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Abstract
We go beyond the notion of pairwise similarity and look into search problems
with k-way similarity functions. In this paper, we focus on problems related to
3-way Jaccard similarity: R3way = |S1∩S2∩S3|

|S1∪S2∪S3| , S1, S2, S3 ∈ C, where C is a
size n collection of sets (or binary vectors). We show that approximate R3way

similarity search problems admit fast algorithms with provable guarantees, analo-
gous to the pairwise case. Our analysis and speedup guarantees naturally extend
to k-way resemblance. In the process, we extend traditional framework of locality
sensitive hashing (LSH) to handle higher-order similarities, which could be of in-
dependent theoretical interest. The applicability of R3way search is shown on the
“Google Sets” application. In addition, we demonstrate the advantage of R3way

resemblance over the pairwise case in improving retrieval quality.

1 Introduction and Motivation
Similarity search (near neighbor search) is one of the fundamental problems in Computer Science.
The task is to identify a small set of data points which are “most similar” to a given input query.
Similarity search algorithms have been one of the basic building blocks in numerous applications
including search, databases, learning, recommendation systems, computer vision, etc.

One widely used notion of similarity on sets is the Jaccard similarity or resemblance [5, 10, 18, 20].
Given two sets S1, S2 ⊆ Ω = {0, 1, 2, ..., D − 1}, the resemblance R2way between S1 and S2 is
defined as: R2way = |S1∩S2|

|S1∪S2| . Existing notions of similarity in search problems mainly work with
pairwise similarity functions. In this paper, we go beyond this notion and look at the problem of
k-way similarity search, where the similarity function of interest involves k sets (k ≥ 2). Our work
exploits the fact that resemblance can be naturally extended to k-way resemblance similarity [18,
21], defined over k sets {S1, S2, ..., Sk} as Rk−way = |S1∩S2∩...∩Sk|

|S1∪S2∪...∪Sk| .

Binary high-dimensional data The current web datasets are typically binary, sparse, and ex-
tremely high-dimensional, largely due to the wide adoption of the “Bag of Words” (BoW) represen-
tations for documents and images. It is often the case, in BoW representations, that just the presence
or absence (0/1) of specific feature words captures sufficient information [7, 16, 20], especially
with (e.g.,) 3-grams or higher-order models. And so, the web can be imagined as a giant storehouse
of ultra high-dimensional sparse binary vectors. Of course, binary vectors can also be equivalently
viewed as sets (containing locations of the nonzero features).

We list four practical scenarios where k-way resemblance search would be a natural choice.

(i) Google Sets: (http://googlesystem.blogspot.com/2012/11/google-sets-still-available.html)
Google Sets is among the earliest google projects, which allows users to generate list of similar
words by typing only few related keywords. For example, if the user types “mazda” and “honda”
the application will automatically generate related words like “bmw”, “ford”, “toyota”, etc. This
application is currently available in google spreadsheet. If we assume the term document binary
representation of each word w in the database, then given query w1 and w2, we show that |w1∩w2∩w|

|w1∪w2∪w|
turns out to be a very good similarity measure for this application (see Section 7.1).
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(ii) Joint recommendations: Users A and B would like to watch a movie together. The profile of
each person can be represented as a sparse vector over a giant universe of attributes. For example,
a user profile may be the set of actors, actresses, genres, directors, etc, which she/he likes. On the
other hand, we can represent a movie M in the database over the same universe based on attributes
associated with the movie. If we have to recommend movie M, jointly to users A and B, then a
natural measure to maximize is |A∩B∩M |

|A∪B∪M | . The problem of group recommendation [3] is applicable
in many more settings such as recommending people to join circles, etc.

(iii) Improving retrieval quality: We are interested in finding images of a particular type of ob-
ject, and we have two or three (possibly noisy) representative images. In such a scenario, a natural
expectation is that retrieving images simultaneously similar to all the representative images should
be more refined than just retrieving images similar to any one of them. In Section 7.2, we demon-
strate that in cases where we have more than one element to search for, we can refine our search
quality using k-way resemblance search. In a dynamic feedback environment [4], we can improve
subsequent search quality by using k-way similarity search on the pages already clicked by the user.

(iv) Beyond pairwise clustering: While machine learning algorithms often utilize the data
through pairwise similarities (e.g., inner product or resemblance), there are natural scenarios where
the affinity relations are not pairwise, but rather triadic, tetradic or higher [2, 30]. The computational
cost, of course, will increase exponentially if we go beyond pairwise similarity.

Efficiency is crucial With the data explosion in modern applications, the brute force way of scan-
ning all the data for searching is prohibitively expensive, specially in user-facing applications like
search. The need for k-way similarity search can only be fulfilled if it admits efficient algorithms.
This paper fulfills this requirement for k-way resemblance and its derived similarities. In particular,
we show fast algorithms with provable query time guarantees for approximate k-way resemblance
search. Our algorithms and analysis naturally provide a framework to extend classical LSH frame-
work [14, 13] to handle higher-order similarities, which could be of independent theoretical interest.

Organization In Section 2, we review approximate near neighbor search and classical Locality
Sensitive Hashing (LSH). In Section 3, we formulate the 3-way similarity search problems. Sec-
tions 4, 5, and 6 describe provable fast algorithms for several search problems. Section 7 demon-
strates the applicability of 3-way resemblance search in real applications.

2 Classical c-NN and Locality Sensitive Hashing (LSH)
Initial attempts of finding efficient (sub-linear time) algorithms for exact near neighbor search, based
on space partitioning, turned out to be a disappointment with the massive dimensionality of current
datasets [11, 28]. Approximate versions of the problem were proposed [14, 13] to break the linear
query time bottleneck. One widely adopted formalism is the c-approximate near neighbor (c-NN).

Definition 1 (c-Approximate Near Neighbor or c-NN). Consider a set of points, denoted by P, in a
D-dimensional space RD, and parameters R0 > 0, δ > 0. The task is to construct a data structure
which, given any query point q, if there exist an R0-near neighbor of q in P, it reports some cR0-near
neighbor of q in P with probability 1− δ.

The usual notion of c-NN is for distance. Since we deal with similarities, we define R0-near neighbor
of point q as a point p with Sim(q, p) ≥ R0, where Sim is the similarity function of interest.

Locality sensitive hashing (LSH) [14, 13] is a popular framework for c-NN problems. LSH is a
family of functions, with the property that similar input objects in the domain of these functions
have a higher probability of colliding in the range space than non-similar ones. In formal terms,
consider H a family of hash functions mapping RD to some set S

Definition 2 (Locality Sensitive Hashing (LSH)). A family H is called (R0, cR0, p1, p2)-sensitive if
for any two points x, y ∈ RD and h chosen uniformly from H satisfies the following:

• if Sim(x, y) ≥ R0 then PrH(h(x) = h(y)) ≥ p1

• if Sim(x, y) ≤ cR0 then PrH(h(x) = h(y)) ≤ p2

For approximate nearest neighbor search typically, p1 > p2 and c < 1 is needed. Note, c < 1 as
we are defining neighbors in terms of similarity. Basically, LSH trades off query time with extra
preprocessing time and space which can be accomplished off-line.
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Fact 1 Given a family of (R0, cR0, p1, p2) -sensitive hash functions, one can construct a data struc-
ture for c-NN with O(nρ log1/p2

n) query time and space O(n1+ρ), where ρ = log 1/p1

log 1/p2
.

Minwise Hashing for Pairwise Resemblance One popular choice of LSH family of functions
associated with resemblance similarity is, Minwise Hashing family [5, 6, 13]. Minwise Hashing
family applies an independent random permutation π : Ω → Ω, on the given set S ⊆ Ω, and looks
at the minimum element under π, i.e. min(π(S)). Given two sets S1, S2 ⊆ Ω = {0, 1, 2, ..., D− 1},
it can be shown by elementary probability argument that

Pr (min(π(S1)) = min(π(S2))) =
|S1 ∩ S2|
|S1 ∪ S2|

= R2way. (1)

The recent work on b-bit minwise hashing [20, 23] provides an improvement by storing only the
lowest b bits of the hashed values: min(π(S1)), min(π(S2)). [26] implemented the idea of building
hash tables for near neighbor search, by directly using the bits from b-bit minwise hashing.

3 3-way Similarity Search Formulation
Our focus will remain on binary vectors which can also be viewed as sets. We illustrate our method
using 3-way resemblance similarity function Sim(S1, S2, S3) = |S1∩S2∩S3|

|S1∪S2∪S3| . The algorithm and
guarantees naturally extend to k-way resemblance. Given a size n collection C ⊆ 2Ω of sets (or
binary vectors), we are particularly interested in the following three problems:

1. Given two query sets S1 and S2, find S3 ∈ C that maximizes Sim(S1, S2, S3).
2. Given a query set S1, find two sets S2, S3 ∈ C maximizing Sim(S1, S2, S3).
3. Find three sets S1, S2, S3 ∈ C maximizing Sim(S1, S2, S3).

The brute force way of enumerating all possibilities leads to the worst case query time of O(n),
O(n2) and O(n3) for problem 1, 2 and 3, respectively. In a hope to break this barrier, just like the
case of pairwise near neighbor search, we define the c-approximate (c < 1) versions of the above
three problems. As in the case of c-NN, we are given two parameters R0 > 0 and δ > 0. For each
of the following three problems, the guarantee is with probability at least 1− δ:

1. (3-way c-Near Neighbor or 3-way c-NN) Given two query sets S1 and S2, if there
exists S3 ∈ C with Sim(S1, S2, S3) ≥ R0, then we report some S′

3 ∈ C so that
Sim(S1, S2, S

′
3) ≥ cR0.

2. (3-way c-Close Pair or 3-way c-CP) Given a query set S1, if there exists a pair of
set S2, S3 ∈ C with Sim(S1, S2, S3) ≥ R0, then we report sets S′

2, S
′
3 ∈ C so that

Sim(S1, S
′
2, S

′
3) ≥ cR0.

3. (3-way c-Best Cluster or 3-way c-BC) If there exist sets S1, S2, S3 ∈ C with
Sim(S1, S2, S3) ≥ R0, then we report sets S′

1, S
′
2, S

′
3 ∈ C so that Sim(S′

1, S
′
2, S

′
3) ≥ cR0.

4 Sub-linear Algorithm for 3-way c-NN
The basic philosophy behind sub-linear search is bucketing, which allows us to preprocess dataset
in a fashion so that we can filter many bad candidates without scanning all of them. LSH-based
techniques rely on randomized hash functions to create buckets that probabilistically filter bad can-
didates. This philosophy is not restricted for binary similarity functions and is much more general.
Here, we first focus on 3-way c-NN problem for binary data.

Theorem 1 For R3way c-NN one can construct a data structure with O(nρ log1/cR0
n) query time

and O(n1+ρ) space, where ρ = 1− log 1/c
log 1/c+log 1/R0

. �

The argument for 2-way resemblance can be naturally extended to k-way resemblance. Specifically,
given three sets S1, S2, S3 ⊆ Ω and an independent random permutation π : Ω → Ω, we have:

Pr (min(π(S1))=min(π(S2))=min(π(S3))) = R3way. (2)

Eq.( 2) shows that minwise hashing, although it operates on sets individually, preserves all 3-way
(in fact k-way) similarity structure of the data. The existence of such a hash function is the key
requirement behind the existence of efficient approximate search. For the pairwise case, the proba-
bility event was a simple hash collision, and the min-hash itself serves as the bucket index. In case
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of 3-way (and higher) c-NN problem, we have to take care of a more complicated event to create an
indexing scheme. In particular, during preprocessing we need to create buckets for each individual
S3, and while querying we need to associate the query sets S1 and S2 to the appropriate bucket. We
need extra mechanisms to manipulate these minwise hashes to obtain a bucketing scheme.

Proof of Theorem 1: We use two additional functions: f1 : Ω → N for manipulating min(π(S3))
and f2 : Ω × Ω → N for manipulating both min(π(S1)) and min(π(S2)). Let a ∈ N+ such that
|Ω| = D < 10a. We define f1(x) = (10a + 1) × x and f2(x, y) = 10ax + y. This choice ensures
that given query S1 and S2, for any S3 ∈ C, f1(min(π(S3))) = f2(min(π(S1)),min(π(S2))) holds
if and only if min(π(S1)) = min(π(S2)) = min(π(S2)), and thus we get a bucketing scheme.
To complete the proof, we introduce two integer parameters K and L. Define a new hash function
by concatenating K events. To be more precise, while preprocessing, for every element S3 ∈ C
create buckets g1(S3) = [f1(h1(S3)); ...; f1(hK(S3))] where hi is chosen uniformly from minwise
hashing family. For given query points S1 and S2, retrieve only points in the bucket g2(S1, S2) =
[f2(h1(S1), h1(S2)); ...; f2(hK(S1), hK(S2))]. Repeat this process L times independently. For any
S3 ∈ C, with Sim(S1, S2, S3) ≥ R0, is retrieved with probability at least 1 − (1 − RK

0 )L. Using
K = ⌈ logn

log 1
cR0

⌉ and L = ⌈nρ log( 1δ )⌉, where ρ = 1 − log 1/c
log 1/c+log 1/R0

, the proof can be obtained

using standard concentration arguments used to prove Fact 1, see [14, 13]. It is worth noting that
the probability guarantee parameter δ gets absorbed in the constants as log( 1δ ). Note, the process is
stopped as soon as we find some element with R3way ≥ cR0. �

Theorem 1 can be easily extended to k-way resemblance with same query time and space guarantees.
Note that k-way c-NN is at least as hard as k∗-way c-NN for any k∗ ≤ k, because we can always
choose (k−k∗+1) identical query sets in k-way c-NN, and it reduces to k∗-way c-NN problem. So,
any improvements in R3way c-NN implies improvement in the classical min-hash LSH for Jaccard
similarity. The proposed analysis is thus tight in this sense.

The above observation makes it possible to also perform the traditional pairwise c-NN search using
the same hash tables deployed for 3-way c-NN. In the query phase we have an option, if we have
two different queries S1, S2, then we retrieve from bucket g2(S1, S2) and that is usual 3-way c-NN
search. If we are just interested in pairwise near neighbor search given one query S1, then we will
look into bucket g2(S1, S1), and we know that the 3-way resemblance between S1, S1, S3 boils
down to the pairwise resemblance between S1 and S3. So, the same hash tables can be used for
both the purposes. This property generalizes, and hash tables created for k-way c-NN can be used
for any k∗-way similarity search so long as k∗ ≤ k. The approximation guarantees still holds. This
flexibility makes k-way c-NN bucketing scheme more advantageous over the pairwise scheme.
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Figure 1: ρ = 1− log 1/c
log 1/c+log 1/R0

.

One of the peculiarity of LSH based techniques is that the
query complexity exponent ρ < 1 is dependent on the choice
of the threshold R0 we are interested in and the value of c
which is the approximation ratio that we will tolerate. Figure 1
plots ρ = 1− log 1/c

log 1/c+log 1/R0
with respect to c, for selected R0

values from 0.01 to 0.99. For instance, if we are interested in
highly similar pairs, i.e. R0 ≈ 1, then we are looking at near
O(log n) query complexity for c-NN problem as ρ ≈ 0. On
the other hand, for very lower threshold R0, there is no much
of hope of time-saving because ρ is close to 1.

5 Other Efficient k-way Similarities
We refer to the k-way similarities for which there exist sub-linear algorithms for c-NN search with
query and space complexity exactly as given in Theorem 1 as efficient . We have demonstrated
existence of one such example of efficient similarities, which is the k-way resemblance. This leads
to a natural question: “Are there more of them?”.

[9] analyzed all the transformations on similarities that preserve existence of efficient LSH search. In
particular, they showed that if S is a similarity for which there exists an LSH family, then there also
exists an LSH family for any similarity which is a probability generating function (PGF) transfor-
mation on S. PGF transformation on S is defined as PGF (S) =

∑∞
i=1 piSi, where S ∈ [0, 1] and

pi ≥ 0 satisfies
∑∞

i=1 pi = 1. Similar theorem can also be shown in the case of 3-way resemblance.
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Theorem 2 Any PGF transformation on 3-way resemblance R3way is efficient. �

Recall in the proof of Theorem 1, we created hash assignments f1(min(π(S3))) and
f2(min(π(S1)),min(π(S2))), which lead to a bucketing scheme for the 3-way resemblance search,
where the collision event E = {f1(min(π(S3)) = f2(min(π(S1)),min(π(S2)))} happens with
probability Pr(E) = R3way . To prove the above Theorem 2, we will need to create hash events
having probability PGF (R3way) =

∑∞
i=1 pi(R3way)

i. Note that 0 ≤ PGF (R3way) ≤ 1. We will
make use of the following simple lemma.

Lemma 1 (R3way)n is efficient for all n ∈ N.

Proof: Define new hash assignments gn1 (S3) = [f1(h1(S3)); ...; f1(hn(S3))] and gn2 (S1, S2) =
[f2(h1(S1), h1(S2)); ...; f2(hn(S1), hn(S2))]. The collision event gn1 (S3) = gn2 (S1, S2) has
probability (R3way)n. We now use the pair < gn1 , gn2 > instead of < f1, f2 > and obtain same
guarantees, as in Theorem 1, for (R3way)n as well. �

Proof of Theorem 2: From Lemma 1, let < gi1, g
i
2 > be the hash pair corresponding to (R3way)i

as used in above lemma. We sample one hash pair from the set {< gi1, g
i
2 >: i ∈ N}, where

the probability of sampling < gi1, g
i
2 > is proportional to pi. Note that pi ≥ 0, and satisfies∑∞

i=1 pi = 1, and so the above sampling is valid. It is not difficult to see that the collision of the
sampled hash pair has probability exactly

∑∞
i=1 pi(R3way)i. �

Theorem 2 can be naturally extended to k-way similarity for any k ≥ 2. Thus, we now have
infinitely many k-way similarity functions admitting efficient sub-linear search. One, that might be
interesting, because of its radial basis kernel like nature, is shown in the following corollary.

Corollary 1 eR
k−way−1 is efficient.

Proof: Use the expansion of eR
k−way

normalized by e to see that eR
k−way−1 is a PGF on Rk−way .�

6 Fast Algorithms for 3-way c-CP and 3-way c-BC Problems
For 3-way c-CP and 3-way c-BC problems, using bucketing scheme with minwise hashing family
will save even more computations.

Theorem 3 For R3way c-Close Pair Problem (or c-CP) one can construct a data structure with
O(n2ρ log1/cR0

n) query time and O(n1+2ρ) space, where ρ = 1− log 1/c
log 1/c+log 1/R0

. �

Note that we can switch the role of f1 and f2 in the proof of Theorem 1. We are thus left with a c-NN
problem with search space O(n2) (all pairs) instead of n. A bit of analysis, similar to Theorem 1,
will show that this procedure achieves the required query time O(n2ρ log1/cR0

n), but uses a lot
more space, O(n2(1+ρ)), than shown in the above theorem. It turns out that there is a better way of
doing c-CP that saves us space.

Proof of Theorem 3: We again start with constructing hash tables. For every element Sc ∈ C, we
create a hash-table and store Sc in bucket B(Sc) = [h1(Sc);h2(Sc); ...;hK(Sc)], where hi is chosen
uniformly from minwise independent family of hash functions H. We create L such hash-tables. For
a query element Sq we look for all pairs in bucket B(Sq) = [h1(Sq);h2(Sq); ...;hK(Sq)] and repeat
this for each of the L tables. Note, we do not form pairs of elements retrieved from different tables
as they do not satisfy Eq. (2). If there exists a pair S1, S2 ∈ C with Sim(Sq, S1, S2) ≥ R0, using
Eq. (2), we can see that we will find that pair in bucket B(Sq) with probability 1 − (1 − RK

0 )L.
Here, we cannot use traditional choice of K and L, similar to what we did in Theorem 1, as there
are O(n2) instead of O(n) possible pairs. We instead use K = ⌈ 2 logn

log 1
cR0

⌉ and L = ⌈n2ρ log( 1δ )⌉,

with ρ = 1 − log 1/c
log 1/c+log 1/R0

. With this choice of K and L, the result follows. Note, the process
is stopped as soon as we find pairs S1 and S2 with Sim(Sq, S1, S2) ≥ cR0. The key argument that
saves space from O(n2(1+ρ)) to O(n1+2ρ) is that we hash n points individually. Eq. (2) makes it
clear that hashing all possible pairs is not needed when every point can be processed individually,
and pairs formed within each bucket itself filter out most of the unnecessary combinations. �
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Theorem 4 For R3way c-Best Cluster Problem (or c-BC) there exist an algorithm with running time
O(n1+2ρ log1/cR0

n), where ρ = 1− log 1/c
log 1/c+log 1/R0

. �

The argument similar to one used in proof of Theorem 3 leads to the running time of
O(n1+3ρ log1/cR0

n) as we need L = O(n3ρ), and we have to processes all points at least once.

Proof of Theorem 4: Repeat c-CP problem n times for every element in collection C acting
as query once. We use the same set of hash tables and hash functions every time. The prepro-
cessing time is O(n1+2ρ log1/cR0

n) evaluations of hash functions and the total querying time is
O(n× n2ρ log1/cR0

n), which makes the total running time O(n1+2ρ log1/cR0
n). �

For k-way c-BC Problem, we can achieve O(n1+(k−1)ρ log1/cR0
n) running time. If we are inter-

ested in very high similarity cluster, with R0 ≈ 1, then ρ ≈ 0, and the running time is around
O(n log n). This is a huge saving over the brute force O(nk). In most practical cases, specially in
big data regime where we have enormous amount of data, we can expect the k-way similarity of
good clusters to be high and finding them should be efficient. We can see that with increasing k,
hashing techniques save more computations.

7 Experiments
In this section, we demonstrate the usability of 3-way and higher-order similarity search using (i)
Google Sets, and (ii) Improving retrieval quality.

7.1 Google Sets: Generating Semantically Similar Words
Here, the task is to retrieve words which are “semantically” similar to the given set of query words.
We collected 1.2 million random documents from Wikipedia and created a standard term-doc bi-
nary vector representation of each term present in the collected documents after removing standard
stop words and punctuation marks. More specifically, every word is represented as a 1.2 million di-
mension binary vector indicating its presence or absence in the corresponding document. The total
number of terms (or words) was around 60,000 in this experiment.

Since there is no standard benchmark available for this task, we show qualitative evaluations. For
querying, we used the following four pairs of semantically related words: (i) “jaguar” and “tiger”;
(ii) “artificial” and “intelligence”; (iii) “milky” and “way” ; (iv) “finger” and “lakes”. Given the
query words w1 and w2, we compare the results obtained by the following four methods.

• Google Sets: We use Google’s algorithm and report 5 words from Google spreadsheets [1].
This is Google’s algorithm which uses its own data.

• 3-way Resemblance (3-way): We use 3-way resemblance |w1∩w2∩w|
|w1∪w2∪w| to rank every word

w and report top 5 words based on this ranking.
• Sum Resemblance (SR): Another intuitive method is to use the sum of pairwise resem-

blance |w1∩w|
|w1∪w| + |w2∩w|

|w2∪w| and report top 5 words based on this ranking.
• Pairwise Intersection (PI): We first retrieve top 100 words based on pairwise resemblance

for each w1 and w2 independently. We then report the words common in both. If there is
no word in common we do not report anything.

The results in Table 1 demonstrate that using 3-way resemblance retrieves reasonable candidates
for these four queries. An interesting query is “finger” and “lakes”. Finger Lakes is a region in
upstate New York. Google could only relate it to New York, while 3-way resemblance could even
retrieve the names of cities and lakes in the region. Also, for query “milky” and “way”, we can
see some (perhaps) unrelated words like “dance” returned by Google. We do not see such random
behavior with 3-way resemblance. Although we are not aware of the algorithm and the dataset used
by Google, we can see that 3-way resemblance appears to be a right measure for this application.

The above results also illustrate the problem with using the sum of pairwise similarity method. The
similarity value with one of the words dominates the sum and hence we see for queries “artificial”
and “intelligence” that all the retrieved words are mostly related to the word “intelligence”. Same is
the case with query “finger” and “lakes” as well as “jaguar” and “tiger”. Note that “jaguar” is also a
car brand. In addition, for all 4 queries, there was no common word in the top 100 words similar to
the each query word individually and so PI method never returns anything.
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Table 1: Top five words retrieved using various methods for different queries.

“JAGUAR” AND “ TIGER” “ARTIFICIAL” AND “INTELLIGENCE”
GOOGLE 3-WAY SR PI

LION LEOPARD CAT —
LEOPARD CHEETAH LEOPARD —
CHEETAH LION LITRE —

CAT PANTHER BMW —
DOG CAT CHASIS —

GOOGLE 3-WAY SR PI
COMPUTER COMPUTER SECURITY —

PROGRAMMING SCIENCE WEAPONS —
SCIENCE INTELLIGENT SECRET —
ROBOT HUMAN ATTACKS —

ROBOTICS TECHNOLOGY HUMAN —

“MILKY” AND “ WAY” “FINGER” AND “LAKES”
GOOGLE 3-WAY SR PI
DANCE GALAXY EVEN —
STARS STARS ANOTHER —
SPACE EARTH STILL —

THE LIGHT BACK —
UNIVERSE SPACE TIME —

GOOGLE 3-WAY SR PI
NEW SENECA RIVERS —

YORK CAYUGA FRESHWATER —
NY ERIE FISH —

PARK ROCHESTER STREAMS —
CITY IROQUOIS FORESTED —

We should note the importance of the denominator term in 3-way resemblance, without which fre-
quent words will be blindly favored. The exciting contribution of this paper is that 3-way resem-
blance similarity search admits provable sub-linear guarantees, making it an ideal choice. On the
other hand, no such provable guarantees are known for SR and other heuristic based search methods.

7.2 Improving Retrieval Quality in Similarity Search
We also demonstrate how the retrieval quality of traditional similarity search can be boosted by uti-
lizing more query candidates instead of just one. For the evaluations we choose two public datasets:
MNIST and WEBSPAM, which were used in a recent related paper [26] for near neighbor search
with binary data using b-bit minwise hashing [20, 23].

The two datasets reflect diversity both in terms of task and scale that is encountered in practice.
The MNIST dataset consists of handwritten digit samples. Each sample is an image of 28 × 28
pixel yielding a 784 dimension vector with the associated class label (digit 0 − 9). We binarize the
data by settings all non zeros to be 1. We used the standard partition of MNIST, which consists
of 10,000 samples in one set and 60,000 in the other. The WEBSPAM dataset, with 16,609,143
features, consists of sparse vector representation of emails labeled as spam or not. We randomly
sample 70,000 data points and partitioned them into two independent sets of size 35,000 each.

Table 2: Percentage of top candidates with the same labels as that of query retrieved using various
similarity criteria. More indicates better retrieval quality (Best marked in bold).

MNIST WEBSPAM
TOP
Pairwise
3-way NNbor
4-way NNbor

1 10 20 50
94.20 92.33 91.10 89.06
96.90 96.13 95.36 93.78
97.70 96.89 96.28 95.10

1 10 20 50
98.45 96.94 96.46 95.12
99.75 98.68 97.80 96.11
99.90 98.87 98.15 96.45

For evaluation, we need to generate potential similar search query candidates for k-way search. It
makes no sense in trying to search for object simultaneously similar to two very different objects. To
generate such query candidates, we took one independent set of the data and partition it according
to the class labels. We then run a cheap k-mean clustering on each class, and randomly sample
triplets < x1, x2, x3 > from each cluster for evaluating 2-way, 3-way and 4-way similarity search.
For MNIST dataset, the standard 10,000 test set was partitioned according to the labels into 10 sets,
each partition was then clustered into 10 clusters, and we choose 10 triplets randomly from each
cluster. In all we had 100 such triplets for each class, and thus 1000 overall query triplets. For
WEBSPAM, which consists only of 2 classes, we choose one of the independent set and performed
the same procedure. We selected 100 triplets from each cluster. We thus have 1000 triplets from
each class making the total number of 2000 query candidates.

The above procedures ensure that the elements in each triplets < x1, x2, x3 > are not very far from
each other and are of the same class label. For each triplet < x1, x2, x3 >, we sort all the points x
in the other independent set based on the following:

• Pairwise: We only use the information in x1 and rank x based on resemblance |x1∩x|
|x1∪x| .
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• 3-way NN: We rank x based on 3-way resemblance |x1∩x2∩x|
|x1∪x2∪x| .

• 4-way NN: We rank x based on 4-way resemblance |x1∩x2∩x3∩x|
|x1∪x2∪x3∪x| .

We look at the top 1, 10, 20 and 50 points based on orderings described above. Since, all the
query triplets are of the same label, The percentage of top retrieved candidates having same label as
that of the query items is a natural metric to evaluate the retrieval quality. This percentage values
accumulated over all the triplets are summarized in Table 2.

We can see that top candidates retrieved by 3-way resemblance similarity, using 2 query points,
are of better quality than vanilla pairwise similarity search. Also 4-way resemblance, with 3 query
points, further improves the results compared to 3-way resemblance similarity search. This clearly
demonstrates that multi-way resemblance similarity search is more desirable whenever we have
more than one representative query in mind. Note that, for MNIST, which contains 10 classes, the
boost compared to pairwise retrieval is substantial. The results follow a consistent trend.

8 Future Work
While the work presented in this paper is promising for efficient 3-way and k-way similarity search
in binary high-dimensional data, there are numerous interesting and practical research problems we
can study as future work. In this section, we mention a few such examples.

One-permutation hashing. Traditionally, building hash tables for near neighbor search required
many (e.g., 1000) independent hashes. This is both time- and energy-consuming, not only for build-
ing tables but also for processing un-seen queries which have not been processed. One permutation
hashing [22] provides the hope of reducing many permutations to merely one. The version in [22],
however, was not applicable to near neighbor search due to the existence of many empty bins (which
offer no indexing capability). The most recent work [27] is able to fill the empty bins and works
well for pairwise near neighbor search. It will be interesting to extend [27] to k-way search.

Non-binary sparse data. This paper focuses on minwise hashing for binary data. Various extensions
to real-valued data are possible. For example, our results naturally apply to consistent weighted
sampling [25, 15], which is one way to handle non-binary sparse data. The problem, however, is not
solved if we are interested in similarities such as (normalized) k-way inner products, although the
line of work on Conditional Random Sampling (CRS) [19, 18] may be promising. CRS works on
non-binary sparse data by storing a bottom subset of nonzero entries after applying one permutation
to (real-valued) sparse data matrix. CRS performs very well for certain applications but it does not
work in our context because the bottom (nonzero) subsets are not properly aligned.

Building hash tables by directly using bits from minwise hashing. This will be a different approach
from the way how the hash tables are constructed in this paper. For example, [26] directly used
the bits from b-bit minwise hashing [20, 23] to build hash tables and demonstrated the significant
advantages compared to sim-hash [8, 12] and spectral hashing [29]. It would be interesting to see
the performance of this approach in k-way similarity search.

k-Way sign random projections. It would be very useful to develop theory for k-way sign random
projections. For usual (real-valued) random projections, it is known that the volume (which is related
to the determinant) is approximately preserved [24, 17]. We speculate that the collision probability
of k-way sign random projections might be also a (monotonic) function of the determinant.

9 Conclusions
We formulate a new framework for k-way similarity search and obtain fast algorithms in the case of
k-way resemblance with provable worst-case approximation guarantees. We show some applications
of k-way resemblance search in practice and demonstrate the advantages over traditional search. Our
analysis involves the idea of probabilistic hashing and extends the well-known LSH family beyond
the pairwise case. We believe the idea of probabilistic hashing still has a long way to go.
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