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Abstract

In standard matrix completion theory, it is required to have at least O(n In? n) ob-
served entries to perfectly recover a low-rank matrix M of size n X n, leading to
a large number of observations when n is large. In many real tasks, side informa-
tion in addition to the observed entries is often available. In this work, we develop
a novel theory of matrix completion that explicitly explore the side information
to reduce the requirement on the number of observed entries. We show that, un-
der appropriate conditions, with the assistance of side information matrices, the
number of observed entries needed for a perfect recovery of matrix M can be dra-
matically reduced to O(Inn). We demonstrate the effectiveness of the proposed
approach for matrix completion in transductive incomplete multi-label learning.

1 Introduction

Matrix completion concerns the problem of recovering a low-rank matrix from a limited number
of observed entries. It has broad applications including collaborative filtering [35], dimensionality
reduction [41], multi-class learning [4, 31], clustering [15, 42], etc. Recent studies show that, with a
high probability, we can efficiently recover a matrix M € R™*™ of rank r from O(r(n+m) In®(n+
m)) observed entries when the observed entries are uniformly sampled from M [11, 12, 34].

Although the sample complexity for matrix completion, i.e., the number of observed entries required
for perfectly recovering a low rank matrix, is already near optimal (up to a logarithmic factor), its
linear dependence on n and m requires a large number of observations for recovering large matri-
ces, significantly limiting its application to real-world problems. Moreover, current techniques for
matrix completion require solving an optimization problem that can be computationally prohibitive
when the size of the matrix is very large. In particular, although a number of algorithms have been
developed for matrix completion [10, 22, 23, 25, 27, 28, 39], most of them require updating the full
matrix M at each iteration of optimization, leading to a high computational cost and a large storage
requirement when both n and m are large. Several recent efforts [5, 19] try to address this issue, at
a price of losing performance guarantee in recovering the target matrix.

On the other hand, in several applications of matrix completion, besides the observed entries, side
information is often available that can potentially benefit the process of matrix completion. Below
we list a few examples:

o Collaborative filtering aims to predict ratings of individual users based on the ratings from
other users [35]. Besides the ratings provided by users, side information, such as the textual
description of items and the demographical information of users, is often available and can
be used to facilitate the prediction of missing ratings.



e Link prediction aiming to predict missing links between users in a social network based on
the existing ones can be viewed as a matrix completion problem [20], where side informa-
tion, such as attributes of users (e.g., browse patterns and interaction among users), can be
used to assist completing the user-user-link matrix.

Although several studies exploit side information for matrix recovery [1, 2, 3, 16, 29, 32, 33], most
of them focus on matrix factorization techniques, which usually result in non-convex optimization
problems without guarantee of perfectly recovering the target matrix. In contrast, matrix comple-
tion deals with convex optimization problems and perfect recovery is guaranteed under appropriate
conditions.

In this work, we focus on exploiting side information to improve the sample complexity and scala-
bility of matrix completion. We assume that besides the observed entries in the matrix M, there exist
two side information matrices A € R™"*"= and B € R™*" wherer < r, < nandr < r, < m.
We further assume the target matrix and the side information matrices share the same latent informa-
tion; that is, the column and row vectors in M lie in the subspaces spanned by the column vectors in
A and B, respectively. Unlike the standard theory of matrix completion that needs to find the opti-
mal matrix M of size n X m, our optimization problem is reduced to searching for an optimal matrix
of size r, X 13, making the recovery significantly more efficient both computationally and storage
wise provided r, < n and/or r;, < m. We show that, with the assistance of side information matri-
ces, with a high probability, we can perfectly recover M with O(r(r, + rp) In(rq + 1) In(n + m))
observed entries, a sample complexity that is sublinear in n and m.

We demonstrate the effectiveness of matrix completion with side information in transductive in-
complete multi-label learning [17], which aims to assign multiple labels to individual instances in
a transductive learning setting. We formulate transductive incomplete multi-label learning as a ma-
trix completion problem, i.e., completing the instance-label matrix based on the observed entries
that correspond to the given label assignments. Both the feature vectors of instances and the class
correlation matrix can be used as side information. Our empirical study shows that the proposed
approach is particularly effective when the number of given label assignments is small, verifying
our theoretical result, i.e., side information can be used to reduce the sample complexity.

The rest of the paper is organized as follows: Section 2 briefly reviews some related work. Section 3
presents our main contribution. Section 4 presents our empirical study. Finally Section 5 concludes
with future issues.

2 Related work

Matrix Completion The objective of matrix completion is to fill out the missing entries of a matrix
based on the observed ones. Early work on matrix completion, also referred to as maximum margin
matrix factorization [37], was developed for collaborative filtering. Theoretical studies show that, it
is sufficient to perfectly recover a matrix M € R™*" of rank r when the number of observed entries
is O(r(n 4+ m)In*(n +m)) [11, 12, 34]. A more general matrix recovery problem, referred to as
matrix regression, was examined in [30, 36]. Unlike these studies, our proposed approach reduces
the sample complexity with the help of side information matrices.

Several computational algorithms [10, 22, 23, 25, 27, 28, 39] have been developed to efficiently
solve the optimization problem of matrix completion. The main problem with these algorithms lies
in the fact that they have to explicitly update the full matrix of size n X m, which is expensive both
computationally and storage wise for large matrices. This issue has been addressed in several recent
studies [5, 19], where the key idea is to store and update the low rank factorization of the target
matrix. A preliminary convergence analysis is given in [19], however, none of these approaches
guarantees perfect recovery of the target matrix, even with significantly large number of observed
entries. In contrast, our proposed approach reduces the computational cost by explicitly exploring
the side information matrices and still delivers the promise of perfect recovery.

Several recent studies involve matrix recovery with side information. [2, 3, 29, 33] are based on
graphical models by assuming special distribution of latent factors; these algorithms, as well as [16]
and [32], consider side information in matrix factorization. The main limitation lies in the fact that
they have to solve non-convex optimization problems, and do not have theoretical guarantees on
matrix recovery. Matrix completion with infinite dimensional side information was exploited in [1],



yet lacking guarantee of perfect recovery. In contrast, our work is based on matrix completion theory
that deals with a general convex optimization problem and is guaranteed to make a perfect recovery
of the target matrix.

Multi-label Learning Multi-label learning allows each instance to be assigned to multiple classes
simultaneously, making it more challenging than multi-class learning. The simplest approach for
multi-label learning is to train one binary model for each label, which is also referred to as BR
(Binary Relevance) [7]. Many advanced algorithms have been developed to explicitly explore the
dependence among labels ( [44] and references therein).

In this work, we will evaluate our proposed approach by transductive incomplete multi-label learn-
ing [17]. Let X = (x1,...,%,)| € R"* be the feature matrix with x; € RY, where n is
the number of instances and d is the dimension. Let Cy,...,C,, denote the m labels, and let
T € {—1,41}"*™ be the instance-label matrix, where 7; ; = +1 when x; is associated with
the label C;, and T} ; = —1 when x; is not associated with the label C;. Let €2 denote the subset of
the observed entries in 7" that corresponds to the given label assignments of instances. The objective
of transductive incomplete multi-label learning is to predict the missing entries in 7' based on the
feature matrix X and the given label assignments in 2. The main challenge lies in the fact that only
a partial label assignment is given for each training instance. This is in contrast to many studies on
common semi-supervised or transductive multi-label learning [18, 24, 26, 43] where each labeled
instance receives a complete set of label assignments. This is also different from multi-label learn-
ing with weak labels [8, 38] which assumes that only the positive labels can be observed. Here we
assume the observed labels can be either positive or negative.

In [17], a matrix completion based approach was proposed for transductive incomplete multi-label
learning. To effectively exploit the information in the feature matrix X, the authors proposed to
complete the matrix 77 = [X, T that combines the input features with label assignments into a
single matrix. Two algorithms MC-b and MC-1 were presented there, differing only in the treatment
of bias term, whereas the convergence of MC-1 was examined in [9]. The main limitation of both
algorithms lies in their high computational cost when both the number of instances and features are
large. Unlike MC-1 and MC-b, our proposed approach does not need to deal with the big matrix
T’, and is computationally more efficient. Besides the computational advantage, we show that our
proposed approach significantly improves the sample complexity of matrix completion by exploiting
side information matrices.

3 Speedup Matrix Completion with Side Information

We first describe the framework of matrix completion with side information, and then present its
theoretical guarantee and application to multi-label learning

3.1 Matrix Completion using Side Information

Let M € R™ ™ be the target matrix of rank r to be recovered. Without loss of generality, we
assume n > m. Let \g, k € {1,...,r} be the kth largest singular value of M, and let uy € R"
and v, € R™ be the corresponding left and right singular vectors, i.e., M = UXVT, where
Y =diag(M,..., ), U= (u1,...,uy)and V = (vy,...,v,).

Let Q@ C {1,...,n} x {1,...,m} be the subset of indices of observed entries sampled uniformly
from all entries in M. Given (2, we define a linear operator R (M) : R™"*™ — R"*™ gg

[Ra(M))i; = { Mo 8?% ; o

Using Rq(+), the standard matrix completion problem is:

“min |[M|ls st Ro(M) =Ra(M), (1)
MeRnxm

where || - ||+ is the trace norm.

Let A= (aj,...,a,,) € R"*" and B = (by,...,b,,) € R™*" be the side information matrices,

where r < r, < nandr < r, < m. Without loss of generality, we assume that r, > r; and that



both A and B are orthonormal matrices, i.e., a] a; = §; ; and b/ b; = ¢, ; for any i and j, where
0;,; is the Kronecker delta function that outputs 1 if ¢ = j and 0, otherwise. In case when the side
information is not available, A and B will be set to identity matrix.

The objective is to complete a matrix M of rank r with the side information matrices A and B. We
make the following assumption in order to fully exploit the side information:

Assumption A: the column vectors in M lie in the subspace spanned by the column vectors in A,
and the row vectors in M lie in the subspace spanned by the column vectors in B.

To understand the implication of this assumption, let us consider the problem of transductive incom-
plete multi-label learning [17], where the objective is to complete the instance-label matrix based on
the observed entries corresponding to the given label assignments, and the side information matrices
A and B are given by the feature vectors of instances and the label correlation matrix, respectively.
Assumption A essentially implies that all the label assignments can be accurately predicted by a
linear combination of feature vectors of instances.

Using Assumption A, we can write M as M = AZyB' and therefore, our goal is to learn Z, €
R7«*7s  Following the standard theory for matrix completion [11, 12, 34], we can cast the matrix
completion task into the following optimization problem:

min || Z|ly s.t. Rq(AZBT) =Rq(M). 2)

ZERTa X"y
Unlike the standard algorithm for matrix completion that requires solving an optimization problem

involved matrix of n X m, the optimization problem given in (2) only deals with a matrix Z of
rq X Tp, and therefore can be solved significantly more efficiently if r, < n and r, < m.

3.2 Theoretical Result

We define pp and p1, the coherence measurements for matrix M as

n 2 m 2
max ( — max ||[Pye;||", — max || Pye,

o (2 o hPved. 2 mo Pves?).

mn T1. 32
pr = max—([UV '];;)"

1,7 T

where e; is the vector with the ith entry equal to 1 and all others equal to 0, and Py and Py project
a vector onto the subspace spanned by the column vectors of U and V/, respectively. We also define
the coherence measure for matrices A and B as

2 2
_ Al m|| B«
pnap = max | max ———, max ———— |,
1<i<n Ta 1<j<m Ty
where A; ., and B; , stand for the ith row of A and B, respectively.

Theorem 1. Let = max(uo, pap). Define qo = 1(1+1logyre —logyr), Qo =

@u max(p1, p)r(re + ) Inn and O = %/ﬁ(rum +72)Inn. Assume Q1 > qo€. With a

probability at least 1 — 4(qo + 1)n= 1 — 2qon=P12, Zy is the unique optimizer to the problem in
(2) provided

64
Q| > Tﬂumax(ul,u) (1+1logyre —logyr)r(re +7p) lnn.

Compared to the standard matrix completion theory [34], the side information matrices reduce sam-
ple complexity from O(r(n+m) In*(n+m)) to O(r(rq +13) In(re 4+73) Inn). When r, < n and
rp < m, the side information allows us significantly reduce the number of observed entries required
for perfectly recovering matrix M. We defer the technical proof of Theorem 1 to the supplementary
material due to page limit. Note that although we follow the framework of [34] for analysis, namely
first proving the result under deterministic conditions, and then showing that the deterministic con-
ditions hold with a high probability, our technical proof is quite different due to the involvement of
side information matrices A and B.



3.3 Application to Multi-Label Learning

Similar to the Singular Vector Thresholding (SVT) method [10], we approximate the problem in ( 2)
by an unconstrained optimization problem, i.e.,

min_ £(Z2) = A|Z|lir + = |Ra(AZBT - M), 3)
ZERTaXTp 2

where A > 0 is introduced to weight the trace norm regularization term against the regression error.

We develop an algorithm that exploits the smoothness of the loss function and therefore achieves

O(1/T?) convergence, where T is the number of iterations. Details of the algorithm can be found

in the supplementary material. We refer to the proposed algorithm as Maxide.

For transductive incomplete multi-label learning, we abuse our notation by defining n as the number
of instances, m as the number of labels, and d as the dimensionality of input patterns. Our goal is
to complete the instance-label matrix M € R™*™ by using (i) the feature matrix X € R"*? and
(ii) the observed entries €2 in M (i.e., the given label assignments). We thus set the side information
matrix A to include the top left singular vectors of X, and B = I to indicate that no side information
is available for the dependence among labels. We note that the low rank assumption of instance-label
matrix M implies a linear dependence among the label prediction functions. This assumption has
been explored extensively in the previous studies of multi-label learning [17, 21, 38].

4 Experiments

We evaluate the proposed algorithm for matrix completion with side information on both synthet-
ic and real data sets. Our implementation is in Matlab except that the operation Ro(L X R) is
implemented in C. All the results were obtained on a Linux server with CPU 2.53GHz and 48GB
memory.

4.1 Experiments on Synthetic Data

To create the side information matrices A and B, we first generate a random matrix F' € R™"*™,
with each entry F; ; drawn independently from A/(0, 1). Side information matrix A includes the
first r, left singular vectors of F', and B includes the first 1, right singular vectors. To create Z,
we generate two Gaussian random matrices Z4 € R™*" and Zg € R"™*", where each entry
is sampled independently from A(0,1). The singular value decomposition of AZ4 and BZp is
given by AZs = U1 Vil and BZp = VX,V respectively. We create a diagonal matrix ¥ €
R™*", whose diagonal entries are drawn independently from A/(0,10%). Zy is then given by Zy =

(ZA2T(VIYN2(Ze 2l (V)T where T denotes the pseudo inverse of a matrix. Finally, the target
matrix M is givenby M = AZyB'.

Settings and Baselines Our goal is to show that the proposed algorithm is able to accu-
rately recover the target matrix with significantly smaller number of entries and less compu-
tational time. In this study, we only consider square matrices (i.e., m = n), with n =
1,000; 5, 000; 10, 000; 20, 000; 30, 000 and rank » = 10; 50; 100. Both r, and 7}, of side informa-
tion matrices are set to be 2r, and |2|, the number of observed entries, is set to be 7(2n — r), which
is significantly smaller than the number of observed entries used in previous studies [10, 25, 27].
We repeat each experiment 10 times, and report the result averaged over 10 runs. We compare the
proposed Maxide algorithm with three state-of-the-art matrix completion algorithms: Singular Vec-
tor Thresholding (SVT) [10], Fixed Point Bregman Iterative Method (FPCA) [27] and Augmented
Lagrangian Method (ALM) [25]. In addition to these matrix completion methods, we also com-
pare with a trace norm minimizing method (TraceMin) [6]. For all the baseline, we use the codes
provided by their original authors with their default parameter settings.

Results We measure the performance of matrix completion by the relative error ||[AZB"T —
M]||r/||M || r and report the results of both relative error and running time in Table 1. For TraceMin,
we observe that for n = 1,000 and » = 10, it gives the result of 1.75 x 10~7 within 2.94 x 10*
seconds, which is really slow compared to our proposal. For n = 1,000 and r» = 50, it gives no
result within one week. In Table 1, we first observed that for all the cases, the relative error achieved



Table 1: Results on synthesized data sets. n is the size of a squared matrix and r is its rank. Rate is the
number of observed entries divided by the size of the matrix, that is, |©2|/(nm). Time measures the running
time in seconds and Relative error measures ||AF BT — M||r/||M||r. The best performance for each setting
are bolded. We do not report the results for FPCA and SVT when n > 5,000 because they were unable to
finish the computation after 50 hours.

n o r Rate Alg. Time Relative error | Algo. Time Relative error
1,000 10 1.99 x 10~ 2 [[Maxide 1.89 x 10 6.42 x 10~ 7 |[FPCA 5.55 x 10° 8.79 x 10~ !
SVT 3.23 x 10° 8.76 x 10* | ALM 2.92 x 10! 8.46 x 10~*
50 9.75 x 10~ 2 [[Maxide 6.44 x 10T 5.28 x 10~ S3|FPCA 7.60 x 10° 5.53 x 10~ 1
SVT 3.51 x 10%  2.77 x 10° | ALM 7.72 x 10! 5.58 x 107!
100 1.900 x 10~ I[[Maxide 1.94 x 10% 1.91 x 10~ S|[FPCA 1.71 x 10T 4.63 x 10~ !
SVT 3.82 x 10 7.45 x 10* | ALM 8.57 x 10* 3.59 x 10~!

5,000 10 3.96 x 10~ ° |[Maxide 3.50 x 10T 6.38 x 10~ %[ ALM 1.24 x 10° 9.07 x 10~ !
50 1.99 x 10~ 2 [[Maxide 4.56 x 10% 1.43 x 10~ /| ALM 1.79 x 10° 7.26 x 10~ 1
100 3.96 x 10~ 2 |[[Maxide 1.29 x 10% 2.44 x 10~ 3| ALM 2.14 x 10° 5.51 x 10~ !
10,000 10 2.00 x 10~ [[Maxide 6.18 x 10T 1.63 x 10~ 3| ALM 7.16 x 10° 9.10 x 10~ "
50 9.98 x 10~ ° |[Maxide 8.39 x 10% 9.97 x 10 2| ALM 7.87 x 10° 7.19 x 10~ 1
100 1.99 x 10~ 2 [[Maxide 4.47 x 10% 1.67 x 10~ '| ALM 9.50 x 10° 6.41 x 10~ !
20,000 10 1.00 x 10~ 2 [[Maxide 1.22 x 10% 3.54 x 10~ 3| ALM 3.62 x 10T 9.49 x 10~ L
50 4.99 x 10~ ° [[Maxide 2.16 x 102 4.51 x 10~ %[ ALM 4.09 x 10% 8.51 x 10~ 1
30,000 10 6.67 x 10~ % [[Maxide 4.37 x 10% 3.25 x 10~ 3| ALM 8.69 x 107 9.53 x 101

by the baseline methods is (1), implying that none of them is able to make accurate recovery of
the target matrix given the small number of observed entries. In contrast, our proposed algorithm
is able to recover the target matrix with small relative error. In addition, our proposed algorithm
is computationally more efficient than the baseline methods. The improvement in computational
efficiency becomes more significant for large matrices.

4.2 Application to Transductive Incomplete Multi-Label Learning

We evaluate the proposed algorithm for transductive incomplete multi-label learning on thirteen
benchmark data sets, including eleven data sets for web page classification from “yahoo.com” [40],
and two image classification data sets NUS-WIDE [14] and Flickr [45]. For the eleven “yahoo.com”
data sets, the number of instances is n = 5, 000 and the number of dimensions varies from 438 to
1,047, with the number of labels varies from 21 to 40. Detailed information of these eleven data sets
can be found in [40]. For NUS-WIDE data set, we have n = 209, 347 images each represented by
a bag-of-words model with d = 500 visual words, and 81 labels. For the Flickr data set, we only
keep the first 1,000 most popular keywords for labels, leaving us with n = 565, 444 images, each
represented by a d = 297-dimension vector.

Settings and Baselines For each data set, we randomly sample 10% instances for testing (unla-
beled data) and use the remaining 90% data for training. No label assignment is provided for any test
instance. To create partial label assignments for training data, for each label C;, we expose the label
assignment of C; for w% randomly sampled positive and negative training instances and keep the
label assignment of C; unknown for the rest of the training instances. To examine the performance of
the proposed algorithm, we vary the w% in the range {10%, 20%, 40% }. We repeat each experiment
10 times, and report the result averaged over 10 trials. The regularization parameter A is selected
from 2{=10:=9,--:9.10} by cross validation on training data for smaller data sets and set as 1 for larger
ones. Parameters 7y and e are set to be 2 and 105, respectively, for the proposed algorithm, and the
maximum number of iterations is set to be 100. The Average Precision [44], which measures the
average number of relevant labels ranked before a particular relevant label, is computed over the test
data (the metric on all the data is provided in the supplementary material) and used as our evaluation
metric.

We compare the proposed Maxide method with MC-1 and MC-b, the state-of-the-art methods for
transductive incomplete multi-label learning developed in [17]. In addition, we also compare with
two reference methods for multi-label learning that train one binary classifier for each label; that
is, the Binary Relevance method [7] based on Linear kernel (BR-L) and the method based on RBF
kernel (BR-R), where the kernel width is set to 1. For the eleven data sets from “yahoo.com”,



LIBSVM [13] is used by BR-L and BR-R to learn both a linear and nonlinear SVM classifier. For
the two image data sets, due to their large size, only BR-L method is included in comparison and
LIBLINEAR is used for the implementation of BR-L due to its high efficiency for large data sets. A
similar strategy is used to determine the optimal A as our proposal.

Results Table 2 summarizes the results on transductive incomplete multi-label learning. We ob-
serve that the proposed Maxide algorithm outperforms the baseline methods, for most setting on
several data sets (e.g., Business, Education, and Recreation), and the improvements are significant.
More impressively, for most data sets, the proposed algorithm is three order faster than MC-1 and
MC-b. For the NUS-WIDE data set, none of MC-1 and MC-b, the two existing matrix completion
based algorithms for transductive incomplete multi-label learning, is able to finish within one week.
For the Flickr data set, MC-1 and MC-b are not runnable due to the out of memory problem. For the
NUS-WIDE and Flickr data sets, our proposed Maxide method gets an average of more than 50%
improvement against BR-L, the only runnable baseline, on the Average Precision.

5 Conclusion

In this paper, we develop the theory of matrix completion with side information. We show theoreti-
cally that, with side information matrices A € R"*"+ and B € R™*"*, we can perfectly recover an
n x m rank-r matrix with only O(r(r, + rp) In(r, 4+ 75) In(n 4+ m)) observed entries, a significant
improvement compared to the sample complexity O(r(n + m) In?(n 4+ m)) for the standard theory
for matrix completion. We present the Maxide algorithm that can efficiently solve the optimization
problem for matrix completion with side information. Empirical studies with synthesized data sets
and transductive incomplete multi-label learning show the promising performance of the proposed
algorithm.
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Table 2: Results on transductive incomplete multi-label learning. Algo. specifies the name of the algorithms.
Time is the CPU time measured in seconds. AP is Average Precision measured based on test data; the higher the
AP, the better the performance. w% represents the percentage of training instances with observed label assign-
ment for each label. The best result and its comparable ones (pairwise single-tailed t-tests at 95% confidence
level) are bolded.

Data Aleo w% = 10% w% = 20% w% = 40%
£0- time AP time AP time AP
Arts Maxide 3.09 x 10° 0.548 3.60 x 10° 0.572 4.42 x 10° 0.596
MC-b 2.47 x 10* 0.428 1.59 x 10* 0.444 9.54 x 10 0.434
MC-1 2.39 x 10% 0.430 2.05 x 10* 0.494 1.27 x 10* 0.473
BR-R 1.63 x 10* 0.540 2.98 x 10* 0.563 5.71 x 10* 0.574
BR-1 1.77 x 10* 0.540 3.07 x 10* 0.563 7.10 x 10* 0.575
Business Maxide 3.24 x 107 0.868 3.89 x 10° 0.860 5.04 x 10° 0.872
MC-b 2.94 x 10* 0.865 1.83 x 10* 0.851 1.08 x 10* 0.858
MC-1 3.25 x 10% 0.865 2.18 x 10* 0.855 1.21 x 10* 0.862
BR-R 1.02 x 10* 0.846 1.78 x 10* 0.841 3.32 x 10! 0.854
BR-1 1.19 x 10* 0.846 1.96 x 10* 0.841 4.30 x 10t 0.854
Computers Maxide 4.67 x 10° 0.635 5.81 x 10° 0.660 7.79 x 10° 0.675
MC-b 5.58 x 10% 0.597 3.38 x 10* 0.599 1.87 x 10* 0.604
MC-1 6.56 x 10% 0.600 4.40 x 10* 0.608 2.30 x 10* 0.618
BR-R 2.34 x 10! 0.622 4.13 x 10* 0.649 7.68 x 10! 0.662
BR-1 2.70 x 10! 0.621 4.50 x 10* 0.648 8.25 x 10! 0.661
Education Maxide 4.40 x 109 0.566 5.41 x 10° 0.604 6.73 x 10° 0.618
MC-b 3.82 x 10% 0.472 2.40 x 10* 0.478 1.32 x 10* 0.474
MC-1 4.68 x 10* 0.484 3.02 x 10% 0.536 1.55 x 10% 0.564
BR-R 1.77 x 10* 0.535 3.16 x 10* 0.568 6.01 x 10! 0.583
BR-1 1.94 x 10* 0.535 3.28 x 10* 0.568 6.94 x 10! 0.583
Entertainment Maxide 2.77 x 107 0.631 3.41 x 10° 0.650 4.56 x 10° 0.679
MC-b 4.86 x 10* 0.474 3.13 x 10* 0.467 1.73 x 10% 0.468
MC-1 4.40 x 10* 0.489 4.15 x 10* 0.492 2.27 x 10* 0.578
BR-R 1.89 x 10* 0.628 3.38 x 10* 0.638 6.47 x 10* 0.668
BR-1 2.04 x 10t 0.627 3.44 x 10* 0.640 6.41 x 10t 0.667
Health Maxide 4.31 x 109 0.725 5.36 x 10° 0.746 7.11 x 10° 0.769
MC-b 4.98 x 10* 0.609 2.99 x 10* 0.607 1.71 x 10* 0.610
MC-1 5.82 x 10% 0.626 3.82 x 10% 0.632 2.03 x 10* 0.645
BR-R 2.03 x 10! 0.725 3.61 x 10* 0.742 6.83 x 10! 0.757
BR-1 2.16 x 10! 0.725 3.59 x 10% 0.741 7.05 x 10t 0.757
Recreation Maxide 2.75 x 107 0.559 3.38 x 107 0.592 4.44 x 10° 0.614
MC-b 3.56 x 10% 0.381 2.41 x 10* 0.381 1.30 x 10* 0.378
MC-1 3.48 x 10% 0.381 3.25 x 10% 0.430 1.90 x 10% 0.421
BR-R 1.97 x 10* 0.548 3.48 x 10* 0.574 6.53 x 10! 0.596
BR-1 2.24 x 10t 0.547 3.74 x 10* 0.573 6.86 x 10! 0.596
Reference Maxide 5.11 x 10° 0.635 6.47 x 10° 0.666 8.49 x 107 0.696
MC-b 9.38 x 10* 0.565 5.38 x 10* 0.561 2.75 x 10* 0.575
MC-1 1.11 x 10° 0.576 6.53 x 10* 0.576 3.22 x 10* 0.575
BR-R 2.28 x 10! 0.644 3.89 x 10* 0.670 7.08 x 10% 0.693
BR-1 2.71 x 10t 0.644 4.34 x 10* 0.669 7.48 x 10t 0.692
Science Maxide 6.21 x 107 0.513 7.67 x 10° 0.543 1.02 x 107 0.568
MC-b 6.80 x 10* 0.395 3.94 x 10* 0.403 2.06 x 10* 0.394
MC-1 8.50 x 10% 0.411 4.97 x 10* 0.470 2.52 x 10* 0.414
BR-R 2.93 x 10! 0.506 5.06 x 10* 0.535 9.30 x 10! 0.557
BR-1 3.60 x 10! 0.506 5.91 x 10* 0.535 1.04 x 102 0.557
Social Maxide 7.18 x 107 0.721 9.09 x 10° 0.748 1.21 x 107 0.754
MC-b 1.71 x 10° 0.582 9.65 x 10* 0.595 4.56 x 10* 0.594
MC-1 2.22 x 10° 0.602 1.17 x 10° 0.625 5.41 x 10* 0.604
BR-R 3.09 x 10! 0.717 5.35 x 10* 0.746 9.74 x 10! 0.751
BR-1 3.71 x 10t 0.717 6.00 x 10* 0.746 1.02 x 102 0.751
Society Maxide 3.69 x 107 0.580 4.54 x 10° 0.594 5.80 x 10° 0.616
MC-b 4.75 x 10* 0.550 2.93 x 10* 0.545 1.62 x 10% 0.552
MC-1 4.14 x 10* 0.550 3.65 x 10% 0.561 2.04 x 10* 0.590
BR-R 2.50 x 10! 0.571 4.54 x 10* 0.590 8.59 x 10! 0.600
BR-1 2.84 x 10t 0.572 4.92 x 10t 0.590 9.58 x 10! 0.601
NUS-WIDE Maxide 1.47 x 10° 0.513 2.10 x 10° 0.519 3.53 x 10° 0.522
BR-1 1.24 x 102 0.329 2.38 x 102 0.398 4.81 x 102 0.466
Flickr Maxide 1.33 x 10% 0.124 1.89 x 10% 0.124 2.67 x 107 0.124
BR-1 2.48 x 10% 0.064 4.74 x 10* 0.074 1.11 x 10° 0.077
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