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Abstract

We describe a set of fast, tractable methods for characterizing neural responses
to high-dimensional sensory stimuli using a model we refer to as the generalized
quadratic model (GQM). The GQM consists of a low-rank quadratic function fol-
lowed by a point nonlinearity and exponential-family noise. The quadratic func-
tion characterizes the neuron’s stimulus selectivity in terms of a set linear receptive
fields followed by a quadratic combination rule, and the invertible nonlinearity
maps this output to the desired response range. Special cases of the GQM include
the 2nd-order Volterra model [1, 2] and the elliptical Linear-Nonlinear-Poisson
model [3]. Here we show that for “canonical form” GQMs, spectral decomposi-
tion of the first two response-weighted moments yields approximate maximum-
likelihood estimators via a quantity called the expected log-likelihood. The result-
ing theory generalizes moment-based estimators such as the spike-triggered co-
variance, and, in the Gaussian noise case, provides closed-form estimators under a
large class of non-Gaussian stimulus distributions. We show that these estimators
are fast and provide highly accurate estimates with far lower computational cost
than full maximum likelihood. Moreover, the GQM provides a natural framework
for combining multi-dimensional stimulus sensitivity and spike-history dependen-
cies within a single model. We show applications to both analog and spiking data
using intracellular recordings of V1 membrane potential and extracellular record-
ings of retinal spike trains.

1 Introduction

Although sensory stimuli are high-dimensional, sensory neurons are typically sensitive to only a
small number of stimulus features. Linear dimensionality-reduction methods seek to identify these
features in terms of a subspace spanned by a small number of spatiotemporal filters. These filters,
which describe how the stimulus is integrated over space and time, can be considered the first stage in
a “cascade” model of neural responses. In the well-known linear-nonlinear-Poisson (LNP) cascade
model, filter outputs are combined via a nonlinear function to produce an instantaneous spike rate,
which generates spikes via an inhomogeneous Poisson process [4,5].

The most popular methods for dimensionality reduction with spike train data involve the first two
moments of the spike-triggered stimulus distribution: (1) the spike-triggered average (STA) [7-9];
and (2) major and minor eigenvectors of spike-triggered covariance (STC) matrix [10,11]!. STC
analysis can be described as a spectral method because the estimate is obtained by eigenvector

* These authors contributed equally.
'Related moment-based estimators have also appeared in the statistics literature under the names “inverse
regression” and “sufficient dimensionality reduction”, although the connection to STA and STC analysis does
not appear to have been noted previously [12, 13].
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Figure 1: Schematic of generalized quadratic model (GQM) for analog or spike train data.

decomposition of an appropriately defined matrix. Compared to likelihood-based methods, spectral
methods are generally computationally efficient and devoid of (non-global) local optima.

Recently, Park and Pillow [3] described a connection between STA/STC analysis and maximum
likelihood estimators based on a quantity called the expected log-likelihood (EL). The EL results
from replacing the nonlinear term in the log-likelihood and with its expectation over the stimulus
distribution. When the stimulus is Gaussian, the EL depends only on moments (mean spike rate,
STA, STC, and stimulus mean and covariance) and leads to a closed-form spectral estimate for LNP
filters, which has STC analysis as a special case. More recently, Ramirez and Paninski derived EL-
based estimators for the linear Gaussian model and proposed fast EL-based inference methods for
generalized linear models (GLMs) [14].

Here, we show that the EL framework can be extended to a more general class that we refer to
as the generalized quadratic model (GQM). The GQM represents a straightforward extension of
the generalized linear model GLM [15, 16] wherein the linear predictor is replaced by a quadratic
function (Fig. 1). For Gaussian and Poisson GQMs, we derive computationally efficient EL-based
estimators that apply to a variety of non-Gaussian stimulus distributions; this substantially extends
previous work on the conditions of validity for moment-based estimators [7,17-19]. In the Gaussian
case, the EL-based estimator has a closed form solution that relies only on the first two response-
weighted moments and the first four stimulus moments. In the Poisson case, GQMs provide a
natural synthesis of models that have multiple filters (i.e., where the response depends on multiple
projections of the stimulus) and dependencies on spike history. We show that spectral estimates of a
low-dimensional feature space are nearly as accurate as maximum likelihood estimates (for GQMs
without spike-history), and demonstrate the applicability of GQMs for both analog and spiking data.

2 Generalized Quadratic Models

We begin by briefly reviewing of the class of models known as GLMs, which includes the single-
filter LNP model, and the Wiener model from the systems identification literature. A GLM has three
basic components: a linear stimulus filter, an invertible nonlinearity (or “inverse link” function),
and an exponential-family noise model. The GLM describes the conditional response y to a vector
stimulus x as:

ylx ~P(f(w'x)), (1)
where w is the filter, f is the nonlinearity, and P()\) denotes a noise distribution function with
mean A. From the standpoint of dimensionality reduction, the GLM makes the strong modeling
assumption that response y depends upon x only via its one-dimensional projection onto w.

At the other end of the modeling spectrum sits the very general “multiple filter” linear-nonlinear
(LN) cascade model, which posits that the response depends on a p-dimensional projection of
the stimulus, represented by a bank of filters {w;}?_,, and combined via some arbitrary multi-
dimensional function f : R? — R:

y\XNP(f(wlTx,...,W;X)). )

Spike-triggered covariance analysis and related methods provide low-cost estimates of the filters
{w;} under Poisson or Bernoulli noise models, but only under restrictive conditions on the stimulus



distribution (e.g., elliptical symmetry) and some weak conditions on f [17,19]. Semi-parametric
estimators like “maximally informative dimensions” (MID) eliminate these restrictions [20], but do
not practically scale beyond two or three filters without additional modeling assumptions [21].

The generalized quadratic model (GQM) provides a tractable middle ground between the GLM and
general multi-filter LN models. The GQM allows for multi-dimensional stimulus dependence, yet
restricts the nonlinearity to be a transformed quadratic function [22-25]. The GQM can be written:

ylx ~ P(f(Q(x))), 3)

where Q(x) = x' Cx + b x + a denotes a quadratic function of x, governed by a (possibly low-
rank) symmetric matrix C, a vector b, and a scalar a. Note that the GQM may be regarded as a
GLM in the space of quadratically transformed stimuli [6], although this approach does not allow
Q) (x) to be parametrized directly in terms of a projection onto a small number of linear filters.

In the following, we show that the elliptical-LNP model [3] is a GQM with Poisson noise, and make
a detailed study of canonical GQMs with Gaussian noise. We show that the maximum-EL estimates
for C, b, and a have similar forms for both Gaussian and Poisson GQMs, and that the eigenspectrum
of C provides accurate estimates of a neuron’s low-dimensional feature space. Finally, we show that
the GQM provides a natural framework for combining multi-dimensional stimulus sensitivity with
dependencies on spike train history or other response covariates.

3 Estimation with expected log-likelihoods

The expected log-likelihood is a quantity that approximates log-likelihood but can be computed very
efficiently using moments. It exists for any GQM or GLM with “canonical” nonlinearity (or link
function). The canonical nonlinearity for an exponential-family noise distribution has the special
property that it allows the log-likelihood to be written as the sum of two terms: a term that depends
linearly on the responses {y;}, and a second (nonlinear) term that depends only on the stimuli
{x;} and parameters 6. The expected log-likelihood (EL) results from replacing the nonlinear term
with its expectation over the stimulus distribution P(x), which in neurophysiology settings is often
known a priori to the experimenter. Maximizing the EL results in maximum expected log-likelihood
(MEL) estimators that have very low computational cost while achieving nearly the accuracy of
full maximum likelihood (ML) estimators. Spectral decompositions derived from the EL provide
estimators that generalize STA/STC analysis. In the following, we derive MEL estimators for three
special cases—two for the Gaussian noise model, and one for the Poisson noise model.

3.1 Gaussian GQMs

Gaussian noise provides a natural model for analog neural response variables like membrane poten-
tial or fluorescence. The canonical nonlinearity for Gaussian noise is the identity function, f(x) = x.
The the canonical-form Gaussian GQM can therefore be written: y|x ~ N (Q(x),0?). Given a
dataset {x;, y; }}¥,, the log-likelihood per sample is:
11 2 11 9
L= 53N ZZ: (Q(xi) —yi)” = —53N z; (—2Q(x:)yi + Q(x:)?) + const
1

1
=55 <_2 (Te(CA) + b +ap) + Z Q(xi)2> + const, )

where o is the noise variance, const is a parameter-independent constant, jj = ﬁ >, yi is the mean

response, and ;2 and A denote cross-correlation statistics that we will refer to (in a slight abuse of
terminology) as the response triggered average and response-triggered covariance:

N N
1 @ 99 _ 1 T e 99\ 2
n= N ;yixi (“RTA”) A= N ;yixixi (“RTC”). (&)

The expected log-likelihood results from replacing the troublesome nonlinear term % > Q(x;)?
by its expectation over the stimulus distribution. This is justified by the law of large numbers, which

2When responses y; are spike counts, these correspond to the STA and STC.



asserts that + 32, Q(x;)?* converges to Ep(x)[Q(x)?] asymptotically. Leaving off the const term,
this leads to the per-sample expected log-likelihood [3, 14], which is defined:

L=—55 (—2(Tx(CA) + p"b +ay) + E[Q(x)?]) . (6)

Gaussian stimuli
If the stimuli are drawn from a Gaussian distribution, x ~ A(0, ), then we have (from [26]):

E[Q(x)?] = 2Tr {(C)*} + Tr(b"Eb) + (Tr(CE) + a)*. (7)

The EL is concave in the parameters a, b, C, so we can obtain the MEL estimates by finding the
stationary point:

1

0 =~
87[, 20_2 (—217 + 2 (TT(CZ) + a)) =0 — Amel = Y — Tr(CmeIE)) (8)
0 = = _ y—1
EL=—55(-2u+25b) =0 — by = 514 ©
0 » 1 1, o
%EZ 352 ( 2A+(4ECE+2yZ)):O — Cme1=§(2 AL — g% 1) (10)

Note that this coincides with the moment-based estimate for the 2nd-order Volterra model [2].

Axis-symmetric stimuli

More generally, we can derive the MEL estimator for stimuli with arbitrary axis-symmetric dis-
tributions with finite 4th-order moments. Axis-symmetric distributions exhibit invariance under
reflections around each axis, that is, P(z1,...,24) = P(p121,...,psxq) for any p; € {—1,1}.
The class of axis-symmetric distributions subsumes both radially symmetric and independent prod-
uct distributions. However, axis symmetry is a strictly weaker condition; significantly, marginals
need not be identically distributed.

To simplify derivation of the MEL estimator for axis-symmetric stimuli, we take the derivative of
Q(x) with respect to (a, b, C) before taking the expectation. Derivatives with respect to model

parameters are given by dE[Q(x) [QQ( )dge(j‘)} . For each 0;, we solve the equation,
oL 9 (Tr(CA) + p"b + ap) 9Q(x)
20, = -2 20, +2E [Q(X)Bﬂi ] =0.

From derivatives w.r.t. a, b, and C, respectively, we obtain conditions for the MEL estimates:
5 =E[Q(x)] = a+ b E[x] + Tr(CE[xx"])
p=E[Q(x)x] = aE[x] + bTE[xx "] + Z Ci;E[xix;x]
%,
A=E[Q(x)xx'] =aE[xx" +ZbEx7xx +ZC7]]EX X;xx |
i,j

where the subindices within the sums are for components. Due to axis symmetry, E[x], E[z;z ;2]
and E[z;x ] are all zero for distinct indices. Thus, the MEL estimates for a and b are identical to the

Gaussian case given above. If we further assume that the stimulus is whitened so that E[xx "] = 1,
sufficient stimulus statistics are the 4th order even moments, which we represent with the matrix
In general, when the marginals are not identical but the joint distribution is axis-symmetric,
Z Cij]E[l‘iIL'jXX Z Cii dlag CB xl, ce ,I?xﬁ) + Z C’ijMijeiejT (an
ij i#]
= diag(1"(To C)M) +C oMo (11" —T).

where 1 is a vector of 1’s, e; is the standard basis, and o denotes the Hadamard product. We can solve
these sets of linear equations for the diagonal terms and off-diagonal terms separately obtaining,

Cutl, — | 21 i (12)
* QM —-11T)"1 i=j
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Figure 2: Maximum expected log-likelihood (MEL) estimators for a Gaussian GQM under different
assumptions about the stimulus distribution. (left) Axis-symmetric stimulus distribution in 2D. The
horizontal axis is a (symmetric) mixture of Gaussian, and the vertical axis is a uniform distribution.
Red dots indicate samples from the distribution. (right) Response prediction based on various C
estimated using eq. 10, eq. 14, and eq. 12. Performance is evaluated on a cross-validation test set
with no noise for each C, and we see a huge loss in performance as a result of incorrect assumption
about the stimulus distribution.

where ) = diag(1T (To A) — g1 7).
For the special case when the marginal distributions are identical, we note that
E[x"Cx(xx")] = pigo Tr(C)I + (prg — pt22)C o T+ 2p05C 0 (117 — 1) (13)

where fi20 = E[x3x3] = Mj 5 and py = E[x}] = M ;. This gives the simplified formula (also
given in [27]):

Aij . .
i F ]
[Cmel]ij = { 2/I\Li2i2,’y . . (14)
Az =
Ha—p22”’

When the stimulus is not Gaussian or the marginals not identical, the estimates obtained from
(eq. 10) and (eq. 14) are not consistent. In this case, the general axis-symmetric estimate (eq. 12)
gives much better performance, as we illustrate with a simulated example in Fig. 2.

3.2 Poisson GQM

Poisson noise provides a natural model for discrete events like spike counts, and extends easily to
point process models for spike trains. The canonical nonlinearity for Poisson noise is exponential,
f(xz) = exp(x), so the canonical-form Poisson GQM is: y|x ~ Poiss(exp(Q(x))). Ignoring
irrelevant constants, the log-likelihood per sample is

E—NZyzlogexp NZexp
=Tr(CA)+p'b+ay— % Zexp (x:)), (15)
i

where g, 1 and A denote mean response, STA, and STC, as given above (eq. 5). We obtain the
EL for a Poisson GQM by replacing the term + > exp(Q(x;)) by its expectation with respect to
P(x). Under a zero-mean Gaussian stimulus distribution with covariance %, the closed-form MEL
estimates are (from [3]):

Dinel = (A + %%/f)_l t; Cme =13 (2_1 —7 (A + ;2MMT)_1) : (16)

where we assume that A + %Q/WT is invertible. Note that the MEL estimator combines information
from p and A, unlike standard STA and STC-based estimates, which maximize EL only when either
b or C'is zero (respectively). Park and Pillow 2011 used Poisson EL in conjunction with a log-prior
to obtain approximate Bayesian estimates, an approach referred to as Bayesian STC [3].
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Mixture-of-Gaussians stimuli

Results for Gaussian stimuli extend naturally to mixtures of Gaussians, which can be used to approx-
imate arbitrary stimulus distributions. The EL for mixture-of-Gaussian stimuli can be computed
simply via the linearity of expectation. For stimuli drawn from a mixture ), oj N (5, 2;) with
mixing weights 3 a; = 1, the EL is

L=Tr(CA) +pb+ag— Y 0;En, )@, (a7

where the Gaussian expectation terms are given by

T, T 1 T(y—1 -1
B o 0@ — 1 (et O T b (r20m,) (571 -20) " b2ky)
N(vazj)[e ] |I*202j‘% € ( 8)
Although the MEL estimator does not have a closed analytic form in this case, the EL can be ef-
ficiently optimized numerically, as it still depends on the responses only via the spike-triggered
moments g, p and A, and on the stimuli only via the mean, covariance, and mixing weight of each

Gaussian.
4 Spectral estimation for low-dimensional models

4.1 Low-rank parameterization

We have so far focused upon MEL estimators for the parameters a, b, and C'. These results have a
natural mapping to dimensionality reduction methods. Under the GQM, a low-dimensional stimulus
dependence is equivalent to having a low-rank C. If C = BB for some d x p matrix B, we have a
p-filter model (or p+ 1 filter model if the linear term b is not spanned by the columns of B). We can
obtain spectral estimates of a low-dimensional GQM by performing an eigenvector decomposition
of Ce1 and selecting the eigenvectors corresponding to the largest p eigenvalues. The eigenvectors
of C\e1 also make natural initializers for maximization of the full GQM likelihood.

In Fig. 3, we show the results of three different methods for recovering a simulated rank-1 GQM
with Poisson noise: (1) the largest eigenvector of Ci,e), (2) numerically maximizing the expected
log-likelihood for a rank-1 GQM (i.e., with C parametrized as a rank-1 matrix), and (3) maximizing
the (full) likelihood for a rank-1 GQM. Although the difference in performance between expected
and full GQM log-likelihood is negligible, there is a drastic difference in optimization time com-
plexity between the full and expected log-likelihood. The expected log-likelihood only requires
computation of the sufficient statistics, while the full ML estimate requires a full pass through the
dataset for each evaluation of the log-likelihood. Thus, the expected log-likelihood offers a fast yet
accurate estimate for C. In the following section we show that, asymptotically, the eigenvectors of
Chmel span the “correct” (in an appropriate sense) low-dimensional subspace.

4.2 Consistency of subspace estimates

If the conditional probability y|x = 3|3 x for a matrix 3, the neural feature space is spanned by the
columns of 3. As a generalization of STC, we introduce moment-based dimensionality reduction
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Figure 4: GQM fit and prediction for intracellular recording in cat V1 with a trinary noise stimulus.
(A) On top, estimated linear (b) and quadratic (w; and wo) filters for the GQM, lagged by 20ms. On
bottom, the empirical marginal nonlinearities along each dimension (black) and model prediction
(red). (B) Cross-validated model prediction (red) and n = 94 recordings with repeats of identical
stimulus (light grey) along with their mean (black). Reported performance metric (2 = 0.55) is for
prediction of the mean response.
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techniques that recover (portions of) 3 and show the relationship of these techniques to the MEL
estimators of GQM.

We propose to use Z_%u and eigenvectors of YIAY 2 (whose eigenvalues are significantly
smaller or larger than 1) as the feature space basis. When the response is binary, this coincides
with the traditional STA/STC analysis, which is provably consistent only in the case of stimuli
drawn from a spherically symmetric (for STA) or independent Gaussian distribution (for STC) [5].

Below, we argue that this procedure can identify the subspace when 3 has mean f(3' x) with finite
variance, f is some function, and the stimulus distribution is zero-mean with white covariance, i.e.,
E[x] = 0 and E[xxT] = I.

First, note that by the law of large numbers, A — E[y xx”] = E [yE[xx”|y]] . Let ¥ = 83" be a
projection operator to the feature space, and ¥, = I — W be the perpendicular space. We follow the
discussion in [12, 13] regarding the related “sliced regression” literature. Recalling that E[X] = 0,
we can exploit the independence of ¥ x and y to find,

E oty = €] = B [(¥+ W) (04 0|y = ¢
=VE [xx|y=¢ U+ UE[xx"| ¥ =VE [xx|y=¢] ¥+ ¥

thus, E [yxxT] = UE [yxxw U + E[y]¥, and therefore the eigenvectors of E [yxxT] whose
eigenvalues significantly differ from E[y| span a subspace of the range of W. Effective estimation
of the subspace depends critically on both the stimulus distribution and the form of f. Under the
GQM, the eigenvectors of E [yxxT] are closely related to the expected log-likelihood estimators we
derived earlier. Indeed, those eigenvectors of eq. 10, eq. 12 and eq. 16 whose associated eigenvalues
differ significantly from zero span precisely the same space.

5 Results

5.1 Intracellular membrane potential

We fit a Gaussian GQM to intracellular recordings of membrane potential from a neuron in cat V1,
using a 2D spatiotemporal “flickering bars™ stimulus aligned with the cell’s preferred orientation
(Fig. 4). The recorded time-series is a continuous signal, so the Gaussian GQM provides an appro-
priate noise model. The recorded voltage was median-filtered (to remove spikes) and down-sampled
to a 10 ms sample rate. We fit the GQM to a 21.6 minute recording of responses to non-repeating
trinary noise stimulus . We validated the model using responses to 94 repeats of a 1 second frozen
noise stimulus. Panel (B) of Fig. 4 illustrates the GQM prediction on cross-validation data.

Although the cell was classified as “simple”, meaning that its response is predominately linear, the
GQM fit reveals two quadratic filters that also influence the membrane potential response. The GQM
captures a substantial percentage of the variance in the mean response, systematically outperforming
the GLM in terms of 72 (GQM:55% vs. GLM:50%).
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Figure 5: (left) GLM and GQM filters fit to spike responses of a retinal ganglion cell stimulated
with a 120 Hz binary full field noise stimulus [28]. The GLM has only linear stimulus and spike
history filters (top left) while the GQM contains all four filters. Each plot shows the exponentiated
filter, so the ordinate has units of gain, and filters interact multiplicatively. Quadratic filter outputs are
squared and then subtracted from other inputs, giving them a suppressive effect on spiking (although
quadratic excitation is also possible). (right) Cross-validated rate prediction averaged over 167
repeated trials.

5.2 Retinal ganglion spike train

The Poisson GLM provides a popular model for neural spike trains due to its ability to incorporate
dependencies on spike history (e.g., refractoriness, bursting, and adaptation). These dependencies
cannot be captured by models with inhomogeneous Poisson output like the multi-filter LNP model
(which is also implicit in information-theoretic methods like MID [21]). The GLM achieves this
by incorporating a one-dimensional linear projection of spike history as an input to the model. In
general, however, a spike train may exhibit dependencies on more than one linear projection of spike
history.

The GQM extends the GLM by allowing multiple stimulus filters and multiple spike-history filters.
It can therefore capture multi-dimensional stimulus sensitivity (e.g., as found in complex cells) and
produce dynamic spike patterns unachievable by GLMs. We fit a Poisson GQM with a quadratic
history filter to data recorded from a retinal ganglion cell driven by a full-field white noise stimu-
lus [28]. For ease of comparison, we fit a Poisson GLM, then added quadratic stimulus and history
filters, initialized using a spectral decomposition of the MEL estimate (eq. 16) and then optimized by
numerical ascent of the full log-likelihood. Both quadratic filters (which enter with negative sign),
have a suppressive effect on spiking (Fig. 5). The quadratic stimulus filter induces strong suppres-
sion at a delay of 5 frames, while the quadratic spike history filter induces strong suppression during
a 50 ms window after a spike.

6 Conclusion

The GQM provides a flexible class of probabilistic models that generalizes the GLM, the 2nd-
order Volterra model, the Wiener model, and the elliptical-LNP model [3]. Unlike the GLM, the
GQM allows multiple stimulus and history filters and yet remains tractable for likelihood-based
inference. We have derived expected log-likelihood estimators in a general form that reveals a deep
connection between likelihood-based and moment-based inference methods. We have shown that
GQM performs well on neural data, both for discrete (spiking) and analog (voltage) data. Although
we have discussed the GQM in the context of neural systems, but we believe it (and EL-based
inference methods) will find applications in other areas such as signal processing and psychophysics.
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