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Abstract

We introduce a new multi-task framework, in which K online learners are sharing
a single annotator with limited bandwidth. On each round, each of the K learners
receives an input, and makes a prediction about the label of that input. Then, a
shared (stochastic) mechanism decides which of the K inputs will be annotated.
The learner that receives the feedback (label) may update its prediction rule, and
then we proceed to the next round. We develop an online algorithm for multi-
task binary classification that learns in this setting, and bound its performance in
the worst-case setting. Additionally, we show that our algorithm can be used to
solve two bandits problems: contextual bandits, and dueling bandits with context,
both allow to decouple exploration and exploitation. Empirical study with OCR
data, vowel prediction (VJ project) and document classification, shows that our
algorithm outperforms other algorithms, one of which uses uniform allocation,
and essentially achieves more (accuracy) for the same labour of the annotator.

1 Introduction

A triumph of machine learning is the ability to predict many human aspects: is certain mail spam or
not, is a news-item of interest or not, does a movie meet one’s taste or not, and so on. The dominant
paradigm is supervised learning, in which the main bottleneck is the need to annotate data. A
common protocol is problem centric: first collect data or inputs automatically (with low cost), and
then pass it on to a user or an expert to be annotated. Annotation can be outsourced to the crowed by
a service like Mechanical Turk, or performed by experts as in the Linguistic data Consortium. Then,
this data may be used to build models, either for a single task or many tasks. This approach is not
making optimal use of the main resource - the annotator - as some tasks are harder than others, yet
we need to give the annotator the (amount of) data to be annotated for each task a-priori . Another
aspect of this problem is the need to adapt systems to individual users, to this end, such systems
may query the user for the label of some input, yet, if few systems will do so independently, the user
will be flooded with queries, and will avoid interaction with those systems. For example, sometimes
there is a need to annotate news items from few agencies. One person cannot handle all of them,
and only some items can be annotated, which ones? Our setting is designed to handle exactly this
problem, and specifically, how to make best usage of annotation time.

We propose a new framework of online multi-task learning with a shared annotator. Here, algorithms
are learning few tasks simultaneously, yet they receive feedback using a central mechanism that
trades off the amount of feedback (or labels) each task receives. We derive a specific algorithm based
on the good-old Perceptron algorithm, called SHAMPO (SHared Annotator for Multiple PrOblems)
for binary classification and analyze it in the mistake bound model, showing that our algorithm
may perform well compared with methods that observe all annotated data. We then show how to
reduce few contextual bandit problems into our framework, and provide specific bounds for such
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settings. We evaluate our algorithm with four different datasets for OCR , vowel prediction (VJ) and
document classification, and show that it can improve performance either on average over all tasks,
or even if their output is combined towards a single shared task, such as multi-class prediction. We
conclude with discussion of related work, and few of the many routes to extend this work.

2 Problem Setting
We study online multi-task learning with a shared annotator. There are K tasks to be learned simul-
taneously. Learning is performed in rounds. On round t, there are K input-output pairs (xi,t, yi,t)
where inputs xi,t ∈ Rdi are vectors, and labels are binary yi,t ∈ {−1,+1}. In the general case, the
input-spaces for each task may be different. We simplify the notation and assume that di = d for all
tasks. Since the proposed algorithm uses the margin that is affected by the vector norm, there is a
need to scale all the vectors into a ball. Furthermore, no dependency between tasks is assumed.

On round t, the learning algorithm receives K inputs xi,t for i = 1, . . . ,K, and out-
puts K binary-labels ŷi,t, where ŷi,t ∈ {−1,+1} is the label predicted for the input
xi,t of task i. The algorithm then chooses a task Jt ∈ {1, . . . ,K} and receives from
an annotator the true-label yJt,t for that task Jt. It does not observe any other label.
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Figure 1: Illustration of a single it-
eration of multi-task algorithms (a)
standard setting (b) SHAMPO

Then, the algorithm updates its models, and proceeds to the
next round (and inputs). For easing calculations below, we
denote by K indicators Zt = (Z1,t, . . . , ZK,t) the identity
of the task which was queried on round t, and set ZJt,t = 1
and Zi,t = 0 for i 6= Jt. Clearly,

∑
i Zi,t = 1. Below, we

define the notation Et−1 [x] to be the conditional expectation
E [x|Z1, ...Zt−1] given all previous choices.

Illustration of a single iteration of multi-task algorithms is
shown in Fig. 1. The top panel shows the standard setting
with shared annotator, that labels all inputs, which are fed to
the corresponding algorithms to update corresponding mod-
els. The bottom panel shows the SHAMPO algorithm, which
couples labeling annotation and learning process, and syn-
chronizes a single annotation per round. At most one task
performs an update per round (the annotated one).

We focus on linear-functions of the form f(x) = sign(p) for
a quantity p = w>x, w ∈ Rd, called the margin. Specifically, the algorithm maintains a set of K
weight vectors. On round t, the algorithm predicts ŷi,t = sign(p̂i,t) where p̂i,t = w>i,t−1xi,t. On
rounds for which the label of some task Jt is queried, the algorithm, is not updating the models of
all other tasks, that is, we have wi,t = wi,t−1 for i 6= Jt.

We say that the algorithm has a prediction mistake in task i if yi,t 6= ŷi,t, and denote this event by
Mi,t = 1, otherwise, if there is no mistake we setMi,t = 0. The goal of the algorithm is to minimize
the cumulative number of mistakes,

∑
t

∑
iMi,t. Models are also evaluated using the Hinge-loss.

Specifically, let ui ∈ Rd be some vector associated with task i. We denote the Hinge-loss of it,
with respect to some input-output by, `γ,i,t(ui) =

(
γ − yi,tu>i xi,t

)
+

, where, (x)+ = max{x, 0},
and γ > 0 is some parameter. The cumulative loss over all tasks and a sequence of n inputs,
is, Lγ,n = Lγ({ui}) =

∑n
t=1

∑K
i=1 `γ,i,t(ui). We also use the following expected hinge-loss

over the random choices of the algorithm, L̄γ,n = L̄{ui} = E
[∑n

t

∑K
i=1Mi,tZi,t`γ,i,t(ui)

]
. We

proceed by describing our algorithm and specifying how to choose a task to query its label, and how
to perform an update.

3 SHAMPO: SHared Annotator for Multiple Problems
We turn to describe an algorithm for multi-task learning with a shared annotator setting, that works
with linear models. Two steps are yet to be specified: how to pick a task to be labeled and how to
perform an update once the true label for that task is given.

To select a task, the algorithm uses the absolute margin |p̂i,t|. Intuitively, if |p̂i,t| is small, then there
is uncertainty about the labeling of xi,t, and vise-versa for large values of |p̂i,t|. Similar argument
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was used by Tong and Koller [22] for picking an example to be labeled in batch active learning.
Yet, if the model wi,t−1 is not accurate enough, due to small number of observed examples, this
estimation may be rough, and may lead to a wrong conclusion. We thus perform an exploration-
exploitation strategy, and query tasks randomly, with a bias towards tasks with low |p̂i,t|. To the
best of our knowledge, exploration-exploitation usage in this context of choosing an examples to be
labeled (eg. in settings such as semi-supervised learning or selective sampling) is novel and new.
We introduce b ≥ 0 to be a tradeoff parameter between exploration and exploitation and ai ≥ 0 as a
prior for query distribution over tasks. Specifically, we induce a distribution over tasks,

Pr [Jt = j]=
aj
(
b+ |p̂j,t|−minKm=1 |p̂m,t|

)−1
Dt

for Dt=

K∑
i=1

ai

(
b+ |p̂i,t|−min

m
|p̂m,t|

)−1
. (1)

Parameters: b, λ, ai ∈ R+ for i = 1, . . . ,K
Initialize: wi,0 = 0 for i = 1, . . . ,K
for t = 1, 2, ..., n do

1. Observe K instance vectors, xi,t, (i = 1, . . . ,K).
2. Compute margins p̂i,t = w>i,t−1xi,t.
3. Predict K labels, ŷi,t = sign(p̂i,t).
4. Draw task Jt with the distribution:

Pr [Jt = j] =
aj
(
b+ |p̂j,t| −minKm=1 |p̂m,t|

)−1
Dt

,

Dt =
∑
i

ai

(
b+ |p̂i,t| −

K
min
m=1
|p̂m,t|

)−1
.

5. Query the true label ,yJt,t ∈ {−1, 1}.
6. Set indicator MJt,t = 1 iff yJt,tp̂i,t ≤ 0 (Error)
7. Set indicator AJt,t = 1 iff 0 < yJt,tp̂i,t ≤ λ (Small

margin)
8. Update with the perceptron rule:

wJt,t = wJt,t−1 + (AJt,t +MJt,t) yJt,t xJt,t (2)
wi,t = wi,t−1 for i 6= Jt

end for
Output: wi,n for i = 1, . . . ,K.

Figure 2: SHAMPO: SHared Annotator for Multiple PrOblems.

Clearly, Pr [Jt = j] ≥ 0 and∑
j Pr [Jt = j] = 1. For b = 0

we have Pr [Jt = j] = 1 for the
task with minimal margin, Jt =
arg minKi=1 |p̂i,t|, and for b→∞
the distribution is proportional to
the prior weights, Pr [Jt = j] =
aj/(

∑
i ai). As noted above we

denote by Zi,t = 1 iff i = Jt.
Since the distribution is invariant
to a multiplicative factor of ai we
assume 1 ≤ ai∀i.
The update of the algorithm
is performed with the aggres-
sive perceptron rule, that is
wJt,t = wJt,t−1 + (AJt,t +
MJt,t) yJt,t xJt,t and wi,t =
wi,t−1 for i 6= Jt. we define
Ai,t , the aggressive update in-
dicator introducing and the ag-
gressive update threshold, λ ∈
R > 0 such that, Ai = 1 iff
0 < yi,tp̂i,t ≤ λ, i.e, there is no
mistake but the margin is small,
and Ai,t = 0 otherwise. An up-
date is performed if either there
is a mistake (MJi,t = 0) or the
margin is low (AJi,t = 1). Note

that these events are mutually exclusive. For simplicity of presentation we write this update as,
wi,t = wi,t−1 +Zi,t (Ai,t +Mi,t)yi,t xi,t. Although this notation uses labels for all-tasks, only the
label of the task Jt is used in practice, as for other tasks Zi,t = 0.

We call this algorithm SHAMPO for SHared Annotator for Multiple PrOblems. The pseudo-code
appears in Fig. 2. We conclude this section by noting that the algorithm can be incorporated with
Mercer-kernels as all operations depend implicitly on inner-product between inputs.

4 Analysis

The following theorem states that the expected cumulative number of mistakes that the algorithm
makes, may not be higher than the algorithm that observes the labels of all inputs.

Theorem 1 If SHAMPO algorithm runs on K tasks with K parallel example pair sequences
(xi,1, yi,1), ...(xi,n, yi,n) ∈ Rd × {−1, 1}, i = 1, ...,K with input parameters 0 ≤ b, 0 ≤ λ ≤ b/2,
and prior 1 ≤ ai∀i, denote by X = maxi,t ‖xi,t‖, then, for all γ > 0, all ui ∈ Rd and all n ≥ 1
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there exists 0 < δ ≤
∑K
i=1 ai, such that,

E

[
K∑
i=1

n∑
t=1

Mi,t

]
≤ δ

γ

[(
1 +

X2

2b

)
L̄γ,n +

(
2b+X2

)2
U2

8γb

]
+

(
2
λ

b
− 1

)
E

[
K∑
i=1

n∑
t=1

aiAi,t

]
.

where we denote U2 =
∑K
i=1 ‖ui‖

2. The expectation is over the random choices of the algorithm.

Due to lack of space, the proof appears in Appendix A.1 in the supplementary material. Few notes
on the mistake bound: First, the right term of the bound is equals zero either when λ = 0 (as
Ai,t = 0) or λ = b/2. Any value in between, may yield an strict negative value of this term, which
in turn, results in a lower bound. Second, the quantity L̄γ,n is non-increasing with the number of
tasks. The first terms depends on the number of tasks only via δ ≤

∑
i ai. Thus, if ai = 1 (uniform

prior) the quantity δ ≤ K is bounded by the number of tasks. Yet, when the hardness of the tasks is
not equal or balanced, one may expect δ to be closer to 1 than K, which we found empirically to be
true. Additionally, the prior ai can be used to make the algorithm focus on the hard tasks, thereby
improving the bound. While δ multiplying the first term can be larger, the second term can be lower.
A task i which corresponds to a large value of ai will be updated more in early rounds than tasks
with low ai. If more of these updates are aggressive, the second term will be negative and far from
zero.

One can use the bound to tune the algorithm for a good value of b for the non aggressive case
(λ = 0), by minimizing the bound over b. This may not be possible directly since L̄γ,n de-
pends implicitly on the value of b1. Alternatively, we can take a loose estimate of L̄γ,n, and re-
place it with Lγ,n (which is ∼ K times larger). The optimal value of b can now be calculated,

b = X2

2

√
1 +

4γLγ,n
U2X2 . Substituting this value in the bound of Eq. (1) with Lγ,n leads to the fol-

lowing bound, E
[∑K

i=1

∑n
t=1Mi,t

]
≤ δ

γ

[
Lγ,n + U2X2

2γ + U2

2γ

√
1 +

4γLγ,n
U2X2

]
, which has the same

dependency in the number of inputs n as algorithm that observes all of them.

We conclude this section by noting that the algorithm and analysis can be extended to the case that
more than single query is allowed per task. Analysis and proof appears in Appendix A.2 in the
supplementary material.

5 From Multi-task to Contextual Bandits
Although our algorithm is designed for many binary-classification tasks, it can also be applied in
two settings of contextual bandits, when decoupling exploration and exploitation is allowed [23, 3].
In this setting, the goal is to predict a label Ŷt ∈ {1, . . . , C} given an input xt. As before, the
algorithm works in rounds. On round t the algorithm receives an input xt and gives as an output
multicalss label Ŷt ∈ {1, . . . , C}. Then, it queries for some information about the label via a single
binary “yes-no” question, and uses the feedback to update its model. We consider two forms of
questions. Note that our algorithm subsumes past methods since they also allow the introduction of
a bias (or prior knowledge) towards some tasks, which in turn, may improve performance.

5.1 One-vs-Rest
The first setting is termed one-vs-rest. The algorithm asks if the true label is some label Ȳt ∈
{1, . . . , C}, possibly not the predicted label, i.e. it may be the case that Ȳt 6= Ŷt. Given the response
whether Ȳt is the true label Yt, the algorithm updates its models. The reduction we perform is by
introducing K tasks, one per class. The problem of the learning algorithm for task i is to decide
whether the true label is class i or not. Given the output of all (binary) classifiers, the algorithm
generates a single multi-class prediction to be the single label for which the output of the corre-
sponding binary classifier is positive. If such class does not exist, or there are more than one classes
as such, a random prediction is used, i.e., given an input xt we define Ŷt = arg maxi ŷi,t, where ties
are broken arbitrarily. The label to be queried is Ȳt = Jt, i.e. the problem index that SHAMPO is
querying. We analyze the performance of this reduction as a multiclass prediction algorithm.

1Similar issue appears also after the discussion of Theorem 1 in a different context [7].
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Figure 3: Left and middle: Test error of aggressive SHAMPO on (a) four and (b) eight binary text
classification tasks. Three algorithms are evaluated: uniform, exploit, and aggressive SHAMPO.
(Right) Mean test error over USPS One-vs-One binary problems vs b of aggressive SHAMPO with
prior, aggressive with uniform prior, and non-aggressive with uniform prior.

Corollary 2 Assume the SHAMPO algorithm is executed as above with K = C one-vs-rest
problems, on a sequence (x1, Y1), ...(xn, Yn) ∈ Rd × {1, ..., C}, and input parameter b > 0

and prior 1 ≤ ai∀i. Then for all γ > 0 and all ui ∈ Rd, there exist 0 < δ ≤
∑C
i=1 ai

such that the expected number of multi-class errors is bounded as follows E
[∑

t[[Yt 6= Ŷt]]
]
≤

δ
γ

[(
1 + X2

2b

)
L̄γ,n +

(2b+X2)
2
U2

8γb

]
+
(
2λb − 1

)
E
[∑K

i=1

∑n
t=1 aiAi,t

]
,where [[I]] = 1 if the pred-

icate I is true, and zero otherwise.

The corollary follows directly from Thm. 1 by noting that, [[Yt 6= Ŷt]] ≤
∑
iMi,t. That is, there is a

multiclass mistake if there is at least one prediction mistake of one of the one-vs-rest problems. The
closest setting is contextual bandits, yet we allow decoupling of exploration and exploitation. Ignor-
ing this decoupling, the Banditron algorithm [17] is the closest to ours, with a regret of O(T 2/3).
Hazan et al [16] proposed an algorithm withO(

√
T ) regret but designed for the log loss, with coeffi-

cient that may be very large, and another [9] algorithm has O(
√
T ) regret with respect to prediction

mistakes, yet they assumed stochastic labeling, rather than adversarial.

5.2 One-vs-One
In the second setting, termed by one-vs-one, the algorithm picks two labels Ȳ +

t , Ȳ
−
t ∈ {1 . . . C},

possibly both not the predicted label. The feedback for the learner is three-fold: it is yJt,t = +1 if
the first alternative is the correct label, Ȳ +

t = Yt, yJt,t = −1 if the second alternative is the correct
label, Ȳ −t = Yt, and it is yJt,t = 0 otherwise (in this case there is no error and we set MJt,t = 0).
The reduction we perform is by introducing K =

(
C
2

)
problems, one per pair of classes. The goal

of the learning algorithm for a problem indexed with two labels (y1, y2) is to decide which is the
correct label, given it is one of the two. Given the output of all (binary) classifiers the algorithm
generates a single multi-class prediction using a tournament in a round-robin approach [15]. If there
is no clear winner, a random prediction is used. We now analyze the performance of this reduction
as a multiclass prediction algorithm.

Corollary 3 Assume the SHAMPO algorithm is executed as above, with K =
(
C
2

)
one-vs-one

problems, on a sequence (x1, Y1), ...(xn, Yn) ∈ Rd × {1, ..., C}, and input parameter b > 0 and

prior 1 ≤ ai∀i . Then for all γ > 0 and all ui ∈ Rd, there exist 0 < δ ≤
∑(C2)
i=1 ai such

that the expected number of multi-class errors can be bounded as follows E
[∑

t[[Yt 6= Ŷt]]
]
≤

2

((C2)−1)/2+1

{
δ
γ

[(
1 + X2

2b

)
L̄γ,n +

(2b+X2)
2
U2

8γb

]
+
(
2λb − 1

)
E
[∑K

i=1

∑n
t=1 aiAi,t

]}
.

The corollary follows directly from Thm. 1 by noting that, [[Yt 6= Ŷt]] ≤ 2

((C2)−1)/2+1

∑(C2)
i=1Mi,t.

Note, that the bound is essentially independent of C as the coefficient in the bound is upper bounded
by 6 for C ≥ 3.
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We conclude this section with two algorithmic modifications, we employed in this setting. Cur-
rently, when the feedback is zero, there is no update of the weights, because there are no er-
rors. This causes the algorithm to effectively ignore such examples, as in these cases the algo-
rithm is not modifying any model, furthermore, if such example is repeated, a problem with pos-
sibly “0” feedback may be queried again. We fix this issue with one of two modifications: In
the first one, if the feedback is zero, we modify the model to reduce the chance that the cho-
sen problem, Jt, would be chosen again for the same input (i.e. not to make the same wrong-
choice of choosing irrelevant problem again). To this end, we modify the weights a bit, to in-
crease the confidence (absolute margin) of the model for the same input, and replace Eq. (2)
with, wJt,t = wJt,t−1 + [[yJt,t 6= 0]] yJt,t xJt,t + [[yJt,t = 0]]ηŷJt,txJt,t , for some η > 0.
In other words, if there is a possible error (i.e. yJt,t 6= 0) the update follows the Percep-
tron’s rule. Otherwise, the weights are updated such that the absolute margin will increase, as
|w>Jt,txJt,t| = |(wJt,t−1 + ηŷJt,txJt,t)

>xJt,t| = |w>Jt,t−1xJt,t + ηsign(w>Jt,t−1xJt,t)‖xJt,t‖
2| =

|w>Jt,t−1xJt,t|+ η‖xJt,t‖2 > |w>Jt,t−1xJt,t|. We call this method one-vs-one-weak, as it performs
weak updates for zero feedback. The second alternative is not to allow 0 value feedback, and if this
is the case, to set the label to be either +1 or−1, randomly. We call this method one-vs-one-random.

6 Experiments
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Figure 4: Left: mean of fraction no. of mistakes
SHAMPO made during training time on MNIST of all
examples and only queried. Right: test error vs no. of
queries is plotted for all MNIST one-vs-one problems.

We evaluated the SHAMPO algorithm
using four datasets: USPS, MNIST
(both OCR), Vocal Joystick (VJ, vowel
recognition) and document classifica-
tion. The USPS dataset, contains 7, 291
training examples and 2, 007 test exam-
ples, each is a 16× 16 pixels gray-scale
images converted to a 256 dimensional
vector. The MNIST dataset with 28 ×
28 gray-scale images, contains 60, 000
(10, 000) training (test) examples. In
both cases there are 10 possible labels,
digits. The VJ tasks is to predict a vowel
from eight possible vowels. Each exam-
ple is a frame of spoken value described
with 13 MFCC coefficients transformed
into 27 features. There are 572, 911

training examples and 236, 680 test examples. We created binary tasks from these multi-class
datasets using two reductions: One-vs-Rest setting and One-vs-One setting. For example, in both
USPS and MNIST there are 10 binary one-vs-rest tasks and 45 binary one-vs-one tasks. The NLP
document classification include of spam filtering, news items and news-group classification, senti-
ment classification, and product domain categorization. A total of 31 binary prediction tasks over
all, with a total of 252, 609 examples, and input dimension varying between 8, 768 and 1, 447, 866.
Details of the individual binary tasks can be found elsewhere [8]. We created an eighth collection,
named MIXED, which consists of 40 tasks: 10 random tasks from each one of the four basic datasets
(one-vs-one versions). This yielded eight collections (USPS, MNIST and VJ; each as one-vs-rest or
one-vs-one), document classification and mixed. From each of these eight collections we generated
between 6 to 10 combinations (or problems), each problem was created by sampling between 2 and
8 tasks which yielded a total of 64 multi-task problems. We tried to diversify problems difficulty by
including both hard and easy binary classification problems. The hardness of a binary problem is
evaluated by the number of mistakes the Perceptron algorithm performs on the problem.

We evaluated two baselines as well as our algorithm. Algorithm uniform picks a random task to
be queried and updated (corresponding to b → ∞), exploit which picks the tasks with the lowest
absolute margin (i.e. the “hardest instance”), this combination corresponds to b ≈ 0 of SHAMPO.
We tried for SHAMPO 13 values for b, equally spaced on a logarithmic scale. All algorithms made
a single pass over the training data. We ran two version of the algorithm: plain version, without
aggressiveness (updates on mistakes only, λ = 0) and an Aggressive version λ = b/2 (we tried
lower values of λ as in the bound, but we found that λ = b/2 gives best results), both with uniform
prior (ai = 1). We used separate training set and a test set, to build a model and evaluate it.
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Table 1: Test errors percentage . Scores are shown in parenthesis.
Aggressive λ = b/2 Plain

Dataset exploit SHAMPO uniform exploit SHAMPO uniform
VJ 1 vs 1 5.22 (2.9) 4.57 (1.1) 5.67 (3.9) 5.21 (2.7) 6.93 (4.6) 6.26 (5.8)
VJ 1 vs Rest 13.26 (3.5) 11.73 (1.2) 12.43 (2.5) 13.11 (3.0) 14.17 (5.0) 14.71 (5.8)
USPS 1 vs 1 3.31 (2.5) 2.73 (1.0) 19.29 (6.0) 3.37 (2.5) 4.83 (4.0) 5.33 (5,0)
USPS 1 vs Rest 5.45 (2.8) 4.93 (1.2) 10.12 (6.0) 5.31 (2.0) 6.51 (4.0) 7.06 (5.0)
MNIST 1 vs 1 1.08 (2.3) 0.75 (1.0) 5.9 (6.0) 1.2 (2.7) 1.69 (4.1) 1.94 (4.9)
MNIST 1 vs Rest 4.74 (2.8) 3.88 (1.0) 10.01 (6.0) 4.44 (2.8) 5.4 (3.8) 6.1 (5.0)
NLP documents 19.43 (2.3) 16.5 (1.0) 23.21 (5.0) 19.46 (2.7) 21.54 (4.7) 21.74 (5.3)
MIXED 2.75 (2.4) 2.06 (1.0) 13.59 (6.0) 2.78 (2.6) 4.2 (4.3) 4.45 (4.7)
Mean score (2.7) (1.1) (5.2) (2.6) (4.3) (5.2)

Results are evaluated using 2 quantities. First, the average test error (over all the dataset combina-
tions) and the average score. For each combination we assigned a score of 1 to the algorithm with
the lowest test error, and a score of 2, to the second best, and all the way up to a score of 6 to the
algorithm with the highest test error.

Multi-task Binary Classification : Fig. 3(a) and Fig. 3(b) show the test error of the three algo-
rithms on two of document classification combinations, with four and eight tasks. Clearly, not only
SHAMPO performs better, but it does so on each task individually. (Our analysis above bounds
the total number of mistakes over all tasks.) Fig. 3(c) shows the average test error vs b using the
one-vs-one binary USPS problems for the three variants of SHAMPO: non-aggressive (called plain),
aggressive and aggressive with prior.Clearly, the plain version does worse than both the aggressive
version and the non-uniform prior version. For other combinations the prior was not always im-
proving results. We hypothesise that this is because our heuristic may yield a bad prior which is not
focusing the algorithm on the right (hard) tasks.

Results are summarized in Table 1. In general exploit is better than uniform and aggressive is
better than non-aggressive. Aggressive SHAMPO yields the best results both evaluated as average
(over tasks per combination and over combinations). Remarkably, even in the mixed dataset (where
tasks are of different nature: images, audio and documents), the aggressive SHAPO improves over
uniform (4.45% error) and the aggressive-exploit baseline (2.75%), and achieves a test error of
2.06%.

Next, we focus on the problems that the algorithm chooses to annotate on each iteration for various
values of b. Fig. 4(a) shows the total number of mistakes SHAMPO made during training time on
MNIST , we show two quantities: fraction of mistakes over all training examples (denoted by “total”
- blue) and fraction of mistakes over only queried examples (denoted by “queried” - dashed red).
In pure exploration (large b) both quantities are the same, as the choice of problem to be labeled
is independent of the problem and example, and essentially the fraction of mistakes in queried
examples is a good estimate of the fraction of mistakes over all examples. The other extreme is
when performing pure exploitation (low b), here the fraction of mistakes made on queried examples
went up, while the overall fraction of mistakes went down. This indicates that the algorithm indeed
focuses its queries on the harder inputs, which in turn, improves overall training mistake. There is a
sweet point b ≈ 0.01 for which SHAMPO is still focusing on the harder examples, yet reduces the
total fraction of training mistakes even more. The existence of such tradeoff is predicted by Thm. 1.

Another perspective of the phenomena is that for values of b�∞ SHAMPO focuses on the harder
examples, is illustrated in Fig. 4(b) where test error vs number of queries is plotted for each problem
for MNIST. We show three cases: uniform, exploit and a mid-value of b ≈ 0.01 which tradeoffs
exploration and exploitation. Few comments: First, when performing uniform querying, all prob-
lems have about the same number of queries (266), close to the number of examples per problem
(12, 000), divided by the number of problems (45). Second, when having a tradeoff between ex-
ploration and exploitation, harder problems (as indicated by test error) get more queries than easier
problems. For example, the four problems with test error greater than 6% get at least 400 queries,
which is about twice the number of queries received by each of the 12 problems with test error less
than 1%. Third, as a consequence, SHAMPO performs equalization, giving the harder problems
more labeled data, and as a consequence, reduces the error of these problems, however, is not in-
creasing the error of the easier problems which gets less queries (in fact it reduces the test error of
all 45 problems!). The tradeoff mechanism of SHAMPO, reduces the test error of each problem
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by more than 40% compared to full exploration. Fourth, exploits performs similar equalization, yet
in some hard tasks it performs worse than SHAMPO. This could be because it overfits the training
data, by focusing on hard-examples too much, as SHAMPO has a randomness mechanism.

Indeed, Table 1 shows that aggressive SHAMPO outperforms better alternatives. Yet, we claim
that a good prior may improve results. We compute prior over the 45 USPS tasks, by running the
perceptron algorithm on 1000 examples and computing the number of mistakes. We set the prior
to be proportional to this number. We then reran aggressive SHAMPO with prior, comparing it to
aggressive SHAMPO with no prior (i.e. ai = 1). Aggressive SHAMO with prior achieves average
error of 1.47 (vs. 2.73 with no prior) on 1-vs-1 USPS and 4.97 (vs 4.93) on one-vs-rest USPS, with
score rank of 1.0 (vs 2.9) and 1.7 (vs 2.0) respectively. Fig. 3(c) shows the test error for a all values
of b we evaluated. A good prior is shown to outperform the case ai = 1 for all values of b.

Reduction of Multi-task to Contextual Bandits Next, we evaluated SHAMPO as a contextual
bandit algorithm, by breaking a multi-class problem into few binary tasks, and integrating their
output into a single multi-class problem. We focus on the VJ data, as there are many examples,
and linear models perform relatively well [18]. We implemented all three reductions mentioned in
Sec. 5.2, namely, one-vs-rest, one-vs-one-random which picks a random label if the feedback is zero,
one-vs-one-weak (which performs updates to increase confidence when the feedback is zero), where
we set η = 0.2, and the Banditron algorithm [17]. The one-vs-rest reduction and the Banditron
have a test error of about 43.5%, and the one-vs-one-random of about 42.5%. Finally, one-vs-one-
weak achieves an error of 39.4%. This is slightly worst than PLM [18] with test error of 38.4%
(and higher than MLP with 32.8%), yet all of these algorithms observe only one bit of feedback per
example, while both MLP and PLM observe 3 bits (as class identity can be coded with 3 bits for
8 classes). We claim that our setting can be easily used to adapt a system to individual user, as we
only need to assume the ability to recognise three words, such as three letters. Given an utterance of
the user, the system may ask: “Did you say (a) ’a’ like ’bad’ (b) ’o’ like in ’book’) (c) none”. The
user can communicate the correct answer with no need for a another person to key in the answer.

7 Related Work and Conclusion
In the past few years there is a large volume of work on multi-task learning, which clearly we can not
cover here. The reader is referred to a recent survey on the topic [20]. Most of this work is focused
on exploring relations between tasks, that is, find similarities dissimilarities between tasks, and use it
to share data directly (e.g. [10]) or model parameters [14, 11, 2]. In the online settings there are only
a handful of work on multi-task learning. Dekel et al [13] consider the setting where all algorithms
are evaluated using a global loss function, and all work towards the shared goal of minimizing it.
Logosi et al [19] assume that there are constraints on the predictions of all learners, and focus in
the expert setting. Agarwal et al [1] formalize the problem in the framework of stochastic convex
programming with few matrix regularization, each captures some assumption about the relation
between the models. Cavallanti et al [4] and Cesa-Bianci et al [6] assume a known relation between
tasks which is exploited during learning. Unlike these approaches, we assume the ability to share an
annotator rather than data or parameters, thus our methods can be applied to problems that do not
share a common input space.

Our analysis is similar to that of Cesa-Bianchi et al [7], yet they focus in selective sampling (see
also [5, 12]), that is, making individual binary decisions of whether to query, while our algorithm
always query, and needs to decide for which task. Finally, there have been recent work in contextual
bandits [17, 16, 9], each with slightly different assumptions. To the best of our knowledge, we are the
first to consider decoupled exploration and exploitation in this context. Finally, there is recent work
in learning with relative or preference feedback in various settings [24, 25, 26, 21]. Unlike this work,
our work allows again decoupled exploitation and exploration, and also non-relevant feedback.

To conclude, we proposed a new framework for online multi-task learning, where learners share a
single annotator. We presented an algorithm (SHAMPO) that works in this settings and analyzed it
in the mistake-bound model. We also showed how learning in such a model can be used to learn
in contextual-bandits setting with few types of feedback. Empirical results show that our algorithm
does better for the same price. It focuses the annotator on the harder instances, and is improving
performance in various tasks and settings. We plan to integrate other algorithms to our framework,
extend it to other settings, investigate ways to generate good priors, and reduce multi-class to binary
also via error-correcting output-codes.
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