
Identifying and attacking the saddle point
problem in high-dimensional non-convex optimization

Yann N. Dauphin Razvan Pascanu Caglar Gulcehre Kyunghyun Cho
Université de Montréal

dauphiya@iro.umontreal.ca, r.pascanu@gmail.com,
gulcehrc@iro.umontreal.ca, kyunghyun.cho@umontreal.ca

Surya Ganguli
Stanford University

sganguli@standford.edu

Yoshua Bengio
Université de Montréal, CIFAR Fellow
yoshua.bengio@umontreal.ca

Abstract

A central challenge to many fields of science and engineering involves minimizing
non-convex error functions over continuous, high dimensional spaces. Gradient descent
or quasi-Newton methods are almost ubiquitously used to perform such minimizations,
and it is often thought that a main source of difficulty for these local methods to find
the global minimum is the proliferation of local minima with much higher error than
the global minimum. Here we argue, based on results from statistical physics, random
matrix theory, neural network theory, and empirical evidence, that a deeper and more
profound difficulty originates from the proliferation of saddle points, not local minima,
especially in high dimensional problems of practical interest. Such saddle points are
surrounded by high error plateaus that can dramatically slow down learning, and give the
illusory impression of the existence of a local minimum. Motivated by these arguments,
we propose a new approach to second-order optimization, the saddle-free Newton method,
that can rapidly escape high dimensional saddle points, unlike gradient descent and
quasi-Newton methods. We apply this algorithm to deep or recurrent neural network
training, and provide numerical evidence for its superior optimization performance.

1 Introduction

It is often the case that our geometric intuition, derived from experience within a low dimensional physical
world, is inadequate for thinking about the geometry of typical error surfaces in high-dimensional spaces.
To illustrate this, consider minimizing a randomly chosen error function of a single scalar variable, given
by a single draw of a Gaussian process. (Rasmussen and Williams, 2005) have shown that such a random
error function would have many local minima and maxima, with high probability over the choice of the
function, but saddles would occur with negligible probability. On the other-hand, as we review below, typical,
random Gaussian error functions over N scalar variables, or dimensions, are increasingly likely to have
saddle points rather than local minima as N increases. Indeed the ratio of the number of saddle points to
local minima increases exponentially with the dimensionalityN .

A typical problem for both local minima and saddle-points is that they are often surrounded by plateaus of small
curvature in the error. While gradient descent dynamics are repelled away from a saddle point to lower error
by following directions of negative curvature, this repulsion can occur slowly due to the plateau. Second order
methods, like the Newton method, are designed to rapidly descend plateaus surrounding local minima by multi-
plying the gradient steps with the inverse of the Hessian matrix. However, the Newton method does not treat sad-
dle points appropriately; as argued below, saddle-points instead become attractive under the Newton dynamics.

Thus, given the proliferation of saddle points, not local minima, in high dimensional problems, the entire
theoretical justification for quasi-Newton methods, i.e. the ability to rapidly descend to the bottom of a convex
local minimum, becomes less relevant in high dimensional non-convex optimization. In this work, which

1

is an extension of the previous report Pascanu et al. (2014), we first want to raise awareness of this issue,
and second, propose an alternative approach to second-order optimization that aims to rapidly escape from
saddle points. This algorithm leverages second-order curvature information in a fundamentally different way
than quasi-Newton methods, and also, in numerical experiments, outperforms them in some high dimensional
problems involving deep or recurrent networks.

2 The prevalence of saddle points in high dimensions

Here we review arguments from disparate literatures suggesting that saddle points, not local minima, provide
a fundamental impediment to rapid high dimensional non-convex optimization. One line of evidence comes
from statistical physics. Bray and Dean (2007); Fyodorov and Williams (2007) study the nature of critical
points of random Gaussian error functions on high dimensional continuous domains using replica theory
(see Parisi (2007) for a recent review of this approach).

One particular result by Bray and Dean (2007) derives how critical points are distributed in the ε vs α
plane, where α is the index, or the fraction of negative eigenvalues of the Hessian at the critical point, and
ε is the error attained at the critical point. Within this plane, critical points concentrate on a monotonically
increasing curve as α ranges from 0 to 1, implying a strong correlation between the error ε and the index
α: the larger the error the larger the index. The probability of a critical point to be anO(1) distance off the
curve is exponentially small in the dimensionalityN , for largeN . This implies that critical points with error
εmuch larger than that of the global minimum, are exponentially likely to be saddle points, with the fraction
of negative curvature directions being an increasing function of the error. Conversely, all local minima, which
necessarily have index 0, are likely to have an error very close to that of the global minimum. Intuitively,
in high dimensions, the chance that all the directions around a critical point lead upward (positive curvature)
is exponentially small w.r.t. the number of dimensions, unless the critical point is the global minimum or
stands at an error level close to it, i.e., it is unlikely one can find a way to go further down.

These results may also be understood via random matrix theory. We know that for a large Gaussian random
matrix the eigenvalue distribution follows Wigner’s famous semicircular law (Wigner, 1958), with both mode
and mean at 0. The probability of an eigenvalue to be positive or negative is thus 1/2. Bray and Dean (2007)
showed that the eigenvalues of the Hessian at a critical point are distributed in the same way, except that
the semicircular spectrum is shifted by an amount determined by ε. For the global minimum, the spectrum
is shifted so far right, that all eigenvalues are positive. As ε increases, the spectrum shifts to the left and
accrues more negative eigenvalues as well as a density of eigenvalues around 0, indicating the typical presence
of plateaus surrounding saddle points at large error. Such plateaus would slow the convergence of first order
optimization methods, yielding the illusion of a local minimum.

The random matrix perspective also concisely and intuitively crystallizes the striking difference between
the geometry of low and high dimensional error surfaces. ForN=1, an exact saddle point is a 0–probability
event as it means randomly picking an eigenvalue of exactly 0. AsN grows it becomes exponentially unlikely
to randomly pick all eigenvalues to be positive or negative, and therefore most critical points are saddle points.

Fyodorov and Williams (2007) review qualitatively similar results derived for random error functions
superimposed on a quadratic error surface. These works indicate that for typical, generic functions chosen
from a random Gaussian ensemble of functions, local minima with high error are exponentially rare in the
dimensionality of the problem, but saddle points with many negative and approximate plateau directions are
exponentially likely. However, is this result for generic error landscapes applicable to the error landscapes of
practical problems of interest?

Baldi and Hornik (1989) analyzed the error surface of a multilayer perceptron (MLP) with a single linear
hidden layer. Such an error surface shows only saddle-points and no local minima. This result is qualitatively
consistent with the observation made by Bray and Dean (2007). Indeed Saxe et al. (2014) analyzed the
dynamics of learning in the presence of these saddle points, and showed that they arise due to scaling
symmetries in the weight space of a deep linear MLP. These scaling symmetries enabled Saxe et al. (2014)
to find new exact solutions to the nonlinear dynamics of learning in deep linear networks. These learning
dynamics exhibit plateaus of high error followed by abrupt transitions to better performance. They qualitatively
recapitulate aspects of the hierarchical development of semantic concepts in infants (Saxe et al., 2013).

In (Saad and Solla, 1995) the dynamics of stochastic gradient descent are analyzed for soft committee
machines. This work explores how well a student network can learn to imitate a randomly chosen teacher
network. Importantly, it was observed that learning can go through an initial phase of being trapped in the
symmetric submanifold of weight space. In this submanifold, the student’s hidden units compute similar
functions over the distribution of inputs. The slow learning dynamics within this submanifold originates
from saddle point structures (caused by permutation symmetries among hidden units), and their associated

2

MNIST

(a) (b)

CIFAR-10

(c) (d)

Figure 1: (a) and (c) show how critical points are distributed in the ε–α plane. Note that they concentrate
along a monotonically increasing curve. (b) and (d) plot the distributions of eigenvalues of the Hessian at
three different critical points. Note that the y axes are in logarithmic scale. The vertical lines in (b) and (d)
depict the position of 0.

plateaus (Rattray et al., 1998; Inoue et al., 2003). The exit from the plateau associated with the symmetric
submanifold corresponds to the differentiation of the student’s hidden units to mimic the teacher’s hidden
units. Interestingly, this exit from the plateau is achieved by following directions of negative curvature
associated with a saddle point. sin directions perpendicular to the symmetric submanifold.

Mizutani and Dreyfus (2010) look at the effect of negative curvature on learning and implicitly at the effect of
saddle points in the error surface. Their findings are similar. They show that the error surface of a single layer
MLP has saddle points where the Hessian matrix is indefinite.

3 Experimental validation of the prevalence of saddle points

In this section, we experimentally test whether the theoretical predictions presented by Bray and Dean (2007)
for random Gaussian fields hold for neural networks. To our knowledge, this is the first attempt to measure
the relevant statistical properties of neural network error surfaces and to test if the theory developed for
random Gaussian fields generalizes to such cases.

In particular, we are interested in how the critical points of a single layer MLP are distributed in the ε–α
plane, and how the eigenvalues of the Hessian matrix at these critical points are distributed. We used a small
MLP trained on a down-sampled version of MNIST and CIFAR-10. Newton method was used to identify
critical points of the error function. The results are in Fig. 1. More details about the setup are provided
in the supplementary material.

This empirical test confirms that the observations by Bray and Dean (2007) qualitatively hold for neural
networks. Critical points concentrate along a monotonically increasing curve in the ε–α plane. Thus the
prevalence of high error saddle points do indeed pose a severe problem for training neural networks. While
the eigenvalues do not seem to be exactly distributed according to the semicircular law, their distribution
does shift to the left as the error increases. The large mode at 0 indicates that there is a plateau around any
critical point of the error function of a neural network.

4 Dynamics of optimization algorithms near saddle points

Given the prevalence of saddle points, it is important to understand how various optimization algorithms
behave near them. Let us focus on non-degenerate saddle points for which the Hessian is not singular. These
critical points can be locally analyzed by re-parameterizing the function according to Morse’s lemma below
(see chapter 7.3, Theorem 7.16 in Callahan (2010) or the supplementary material for details):

f(θ∗+∆θ)=f(θ∗)+
1

2

nθ∑
i=1

λi∆v2
i , (1)

where λi represents the ith eigenvalue of the Hessian, and ∆vi are the new parameters of the model
corresponding to motion along the eigenvectors ei of the Hessian of f at θ∗.

If finding the local minima of our function is the desired outcome of our optimization algorithm, we argue
that an optimal algorithm would move away from the saddle point at a speed that is inverse proportional
with the flatness of the error surface and hence depndented of how trustworthy this descent direction is further
away from the current position.

3

A step of the gradient descent method always points away from the saddle point close to it (SGD in Fig. 2). As-
suming equation (1) is a good approximation of our function we will analyze the optimality of the step accord-
ing to how well the resulting ∆v optimizes the right hand side of (1). If an eigenvalue λi is positive (negative),
then the step moves toward (away) from θ∗ along ∆vi because the restriction of f to the corresponding eigen-
vector direction ∆vi, achieves a minimum (maximum) at θ∗. The drawback of the gradient descent method
is not the direction, but the size of the step along each eigenvector. The step, along any direction ei, is given
by−λi∆vi, and so small steps are taken in directions corresponding to eigenvalues of small absolute value.

(a) (b)

Figure 2: Behaviors of different op-
timization methods near a saddle
point for (a) classical saddle structure
5x2−y2; (b) monkey saddle structure
x3−3xy2. The yellow dot indicates
the starting point. SFN stands for the
saddle-free Newton method we pro-
posed.

The Newton method solves the slowness problem by rescaling the gradients in each direction with the inverse
of the corresponding eigenvalue, yielding the step−∆vi. However, this approach can result in moving toward
the saddle point. Specifically, if an eigenvalue is negative, the Newton step moves along the eigenvector
in a direction opposite to the gradient descent step, and thus moves in the direction of θ∗. θ∗ becomes an
attractor for the Newton method (see Fig. 2), which can get stuck in this saddle point and not converge
to a local minima. This justifies using the Newton method to find critical points of any index in Fig. 1.

A trust region approach is one approach of scaling second order methods to non-convex problems. In one such
method, the Hessian is damped to remove negative curvature by adding a constant α to its diagonal, which
is equivalent to adding α to each of its eigenvalues. If we project the new step along the different eigenvectors
of the modified Hessian, it is equivalent to rescaling the projections of the gradient on this direction by the
inverse of the modified eigenvalues λi+α yields the step−

(
λi/λi+α

)
∆vi. To ensure the algorithm does

not converge to the saddle point, one must increase the damping coefficient α enough so that λmin+α>0
even for the most negative eigenvalue λmin. This ensures that the modified Hessian is positive definnite.
However, the drawback is again a potentially small step size in many eigen-directions incurred by a large
damping factor α (the rescaling factors in each eigen-direction are not proportional to the curvature anymore).

Besides damping, another approach to deal with negative curvature is to ignore them. This can be done regard-
less of the approximation strategy used for the Newton method such as a truncated Newton method or a BFGS
approximation (see Nocedal and Wright (2006) chapters 4 and 7). However, such algorithms cannot escape
saddle points, as they ignore the very directions of negative curvature that must be followed to achieve escape.

Natural gradient descent is a first order method that relies on the curvature of the parameter manifold. That
is, natural gradient descent takes a step that induces a constant change in the behaviour of the model as
measured by the KL-divergence between the model before and after taking the step. The resulting algorithm
is similar to the Newton method, except that it relies on the Fisher Information matrix F.

It is argued by Rattray et al. (1998); Inoue et al. (2003) that natural gradient descent can address certain
saddle point structures effectively. Specifically, it can resolve those saddle points arising from having units
behaving very similarly. Mizutani and Dreyfus (2010), however, argue that natural gradient descent also
suffers with negative curvature. One particular known issue is the over-realizable regime, where around
the stationary solution θ∗, the Fisher matrix is rank-deficient. Numerically, this means that the Gauss-Newton
direction can be orthogonal to the gradient at some distant point from θ∗ (Mizutani and Dreyfus, 2010),
causing optimization to converge to some non-stationary point. Another weakness is that the difference
S between the Hessian and the Fisher Information Matrix can be large near certain saddle points that exhibit
strong negative curvature. This means that the landscape close to these critical points may be dominated
by S, meaning that the rescaling provided by F−1 is not optimal in all directions.

The same is true for TONGA (Le Roux et al., 2007), an algorithm similar to natural gradient descent. It
uses the covariance of the gradients as the rescaling factor. As these gradients vanish approaching a critical
point, their covariance will result in much larger steps than needed near critical points.

4

5 Generalized trust region methods

In order to attack the saddle point problem, and overcome the deficiencies of the above methods, we will
define a class of generalized trust region methods, and search for an algorithm within this space. This class
involves a straightforward extension of classical trust region methods via two simple changes: (1) We allow
the minimization of a first-order Taylor expansion of the function instead of always relying on a second-order
Taylor expansion as is typically done in trust region methods, and (2) we replace the constraint on the norm of
the step ∆θ by a constraint on the distance between θ and θ+∆θ. Thus the choice of distance function and
Taylor expansion order specifies an algorithm. If we define Tk(f,θ,∆θ) to indicate the k-th order Taylor series
expansion of f around θ evaluated at θ+∆θ, then we can summarize a generalized trust region method as:

∆θ=argmin
∆θ
Tk{f,θ,∆θ} with k∈{1,2}s. t. d(θ,θ+∆θ)≤∆. (2)

For example, the α-damped Newton method described above arises as a special case with k = 2 and
d(θ,θ+∆θ)= ||∆θ||22, where α is implicitly a function of ∆.

6 Attacking the saddle point problem

Algorithm 1 Approximate saddle-free Newton
Require: Function f(θ) to minimize

for i=1→M do
V←k Lanczos vectors of ∂

2f
∂θ2

s(α)=f(θ+Vα)

|Ĥ|←
∣∣∣ ∂2s
∂α2

∣∣∣ by using an eigen decomposition of

Ĥ
for j=1→m do
g←− ∂s

∂α

λ←argminλs((|Ĥ|+λI)−1g)

θ←θ+V(|Ĥ|+λI)−1g
end for

end for

We now search for a solution to the saddle-point
problem within the family of generalized trust region
methods. In particular, the analysis of optimization
algorithms near saddle points discussed in Sec. 4
suggests a simple heuristic solution: rescale the gra-
dient along each eigen-direction ei by 1/|λi|. This
achieves the same optimal rescaling as the Newton
method, while preserving the sign of the gradient,
thereby turning saddle points into repellers, not at-
tractors, of the learning dynamics. The idea of taking
the absolute value of the eigenvalues of the Hessian
was suggested before. See, for example, (Nocedal
and Wright, 2006, chapter 3.4) or Murray (2010,
chapter 4.1). However, we are not aware of any
proper justification of this algorithm or even a de-
tailed exploration (empirical or otherwise) of this
idea. One cannot simply replace H by |H|, where
|H| is the matrix obtained by taking the absolute
value of each eigenvalue of H, without proper justi-

fication. While we might be able to argue that this heuristic modification does the right thing near critical
points, is it still the right thing far away from the critical points? How can we express this step in terms of the
existing methods ? Here we show this heuristic solution arises naturally from our generalized trust region
approach.

Unlike classical trust region approaches, we consider minimizing a first-order Taylor expansion of the loss
(k=1 in Eq. (2)). This means that the curvature information has to come from the constraint by picking
a suitable distance measure d (see Eq. (2)). Since the minimum of the first order approximation of f is at
infinity, we know that this optimization dynamics will always jump to the border of the trust region. So
we must ask how far from θ can we trust the first order approximation of f? One answer is to bound the
discrepancy between the first and second order Taylor expansions of f by imposing the following constraint:

d(θ,θ+∆θ)=

∣∣∣∣f(θ)+∇f∆θ+
1

2
∆θ>H∆θ−f(θ)−∇f∆θ

∣∣∣∣= 1

2

∣∣∆θ>H∆θ
∣∣≤∆, (3)

where∇f is the partial derivative of f with respect to θ and ∆∈R is some small value that indicates how
much discrepancy we are willing to accept. Note that the distance measure d takes into account the curvature
of the function.

Eq. (3) is not easy to solve for ∆θ in more than one dimension. Alternatively, one could take the square of the
distance, but this would yield an optimization problem with a constraint that is quartic in ∆θ, and therefore
also difficult to solve. We circumvent these difficulties through a Lemma:

5

M
N

IS
T

(a) (b) (c)

C
IF

A
R

-1
0

(d) (e) (f)

Figure 3: Empirical evaluation of different optimization algorithms for a single-layer MLP trained on the
rescaled MNIST and CIFAR-10 dataset. In (a) and (d) we look at the minimum error obtained by the different
algorithms considered as a function of the model size. (b) and (e) show the optimal training curves for the
three algorithms. The error is plotted as a function of the number of epochs. (c) and (f) track the norm of the
largest negative eigenvalue.

Lemma 1. Let A be a nonsingular square matrix in Rn×Rn, and x∈Rn be some vector. Then it holds that
|x>Ax|≤x>|A|x, where |A| is the matrix obtained by taking the absolute value of each of the eigenvalues
of A.

Proof. See the supplementary material for the proof.

Instead of the originally proposed distance measure in Eq. (3), we approximate the distance by its upper
bound ∆θ|H|∆θ based on Lemma 1. This results in the following generalized trust region method:

∆θ=argmin
∆θ

f(θ)+∇f∆θ s. t. ∆θ>|H|∆θ≤∆. (4)

Note that as discussed before, we can replace the inequality constraint with an equality one, as the first order
approximation of f has a minimum at infinity and the algorithm always jumps to the border of the trust region.
Similar to (Pascanu and Bengio, 2014), we use Lagrange multipliers to obtain the solution of this constrained
optimization. This gives (up to a scalar that we fold into the learning rate) a step of the form:

∆θ=−∇f|H|−1 (5)

This algorithm, which we call the saddle-free Newton method (SFN), leverages curvature information in a
fundamentally different way, to define the shape of the trust region, rather than Taylor expansion to second
order, as in classical methods. Unlike gradient descent, it can move further (less) in the directions of low
(high) curvature. It is identical to the Newton method when the Hessian is positive definite, but unlike the
Newton method, it can escape saddle points. Furthermore, unlike gradient descent, the escape is rapid even
along directions of weak negative curvature (see Fig. 2).

The exact implementation of this algorithm is intractable in a high dimensional problem, because it requires
the exact computation of the Hessian. Instead we use an approach similar to Krylov subspace descent (Vinyals
and Povey, 2012). We optimize that function in a lower-dimensional Krylov subspace f̂(α)=f(θ+αV).
The k Krylov subspace vectors V are found through Lanczos iteration of the Hessian. These vectors will span
the k biggest eigenvectors of the Hessian with high-probability. This reparametrization through α greatly
reduces the dimensionality and allows us to use exact saddle-free Newton in the subspace.1 See Alg. 1 for the
pseudocode.

1 In the Krylov subspace, ∂f̂
∂α

=V
(
∂f
∂θ

)>
and ∂2f̂

∂α2 =V
(
∂2f
∂θ2

)
V>.

6

Deep Autoencoder

(a) (b)

Recurrent Neural Network

(c) (d)

Figure 4: Empirical results on training deep autoencoders on MNIST and recurrent neural network on Penn
Treebank. (a) and (c): The learning curve for SGD and SGD followed by saddle-free Newton method. (b) The
evolution of the magnitude of the most negative eigenvalue and the norm of the gradients w.r.t. the number of
epochs (deep autoencoder). (d) The distribution of eigenvalues of the RNN solutions found by SGD and the
SGD continued with saddle-free Newton method.

7 Experimental validation of the saddle-free Newton method

In this section, we empirically evaluate the theory suggesting the existence of many saddle points in
high-dimensional functions by training neural networks.

7.1 Existence of Saddle Points in Neural Networks

In this section, we validate the existence of saddle points in the cost function of neural networks, and see how
each of the algorithms we described earlier behaves near them. In order to minimize the effect of any type of
approximation used in the algorithms, we train small neural networks on the scaled-down version of MNIST
and CIFAR-10, where we can compute the update directions by each algorithm exactly. Both MNIST and
CIFAR-10 were downsampled to be of size 10×10.

We compare minibatch stochastic gradient descent (MSGD), damped Newton and the proposed saddle-free
Newton method (SFN). The hyperparameters of SGD were selected via random search (Bergstra and Bengio,
2012), and the damping coefficients for the damped Newton and saddle-free Newton2 methods were selected
from a small set at each update.

The theory suggests that the number of saddle points increases exponentially as the dimensionality of the
function increases. From this, we expect that it becomes more likely for the conventional algorithms such as
SGD and Newton methods to stop near saddle points, resulting in worse performance (on training samples).
Figs. 3 (a) and (d) clearly confirm this. With the smallest network, all the algorithms perform comparably, but
as the size grows, the saddle-free Newton algorithm outperforms the others by a large margin.

A closer look into the different behavior of each algorithm is presented in Figs. 3 (b) and (e) which show the
evolution of training error over optimization. We can see that the proposed saddle-free Newton escapes, or
does not get stuck at all, near a saddle point where both SGD and Newton methods appear trapped. Especially,
at the 10-th epoch in the case of MNIST, we can observe the saddle-free Newton method rapidly escaping
from the saddle point. Furthermore, Figs. 3 (c) and (f) provide evidence that the distribution of eigenvalues
shifts more toward the right as error decreases for all algorithms, consistent with the theory of random
error functions. The distribution shifts more for SFN, suggesting it can successfully avoid saddle-points on
intermediary error (and large index).

7.2 Effectiveness of saddle-free Newton Method in Deep Feedforward Neural Networks

Here, we further show the effectiveness of the proposed saddle-free Newton method in a larger neural network
having seven hidden layers. The neural network is a deep autoencoder trained on (full-scale) MNIST and
considered a standard benchmark problem for assessing the performance of optimization algorithms on neural
networks (Sutskever et al., 2013). In this large-scale problem, we used the Krylov subspace descent approach
described earlier with 500 subspace vectors.

We first trained the model with SGD and observed that learning stalls after achieving the mean-squared
error (MSE) of 1.0. We then continued with the saddle-free Newton method which rapidly escaped the
(approximate) plateau at which SGD was stuck (See Fig. 4 (a)). Furthermore, even in these large scale

2Damping is used for numerical stability.

7

experiments, we were able to confirm that the distribution of Hessian eigenvalues shifts right as error decreases,
and that the proposed saddle-free Newton algorithm accelerates this shift (See Fig. 4 (b)).

The model trained with SGD followed by the saddle-free Newton method was able to get the state-of-the-art
MSE of 0.57 compared to the previous best error of 0.69 achieved by the Hessian-Free method (Martens,
2010). Saddle free Newton method does better.

7.3 Recurrent Neural Networks: Hard Optimization Problem

Recurrent neural networks are widely known to be more difficult to train than feedforward neural networks (see,
e.g., Bengio et al., 1994; Pascanu et al., 2013). In practice they tend to underfit, and in this section, we want
to test if the proposed saddle-free Newton method can help avoiding underfitting, assuming that that it is
caused by saddle points. We trained a small recurrent neural network having 120 hidden units for the task of
character-level language modeling on Penn Treebank corpus. Similarly to the previous experiment, we trained
the model with SGD until it was clear that the learning stalled. From there on, training continued with the
saddle-free Newton method.

In Fig. 4 (c), we see a trend similar to what we observed with the previous experiments using feedforward
neural networks. The SGD stops progressing quickly and does not improve performance, suggesting that the
algorithm is stuck in a plateau, possibly around a saddle point. As soon as we apply the proposed saddle-free
Newton method, we see that the error drops significantly. Furthermore, Fig. 4 (d) clearly shows that the
solution found by the saddle-free Newton has fewer negative eigenvalues, consistent with the theory of random
Gaussian error functions. In addition to the saddle-free Newton method, we also tried continuing with the
truncated Newton method with damping, however, without much success.

8 Conclusion

In summary, we have drawn from disparate literatures spanning statistical physics and random matrix theory
to neural network theory, to argue that (a) non-convex error surfaces in high dimensional spaces generically
suffer from a proliferation of saddle points, and (b) in contrast to conventional wisdom derived from low
dimensional intuition, local minima with high error are exponentially rare in high dimensions. Moreover, we
have provided the first experimental tests of these theories by performing new measurements of the statistical
properties of critical points in neural network error surfaces. These tests were enabled by a novel application
of Newton’s method to search for critical points of any index (fraction of negative eigenvalues), and they
confirmed the main qualitative prediction of theory that the index of a critical point tightly and positively
correlates with its error level.

Motivated by this theory, we developed a framework of generalized trust region methods to search for
algorithms that can rapidly escape saddle points. This framework allows us to leverage curvature information
in a fundamentally different way than classical methods, by defining the shape of the trust region, rather
than locally approximating the function to second order. Through further approximations, we derived an
exceedingly simple algorithm, the saddle-free Newton method, which rescales gradients by the absolute value
of the inverse Hessian. This algorithm had previously remained heuristic and theoretically unjustified, as well
as numerically unexplored within the context of deep and recurrent neural networks. Our work shows that
near saddle points it can achieve rapid escape by combining the best of gradient descent and Newton methods
while avoiding the pitfalls of both. Moreover, through our generalized trust region approach, our work shows
that this algorithm is sensible even far from saddle points. Finally, we demonstrate improved optimization on
several neural network training problems.

For the future, we are mainly interested in two directions. The first direction is to explore methods beyond
Kyrylov subspaces, such as one in (Sohl-Dickstein et al., 2014), that allow the saddle-free Newton method
to scale to high dimensional problems, where we cannot easily compute the entire Hessian matrix. In the
second direction, the theoretical properties of critical points in the problem of training a neural network will
be further analyzed. More generally, it is likely that a deeper understanding of the statistical properties of
high dimensional error surfaces will guide the design of novel non-convex optimization algorithms that could
impact many fields across science and engineering.

Acknowledgments

We would like to thank the developers of Theano (Bergstra et al., 2010; Bastien et al., 2012). We would also
like to thank CIFAR, and Canada Research Chairs for funding, and Compute Canada, and Calcul Québec for
providing computational resources. Razvan Pascanu is supported by a DeepMind Google Fellowship. Surya
Ganguli thanks the Burroughs Wellcome and Sloan Foundations for support.

8

References
Baldi, P. and Hornik, K. (1989). Neural networks and principal component analysis: Learning from examples without
local minima. Neural Networks, 2(1), 53–58.
Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I. J., Bergeron, A., Bouchard, N., and Bengio, Y. (2012).
Theano: new features and speed improvements.
Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. 5(2),
157–166. Special Issue on Recurrent Neural Networks, March 94.
Bergstra, J. and Bengio, Y. (2012). Random search for hyper-parameter optimization. Journal of Machine Learning
Research, 13, 281–305.
Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., and Bengio,
Y. (2010). Theano: a CPU and GPU math expression compiler. In Proceedings of the Python for Scientific Computing
Conference (SciPy).
Bray, A. J. and Dean, D. S. (2007). Statistics of critical points of gaussian fields on large-dimensional spaces. Physics
Review Letter, 98, 150201.
Callahan, J. (2010). Advanced Calculus: A Geometric View. Undergraduate Texts in Mathematics. Springer.
Fyodorov, Y. V. and Williams, I. (2007). Replica symmetry breaking condition exposed by random matrix calculation of
landscape complexity. Journal of Statistical Physics, 129(5-6), 1081–1116.
Inoue, M., Park, H., and Okada, M. (2003). On-line learning theory of soft committee machines with correlated hidden
units steepest gradient descent and natural gradient descent. Journal of the Physical Society of Japan, 72(4), 805–810.
Le Roux, N., Manzagol, P.-A., and Bengio, Y. (2007). Topmoumoute online natural gradient algorithm. Advances in
Neural Information Processing Systems.
Martens, J. (2010). Deep learning via hessian-free optimization. In International Conference in Machine Learning,
pages 735–742.
Mizutani, E. and Dreyfus, S. (2010). An analysis on negative curvature induced by singularity in multi-layer neural-
network learning. In Advances in Neural Information Processing Systems, pages 1669–1677.
Murray, W. (2010). Newton-type methods. Technical report, Department of Management Science and Engineering,
Stanford University.
Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer.
Parisi, G. (2007). Mean field theory of spin glasses: statistics and dynamics. Technical Report Arxiv 0706.0094.
Pascanu, R. and Bengio, Y. (2014). Revisiting natural gradient for deep networks. In International Conference on
Learning Representations.
Pascanu, R., Mikolov, T., and Bengio, Y. (2013). On the difficulty of training recurrent neural networks. In ICML’2013.
Pascanu, R., Dauphin, Y., Ganguli, S., and Bengio, Y. (2014). On the saddle point problem for non-convex optimization.
Technical Report Arxiv 1405.4604.
Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian Processes for Machine Learning (Adaptive Computation and
Machine Learning). The MIT Press.
Rattray, M., Saad, D., and Amari, S. I. (1998). Natural Gradient Descent for On-Line Learning. Physical Review Letters,
81(24), 5461–5464.
Saad, D. and Solla, S. A. (1995). On-line learning in soft committee machines. Physical Review E, 52, 4225–4243.
Saxe, A., McClelland, J., and Ganguli, S. (2013). Learning hierarchical category structure in deep neural networks.
Proceedings of the 35th annual meeting of the Cognitive Science Society, pages 1271–1276.
Saxe, A., McClelland, J., and Ganguli, S. (2014). Exact solutions to the nonlinear dynamics of learning in deep linear
neural network. In International Conference on Learning Representations.
Sohl-Dickstein, J., Poole, B., and Ganguli, S. (2014). Fast large-scale optimization by unifying stochastic gradient and
quasi-newton methods. In ICML’2014.
Sutskever, I., Martens, J., Dahl, G. E., and Hinton, G. E. (2013). On the importance of initialization and momentum in
deep learning. In S. Dasgupta and D. Mcallester, editors, Proceedings of the 30th International Conference on Machine
Learning (ICML-13), volume 28, pages 1139–1147. JMLR Workshop and Conference Proceedings.
Vinyals, O. and Povey, D. (2012). Krylov Subspace Descent for Deep Learning. In AISTATS.
Wigner, E. P. (1958). On the distribution of the roots of certain symmetric matrices. The Annals of Mathematics, 67(2),
325–327.

9

