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Abstract

Shannon’s entropy is a basic quantity in information theory, and a fundamental
building block for the analysis of neural codes. Estimating the entropy of a dis-
crete distribution from samples is an important and difficult problem that has re-
ceived considerable attention in statistics and theoretical neuroscience. However,
neural responses have characteristic statistical structure that generic entropy esti-
mators fail to exploit. For example, existing Bayesian entropy estimators make
the naive assumption that all spike words are equally likely a priori, which makes
for an inefficient allocation of prior probability mass in cases where spikes are
sparse. Here we develop Bayesian estimators for the entropy of binary spike trains
using priors designed to flexibly exploit the statistical structure of simultaneously-
recorded spike responses. We define two prior distributions over spike words us-
ing mixtures of Dirichlet distributions centered on simple parametric models. The
parametric model captures high-level statistical features of the data, such as the
average spike count in a spike word, which allows the posterior over entropy to
concentrate more rapidly than with standard estimators (e.g., in cases where the
probability of spiking differs strongly from 0.5). Conversely, the Dirichlet distri-
butions assign prior mass to distributions far from the parametric model, ensuring
consistent estimates for arbitrary distributions. We devise a compact representa-
tion of the data and prior that allow for computationally efficient implementations
of Bayesian least squares and empirical Bayes entropy estimators with large num-
bers of neurons. We apply these estimators to simulated and real neural data and
show that they substantially outperform traditional methods.

Introduction

Information theoretic quantities are popular tools in neuroscience, where they are used to study
neural codes whose representation or function is unknown. Neuronal signals take the form of fast
(∼ 1 ms) spikes which are frequently modeled as discrete, binary events. While the spiking response
of even a single neuron has been the focus of intense research, modern experimental techniques make
it possible to study the simultaneous activity of hundreds of neurons. At a given time, the response
of a population of n neurons may be represented by a binary vector of length n, where each entry
represents the presence (1) or absence (0) of a spike. We refer to such a vector as a spike word.
For n much greater than 30, the space of 2n spike words becomes so large that effective modeling
and analysis of neural data, with their high dimensionality and relatively low sample size, presents
a significant computational and theoretical challenge.

We study the problem of estimating the discrete entropy of spike word distributions. This is a dif-
ficult problem when the sample size is much less than 2n, the number of spike words. Entropy
estimation in general is a well-studied problem with a literature spanning statistics, physics, neuro-
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Figure 1: Illustrated example of binarized spike responses for n = 3 neurons and corresponding
word distribution. (A) The spike responses of n = 3 simultaneously-recorded neurons (green,
orange, and purple). Time is discretized into bins of size ∆t. A single spike word is a 3× 1 binary
vector whose entries are 1 or 0 corresponding to whether the neuron spiked or not within the time
bin. (B) We model spike words as drawn iid from the word distribution π, a probability distribution
supported on the A = 2n unique binary words. Here we show a schematic π for the data of panel
(A). The spike words (x-axis) occur with varying probability (blue)

science, ecology, and engineering, among others [1–7]. We introduce a novel Bayesian estimator
which, by incorporating simple a priori information about spike trains via a carefully-chosen prior,
can estimate entropy with remarkable accuracy from few samples. Moreover, we exploit the struc-
ture of spike trains to compute efficiently on the full space of 2n spike words.

We begin by briefly reviewing entropy estimation in general. In Section 2 we discuss the statistics
of spike trains and emphasize a statistic, called the synchrony distribution, which we employ in
our model. In Section 3 we introduce two novel estimators, the Dirichlet–Bernoulli (DBer) and
Dirichlet–Synchrony (DSyn) entropy estimators, and discuss their properties and computation. We
compare ĤDBer and ĤDSyn to other entropy estimation techniques in simulation and on neural data,
and show that ĤDBer drastically outperforms other popular techniques when applied to real neural
data. Finally, we apply our estimators to study synergy across time of a single neuron.

1 Entropy Estimation

Let x := {xk}Nk=1 be spike words drawn iid from an unknown word distribution π := {πi}Ai=1.
There are A = 2n unique words for a population of n neurons, which we index by {1, 2, . . . ,A}.
Each sampled word xk is a binary vector of length n, where xki records the presence or absence of
a spike from the ith neuron. We wish to estimate the entropy of π,

H(π) = −
A∑
k=1

πk log πk, (1)

where πk > 0 denotes the probability of observing the kth word.

A naive method for estimating H is to first estimate π using the count of observed words nk =∑N
i=1 1{xi=k} for each word k. This yields the empirical distribution π̂, where π̂k = nk/N . Eval-

uating eq. 1 on this estimate yields the “plugin” estimator,

Ĥplugin = −
A∑
i=1

π̂i log π̂i, (2)

which is also the maximum-likelihood estimator under the multinomial likelihood. Although con-
sistent and straightforward to compute, Ĥplugin is in general severely biased when N � A.

Indeed, all entropy estimators are biased when N � A [8]. As a result, many techniques for bias-
correction have been proposed in the literature [6, 9–18]. Here, we extend the Bayesian approach
of [19], focusing in particular on the problem of entropy estimation for simultaneously-recorded
neurons.

In a Bayesian paradigm, rather than attempting to directly compute and remove the bias for a given
estimator, we instead choose a prior distribution over the space of discrete distributions. Nemenman
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Figure 2: Sparsity structure of spike word distribution illustrated using the synchrony distribution.
(A) The empirical synchrony distribution of 8 simultaneously-recorded retinal ganglion cells (blue).
The cells were recorded for 20 minutes and binned with ∆t = 2 ms bins. Spike words are over-
whelmingly sparse, with w0 by far the most common word. In contrast, we compare the prior em-
pirical synchrony distribution sampled using 106 samples from the NSB prior (π ∼ Dir(α, . . . , α) ,
with p(α) ∝ Aψ1(Aα+ 1)− ψ1(α+ 1), and ψ1 the digamma function) (red). The empirical syn-
chrony distribution shown is averaged across samples. (B) The synchrony distribution of an Ising
model (blue) compared to its best binomial fit (red). The Ising model parameters were set randomly
by drawing the entries of the matrix J and vector h iid from N(0, 1). A binomial distribution cannot
accurately capture the observed synchrony distribution.

et al. showed Dirichlet to be priors highly informative about the entropy, and thus a poor prior for
Bayesian entropy estimation [19]. To rectify this problem, they introduced the Nemenman–Shafee–
Bialek (NSB) estimator, which uses a mixture of Dirichlet distributions to obtain an approximately
flat prior overH . As a prior on π, however, the NSB prior is agnostic about application: all symbols
have the same marginal probability under the prior, an assumption that may not hold when the
symbols correspond to binary spike words.

2 Spike Statistics and the Synchrony Distribution

We discretize neural signals by binning multi-neuron spike trains in time, as illustrated in Fig. 1. At a
time t, then, the spike response of a population of n neurons is a binary vector ~w = (b1, b2, . . . , bn),
where bi ∈ {0, 1} corresponds to the event that the ith neuron spikes within the time window
(t, t+ ∆t). We let ~wk be that word such that k =

∑n−1
i=0 bi2

i. There are a total of A = 2n possible
words.

For a sufficiently small bin size ∆t, spike words are likely to be sparse, and so our strategy will be
to choose priors that place high prior probability on sparse words. To quantify sparsity we use the
synchrony distribution: the distribution of population spike counts across all words. In Fig. 2 we
compare the empirical synchrony distribution for a population of 8 simultaneously-recorded retinal
ganglion cells (RGCs) with the prior synchrony distribution under the NSB model. For real data, the
synchrony distribution is asymmetric and sparse, concentrating around words with few simultaneous
spikes. No more than 4 synchronous spikes are observed in the data. In contrast, under the NSB
model all words are equally likely, and the prior synchrony distribution is symmetric and centered
around 4.

These deviations in the synchrony distribution are noteworthy: beyond quantifying sparseness, the
synchrony distribution provides a surprisingly rich characterization of a neural population. Despite
its simplicity, the synchrony distribution carries information about the higher-order correlation struc-
ture of a population [20,21]. It uniquely specifies distributions π for which the probability of a word
wk depends only on its spike count [k] = [~wk] :=

∑
i bi. Equivalently: all words with spike count

k, Ek = {w : [w] = k}, have identical probability βk of occurring. For such a π, the synchrony
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distribution µ is given by,

µk =
∑
wi∈Ek

πi =

(
n

k

)
βk. (3)

Different neural models correspond to different synchrony distributions. Consider an independently-
Bernoulli spiking model. Under this model, the number of spikes in a word w is distributed binomi-
ally, [~w] ∼ Bin(p, n), where p is a uniform spike probability across neurons. The probability of a
word wk is given by,

P (~wk|p) = β[k] = p[k](1− p)n−[k], (4)

while the probability of observing a word with i spikes is,

P (Ei|p) =

(
n

i

)
βi. (5)

3 Entropy Estimation with Parametric Prior Knowledge

Although a synchrony distribution may capture our prior knowledge about the structure of spike
patterns, our goal is not to estimate the synchrony distribution itself. Rather, we use it to inform a
prior on the space of discrete distributions, the (2n−1)-dimensional simplex. Our strategy is to use a
synchrony distributionG as the base measure of a Dirichlet distribution. We construct a hierarchical
model where π is a mixture of Dir(αG), and counts n of spike train observations are multinomial
given π (See Fig. 3(A). Exploiting the conjugacy of Dirichlet and multinomial, and the convenient
symmetries of both the Dirichlet distribution and G, we obtain a computationally efficient Bayes
least squares estimator for entropy. Finally, we discuss using empirical estimates of the synchrony
distribution µ as a base measure.

3.1 Dirichlet–Bernoulli entropy estimator

We model spike word counts n as drawn iid multinomial given the spike word distribution π. We
place a mixture-of-Dirichlets prior on π, which in general takes the form,

n ∼ Mult(π) (6)
π ∼ Dir(α1, α2, . . . , αA︸ ︷︷ ︸

2n

), (7)

~α := (α1, α2, . . . , αA) ∼ P (~α), (8)

where αi > 0 are concentration parameters, and P (~α) is a prior distribution of our choosing. Due
to the conjugacy of Dirichlet and multinomial, the posterior distribution given observations and ~α is
π|n, ~α ∼ Dir(α1 + n1, . . . , αA + nA), where ni is the number of observations for the i-th spiking
pattern. The posterior expected entropy given ~α is given by [22],

E[H(π)|~α] = ψ0(κ+ 1)−
A∑
i=1

αi
κ
ψ0(αi + 1) (9)

where ψ0 is the digamma function, and κ =
∑A
i=1 αi.

For large A, ~α is too large to select arbitrarily, and so in practice we center the Dirichlet around
a simple, parametric base measure G [23]. We rewrite the vector of concentration parameters as
~α ≡ αG, whereG = Bernoulli(p) is a Bernoulli distribution with spike rate p and α > 0 is a scalar.
The general prior of eq. 7 then takes the form,

π ∼ Dir(αG) ≡ Dir(αg1, αg2 . . . , αgA), (10)

where each gk is the probability of the kth word under the base measure, satisfying
∑
gk = 1.

We illustrate the dependency structure of this model schematically in Fig. 3. Intuitively, the base
measure incorporates the structure of G into the prior by shifting the Dirichlet’s mean. With a
base measure G the prior mean satisfies E[π|p] = G|p. Under the NSB model, G is the uniform
distribution; thus, when p = 0.5 the Binomial G corresponds exactly to the NSB model. Since
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in practice choosing a base measure is equivalent to selecting distinct values of the concentration
parameter αi, the posterior mean of entropy under this model has the same form as eq. 9, simply
replacing αk = αgk. Given hyper-prior distributions P (α) and P (p), we obtain the Bayes least
squares estimate, the posterior mean of entropy under our model,

ĤDBer = E[H|x] =

∫∫
E [H|α, p]P (α, p|x) dα dp. (11)

We refer to eq. 11 as the Dirichlet–Bernoulli (DBer) entropy estimator, ĤDBer. Thanks to the closed-
form expression for the conditional mean eq. 9 and the convenient symmetries of the Bernoulli
distribution, the estimator is fast to compute using a 2D numerical integral over the hyperparameters
α and p.

3.1.1 Hyper-priors on α and p

Previous work on Bayesian entropy estimation has focused on Dirichlet priors with scalar, constant
concentration parameters αi = α. Nemenman et al. [19] noted that these fixed-α priors yield poor
estimators for entropy, because p(H|α) is highly concentrated around its mean. To address this
problem, [19] proposed a Dirichlet mixture prior on π,

P (π) =

∫
PDir(π|α)P (α)dα, (12)

where the hyper-prior, P (α) ∝ d
dαE[H(π)|α] assures an approximately flat prior distribution over

H . We adopt the same strategy here, choosing the prior,

P (α) ∝ d

dα
E[H(π)|α, p] = ψ1(α+ 1)−

n∑
i=0

(
n

i

)
β2
i ψ1(αβi + 1). (13)

Entropy estimates are less sensitive to the choice of prior on p. Although we experimented with
several priors on p, in all examples we found that the evidence for p was highly concentrated around
p̂ = 1

Nn

∑
ij xij , the maximum (Bernoulli) likelihood estimate for p. In practice, we found that an

empirical Bayes procedure, fitting p̂ from data first and then using the fixed p̂ to perform the integral
eq. 11, performed indistinguishably from a P (p) uniform on [0, 1].

3.1.2 Computation

For large n, the 2n distinct values of αi render the sum of eq. 9 potentially intractable to compute.
We sidestep this exponential scaling of terms by exploiting the redundancy of Bernoulli and binomial
distributions. Doing so, we are able to compute eq. 9 without explicitly representing the 2N values
of αi.

Under the Bernoulli model, each element gk of the base measure takes the value β[k] (eq. 4). Further,
there are

(
n
i

)
words for which the value of αi is identical, so that A =

∑n
i=0 α

(
n
i

)
βi = α. Applied

to eq. 9, we have,

E[H(π)|α, p] = ψ0(α+ 1)−
n∑
i=0

(
n

i

)
βiψ0(αβi + 1).

For the posterior, the sum takes the same form, except that A = n+ α, and the mean is given by,

E[H(π)|α, p,x] = ψ0(n+ α+ 1)−
A∑
i=1

ni + αβ[i]

n+ α
ψ0(ni + αβ[i] + 1) (14)

= ψ0(n+ α+ 1)−
∑
i∈I

ni + αβ[i]

n+ α
ψ0(ni + αβ[i] + 1)

− α
n∑
i=0

((
n
i

)
− ñi

)
βi

n+ α
ψ0(αβi + 1),

5
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Figure 3: Model schematic and intuition for Dirichlet–Bernoulli entropy estimation. (A) Graphical
model for Dirichlet–Bernoulli entropy estimation. The Bernoulli base measure G depends on the
spike rate parameter p. In turn, G acts as the mean of a Dirichlet prior over π. The scalar Dirichlet
concentration parameter α determines the variability of the prior around the base measure. (B) The
set of possible spike words for n = 4 neurons. Although easy to enumerate for this small special
case, the number of words increases exponentially with n. In order to compute with this large set,
we assume a prior distribution with a simple equivalence class structure: a priori, all words with the
same number of synchronous spikes (outlined in blue) occur with equal probability. We then need
only n parameters, the synchrony distribution of eq. 3, to specify the distribution. (C) We center a
Dirichlet distribution on a model of the synchrony distribution. The symmetries of the count and
Dirichlet distributions allow us to compute without explicitly representing all A words.

where I = {k : nk > 0}, the set of observed characters, and ñi is the count of observed words with
i spikes (i.e., observations of the equivalence class Ei). Note that eq. 14 is much more computation-
ally tractable than the mathematically equivalent form given immediately above it. Thus, careful
bookkeeping allows us to efficiently evaluate eq. 9 and, in turn, eq. 11.1

3.2 Empirical Synchrony Distribution as a Base Measure

While the Bernoulli base measure captures the sparsity structure of multi-neuron recordings, it also
imposes unrealistic independence assumptions. In general, the synchrony distribution can capture
correlation structure that cannot be represented by a Bernoulli model. For example, in Fig. 2B, a
maximum likelihood Bernoulli fit fails to capture the sparsity structure of a simulated Ising model.

We might address this by choosing a more flexible parametric base measure. However, since the
dimensionality of µ scales only linearly with the number of neurons, the empirical synchrony dis-
tribution (ESD),

µ̂i =
1

N

N∑
j=1

1{[xj ]=i}, (15)

converges quickly even when the sample size is inadequate for estimating the full π.

This suggests an empirical Bayes procedure where we use the ESD as a base measure (take G = µ̂)
for entropy estimation. Computation proceeds exactly as in Section 3.1.2 with the Bernoulli base
measure replaced by the ESD by setting gk = µk and βi = µi/

(
m
i

)
. The resulting Dirichlet–

Synchrony (DSyn) estimator may incorporate more varied sparsity and correlation structures into its
prior than ĤDBer (see Fig. 4), although it depends on an estimate of the synchrony distribution.

4 Simulations and Comparisons

We compared ĤDBer and ĤDSyn to the Nemenman–Shafee–Bialek (NSB) [19] and Best Upper Bound
(BUB) entropy estimators [8] for several simulated and real neural datasets. For ĤDSyn, we regular-

1For large n, the binomial coefficient of eq. 14 may be difficult to compute. By writing it in terms of the
Bernoulli probability eq. 5, it may be computed using the Normal approximation to the Binomial.
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Figure 4: Convergence of ĤDBer, ĤDSyn, ĤNSB, ĤBUB, and Ĥplugin as a function of sample size for
two simulated examples of 30 neurons. Binary word data are drawn from two specified synchrony
distributions (insets). Error bars indicate variability of the estimator over independent samples (±1
standard deviation). (A) Data drawn from a bimodal synchrony distribution with peaks at 0 spikes
and 10 spikes

(
µi = e−2i + 1

10e
−4(i−2n/3)2

)
. (B) Data generated from a power-law synchrony

distribution (µi ∝ i−3).
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Figure 5: Convergence of ĤDBer, ĤDSyn, ĤNSB, ĤBUB, and Ĥplugin as a function of sample size for
27 simultaneously-recorded retinal ganglion cells (RGC). The two figures show the same RGC data
binned and binarized at ∆t = 1 ms (A) and 10 ms (B). The error bars, axes, and color scheme are as
in Fig. 4. While all estimators improve upon the performance of Ĥplugin, ĤDSyn and ĤDBer both show
excellent performance for very low sample sizes (10’s of samples). (inset) The empirical synchrony
distribution estimated from 120 minutes of data.

ized the estimated ESD by adding a pseudo-count of 1
K , where K is the number of unique words

observed in the sample. In Fig. 4 we simulated data from two distinct synchrony distribution mod-
els. As is expected, among all estimators, ĤDSyn converges the fastest with increasing sample size
N . The ĤDBer estimator converges more slowly, as the Bernoulli base measure is not capable of
capturing the correlation structure of the simulated synchrony distributions. In Fig. 5, we show
convergence performance on increasing subsamples of 27 simultaneously-recorded retinal ganglion
cells. Again, ĤDBer and ĤDSyn show excellent performance. Although the true word distribution is
not described by a synchrony distribution, the ESD proves an excellent regularizer for the space of
distributions, even for very small sample sizes.

5 Application: Quantification of Temporal Dependence

We can gain insight into the coding of a single neural time-series by quantifying the amount of in-
formation a single time bin contains about another. The correlation function (Fig. 6A) is the statistic
most widely used for this purpose. However, correlation cannot capture higher-order dependencies.
In neuroscience, mutual information is used to quantify higher-order temporal structure [24]. A re-
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function of a single retinal ganglion neuron. Correlation does not capture the full temporal de-
pendence. We bin with ∆t = 1 ms bins. (B) Schematic definition of time delayed mutual in-
formation (dMI), and block mutual information. The information gain of the sth bin is ν(s) =
I(Xt;Xt+1:t+s) − I(Xt;Xt+1:t+s−1). (C) Block mutual information estimate as a function of
growing block size. Note that the estimate is monotonically increasing, as expected, since adding
new bins can only increase the mutual information. (D) Information gain per bin assuming temporal
independence (dMI), and with difference between block mutual informations (ν(s)). We observe
synergy for the time bins in the 5 to 10 ms range.

lated quantity, the delayed mutual information (dMI) provides an indication of instantaneous depen-
dence: dMI(s) = I(Xt;Xt+s), whereXt is a binned spike train, and I(X;Y ) = H(X)−H(X|Y )
denotes the mutual information. However, this quantity ignores any temporal dependences in
the intervening times: Xt+1, . . . , Xt+s−1. An alternative approach allows us to consider such
dependences: the “block mutual information” ν(s) = I(Xt;Xt+1:t+s) − I(Xt;Xt+1:t+s−1)
(Fig. 6B,C,D)

The relationship between ν(s) and dMI(s) provides insight about the information contained in the
recent history of the signal. If each time bin is conditionally independent given Xt, then ν(s) =
dMI(s). In contrast, if ν(s) < dMI(s), instantaneous dependence is partially explained by history.
Finally, ν(s) > dMI(s) implies that the joint distribution of Xt, Xt+1, . . . , Xt+s contains more
information about Xt than the joint distribution of Xt and Xt+s alone. We use the ĤDBer entropy
estimator to compute mutual information (by computing H(X) and H(X|Y )) accurately for ∼ 15
bins of history. Surprisingly, individual retinal ganglion cells code synergistically in time (Fig. 6D).

6 Conclusions

We introduced two novel Bayesian entropy estimators, ĤDBer and ĤDSyn. These estimators use a
hierarchical mixture-of-Dirichlets prior with a base measure designed to integrate a priori knowl-
edge about spike trains into the model. By choosing base measures with convenient symmetries,
we simultaneously sidestepped potentially intractable computations in the high-dimensional space
of spike words. It remains to be seen whether these symmetries, as exemplified in the structure of
the synchrony distribution, are applicable across a wide range of neural data. Finally, however, we
showed several examples in which these estimators, especially ĤDSyn, perform exceptionally well in
application to neural data. A MATLAB implementation of the estimators will be made available at
https://github.com/pillowlab/CDMentropy.
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