on the ith element, then:

k k
Lo (X', M, W) = Lo (X, M,W)| = |k > (wji (s = 1),))| <BE™'Y wji < Bvi.
j=1 j=1

Whenever W is optimal with respect to either X or X', Lemma 1 provides the necessary bound
on ||v|,. Along with covering numbers as defined next and standard arguments (found in the
supplementary material), this bound on differences provides us with the desired generalization result.

Definition 3 (Covering numbers for multiple models). We shall endow MP* with the metric

e (M) =m0 my) = £ i)

and define its covering number N. (M") as the minimal cardinality of a set M¥ such that M* C
UMEM’; B(M,e).

The bound depends on an upper bound on base losses denoted B; this should be viewed as fixing
a scale for the losses and is standard where losses are not naturally bounded (e.g., classical bounds
on SVM kernel regression [19] use bounded kernels). Thus, we have the following generalization
result, whose proof can be found in Appendix D of the supplementary material.



Theorem 3. Let the base losses be bounded in the interval [0, B], let M* have covering num-
bers N, (M) < (C’/e)dk and let v = nB/(2a). Then we have with probability at least

1—exp {dk log (?) — %}
VM € M*  |Lo(X,M)—Ex/pnLa (X', M)| < 37.

5 The weight assignment optimization step

As is typical in multi-model learning, simultaneously optimizing the model and the association of
the data (in our formulation, the weight) is computationally hard [20], thus Algorithm 1 alternates
between optimizing the weight with the model fixed, and optimizing the model with the weights
fixed. Thus we show how to efficiently solve a sequence of weight setting problems, minimizing
Lo (X, M;, W) over W, where M, typically converge.

We propose to solve each instance of weight setting using gradient methods, and in particular FISTA
[21]. This has two advantages compared to Interior Point methods: First, the use of memory for
gradient methods depends only linearly with respect to the dimension, which is O(kn) in problem
(2.3), allowing scaling to large data sets. Second, gradient methods have “warm start” properties:
the number of iterations required is proportional to the distance between the initial and optimal
solutions, which is useful both due to bounds on ||v — ul|  and when M; converge.

Theorem 4. Given data and models (X, M) there exists an algorithm that finds a weight matrix W
such that Lo, (X, M, W) — Lo(X, M) < € using O (\/ka/a?) iterations, each costing O(kn) time

and memory. If « > Bn /4 then O (k\/omfl/5> iterations suffice.

The first bound might suggest that typical settings of o o n requires iterations to increase with the
number of points n; the second bounds shows this is not always necessary.

This result can be realized by applying the algorithm FISTA, with a starting point w; = u, with
2ak~2 as a bound on the Lipschitz constant for the gradient. For the first bound we estimate the
distance from u by the radius of the product of k£ simplices; for the second we use Lemma 1 in Ap-
pendix E.

6 Conclusion

In this paper, we proposed and analyzed, from a general perspective, a new formulation for learning
multiple models that explain well much of the data. This is based on associating to each model a
regularized weight distribution over the data it explains well. A main advantage of the new formula-
tion is its robustness to fat tailed noise and outliers: we demonstrated this empirically for regression
clustering and subspace clustering tasks, and proved that for the important case of clustering, the
proposed method has a non-trivial breakdown point, which is in sharp contrast to standard meth-
ods such as k-means. We further provided generalization bounds and explained an optimization
procedure to solve the formulation in scale.

Our main motivation comes from the fast growing attention to analyzing data using multiple models,
under the names of k-means clustering, subspace segmentation, and Gaussian mixture models, to
list a few. While all these learning schemes share common properties, they are largely studied
separately, partly because these problems come from different sub-fields of machine learning. We
believe general methods with desirable properties such as generalization and robustness will supply
ready tools for new applications using other model types.
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