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Abstract

We address the problem of deciding whether a causal or probabilistic query
is estimable from data corrupted by missing entries, given a model of miss-
ingness process. We extend the results of Mohan et al. [2013] by present-
ing more general conditions for recovering probabilistic queries of the form
P(y|z) and P(y,z) as well as causal queries of the form P(y|do(z)). We
show that causal queries may be recoverable even when the factors in their
identifying estimands are not recoverable. Specifically, we derive graphical
conditions for recovering causal effects of the form P(y|do(z)) when Y and
its missingness mechanism are not d-separable. Finally, we apply our re-
sults to problems of attrition and characterize the recovery of causal effects
from data corrupted by attrition.

1 Introduction

All branches of experimental science are plagued by missing data. Improper handling of
missing data can bias outcomes and potentially distort the conclusions drawn from a study.
Therefore, accurate diagnosis of the causes of missingness is crucial for the success of any re-
search. We employ a formal representation called ‘Missingness Graphs’ (m-graphs, for short)
to explicitly portray the missingness process as well as the dependencies among variables in
the available dataset (Mohan et al. [2013]). Apart from determining whether recoverabil-
ity is feasible namely, whether there exists any theoretical impediment to estimability of
queries of interest, m-graphs can also provide a means for communication and refinement
of assumptions about the missingness process. Furthermore, m-graphs permit us to detect
violations in modeling assumptions even when the dataset is contaminated with missing
entries (Mohan and Pearl [2014]).

In this paper, we extend the results of Mohan et al. [2013] by presenting general conditions
under which probabilistic queries such as joint and conditional distributions can be recov-
ered. We show that causal queries of the type P(y|do(z)) can be recovered even when the
associated probabilistic relations such as P(y,x) and P(y|xz) are not recoverable. In partic-
ular, causal effects may be recoverable even when Y is not separable from its missingness
mechanism. Finally, we apply our results to recover causal effects when the available dataset
is tainted by attrition.

This paper is organized as follows. Section 2 provides an overview of missingness graphs
and reviews the notion of recoverability i.e. obtaining consistent estimates of a query,
given a dataset and an m-graph. Section 3 refines the sequential factorization theorem
presented in Mohan et al. [2013] and extends its applicability to a wider range of problems
in which missingness mechanisms may influence each other. In section 4, we present general
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Figure 1: Typical m-graph where V, = {S, X}, V,,, ={[,Q}, V* ={I*,Q*}, R={R;, R}
and U is the latent common cause. Members of V,, and V,,, are represented by full and hollow
circles respectively. The associated missingness process and assumptions are elaborated in
appendix 10.1.

algorithms to recover joint distributions from the class of problems for which sequential
factorization theorem fails. In section 5, we introduce new graphical criteria that preclude
recoverability of joint and conditional distributions. In section 6, we discuss recoverability
of causal queries and show that unlike probabilistic queries, P(y|do(x)) may be recovered
even when Y and its missingness mechanism (R,) are not d-separable. In section 7, we
demonstrate how we can apply our results to problems of attrition in which missingness is a
severe obstacle to sound inferences. Related works are discussed in section 8 and conclusions
are drawn in section 9. Proofs of all theoretical results in this paper are provided in the
appendix.

2 Missingness Graph and Recoverability

Missingness graphs as discussed below was first defined in Mohan et al. [2013] and we adopt
the same notations. Let G(V, E) be the causal DAG where V=V UUUV*UR. V is the
set of observable nodes. Nodes in the graph correspond to variables in the data set. U is
the set of unobserved nodes (also called latent variables). E is the set of edges in the DAG.
We use bi-directed edges as a shorthand notation to denote the existence of a U variable
as common parent of two variables in V UR. V is partitioned into V, and V,, such that
V, C V is the set of variables that are observed in all records in the population and V,,, C V'
is the set of variables that are missing in at least one record. Variable X is termed as fully
observed it X € V,, partially observed if X € V,,, and substantive if X € V,UV,,. Associated
with every partially observed variable V; € V,, are two other variables R,, and V;*, where
V;* is a proxy variable that is actually observed, and R,,, represents the status of the causal
mechanism responsible for the missingness of V;*; formally,

« v; if r,, =0
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V* is the set of all proxy variables and R is the set of all causal mechanisms that are
responsible for missingness. R variables may not be parents of variables in V U U. We
call this graphical representation Missingness Graph (or m-graph). An example of an
m-graph is given in Figure 1 (a).We use the following shorthand. For any variable X, let
X’ be a shorthand for X = 0. For any set W C V,,, UV, UR, let W,., W, and W,,, be the
shorthand for WN R, W NV, and W NV, respectively. Let R,, be a shorthand for Ry, ~w
i.e. R, is the set containing missingness mechanisms of all partially observed variables in
W. Note that R, and W, are not the same. Gx and G+ represent graphs formed by
removing from G all edges leaving and entering X, respectively.

A manifest distribution P(V,, V*, R) is the distribution that governs the available dataset.
An underlying distribution P(V,,V,,, R) is said to be compatible with a given manifest
distribution P(V,, V*, R) if the latter can be obtained from the former using equation 1.
Manifest distribution P, is compatible with a given underlying distribution P, if VX, X C



(b)

Figure 2: (a) m-graph in which P(V) is recoverable by the sequential factorization (b) &
(¢c): m-graphs for which no admissible sequence exists.

Vin and Y =V, \ X, the following equality holds true.
Pm(R;nRy»X*vY*»Vo) = Pu(R;mRvavvo)
where R/ denotes R, =0 and R, denotes R, = 1. Refer Appendix 10.2 for an example.

2.1 Recoverability

Given a manifest distribution P(V*,V,, R) and an m-graph G that depicts the missingness
process, query @ is recoverable if we can compute a consistent estimate of @ as if no data
were missing. Formally,

Definition 1 (Recoverability (Mohan et al. [2013])). Given a m-graph G, and a target
relation @ defined on the variables in V', Q) is said to be recoverable in G if there exists an
algorithm that produces a consistent estimate of Q for every dataset D such that P(D) is (1)
compatible with G and (2) strictly positivel over complete cases i.e. P(Vy,, Vi, R =0) > 0.

For an introduction to the notion of recoverability see, Pearl and Mohan [2013] and Mohan
et al. [2013].

3 Recovering Probabilistic Queries by Sequential Factorization

Mohan et al. [2013] (theorem-4) presented a sufficient condition for recovering probabilistic
queries such as joint and conditional distributions by using ordered factorizations. However,
the theorem is not applicable to certain classes of problems such as those in longitudinal
studies in which edges exist between R variables. General ordered factorization defined
below broadens the concept of ordered factorization (Mohan et al. [2013]) to include the set of
R variables. Subsequently, the modified theorem (stated below as theorem 1) will permit us
to handle cases in which R variables are contained in separating sets that d-separate partially
observed variables from their respective missingness mechanisms (example: X Il R;|R, in
figure 2 (a)).

Definition 2 (General Ordered factorization). Given a graph G and a set O of ordered VUR
variables Y1 < Y3 < ... <Yy, a general ordered factorization relative to G, denoted by f(O),
is a product of conditional probabilities f(O) = [, P(Y;|X;) where X; C {Yi41,...,Y,} is
a minimal set such that Y; LL({Yit1,..., Yo} \ Xi)|X; holds in G.

Theorem 1 (Sequential Factorization ). A sufficient condition for recoverability of a rela-
tion @ defined over substantive variables is that QQ be decomposable into a general ordered
factorization, or a sum of such factorizations, such that every factor Q; = P(Y;|X;) satis-
fies, (1) Yill(Ry,, Ry, )| Xi\{Ry,, Ra, }, if Yi € (V,UV,,) and (2) Z ¢ X; and X,NRx,, =0
and R, U Rx,|X; if Y; = R, for any Z € V,,,.

An ordered factorization that satisfies the condition in Theorem 1 is called an admissible
sequence.

The following example illustrates the use of theorem 1 for recovering the joint distribution.
Additionally, it sheds light on the need for the notion of minimality in definition 2.

L An extension to datasets that are not strictly positive over complete cases is sometimes feasi-
ble(Mohan et al. [2013]).



Example 1. We are interested in recovering P(X,Y,Z) given the m-graph in Figure 2
(a). We discern from the graph that definition 2 is satisfied because: (1) P(Y|X,Z,R,) =
P(Y|X,Z) and (X,Z) is a minimal set such that Y1L({X,Z,R,} \ (X, 2))|(X,2), (2)
P(X|R,,Z) = P(X|R,) and R, is the minimal set such that X1 ({R,,Z} \ Ry)|Ry
and (8) P(Z|R,) = P(Z) and 0 is the minimal set such that Z1LR,|0. Therefore,
the order Y < X < Z < Ry induces a general ordered factorization P(X,Y,Z,R,) =
P(Y|X,Z)P(X|Ry)P(Z)P(Ry). We now rewrite P(X,Y,Z) as follows:

P(X,Y,Z)=3_ P(Y,X,ZR,) =P(Y|X,Z)P(Z)) P(X|R,)P(R,)

Y

Since YILR,\X,Z, ZILR,, XL R,|R,, by theorem 1 we have,

P(X,Y.Z) = P(Y|X.Z,R,, R, R.)P(Z|R.) ) P(X|R}, R,)P(R,)

‘Y

Indeed, equation 1 permits us to rewrite it as:
P(X,Y,Z) = P(Y'|X", 2", R, R), R)P(Z"|R.) ) | P(X"|R,.R,)P(R,)

P(X,Y, Z) is recoverable because every term in the right hand side is consistently estimable
from the available dataset.

Had we ignored the minimality requirement in definition 2 and chosen to factorize
Y < X < Z < Ry using the chain rule, we would have obtained: P(X,Y,Z,R,) =
P(Y|X,Z,R,)P(X|Z,Ry)P(Z|Ry)P(R,y) which is not admissible since X I (R, R,)|Z does
not hold in the graph. In other words, existence of one admissible sequence based on an order
O of variables does not guarantee that every factorization based on O is admissible; it is for
this reason that we need to impose the condition of minimality in definition 2.

The recovery procedure presented in example 1 requires that we introduce Iz, into the order.
Indeed, there is no ordered factorization over the substantive variables {X,Y, Z} that will
permit recoverability of P(X,Y, Z) in figure 2 (a). This extension of Mohan et al. [2013]
thus permits the recovery of probabilistic queries from problems in which the missingness
mechanisms interact with one another.

4 Recoverability in the Absence of an Admissible Sequence

Mohan et al. [2013] presented a theorem (refer appendix 10.4) that stated the necessary and
sufficient condition for recovering the joint distribution for the class of problems in which the
parent set of every R variable is a subset of V,UV,,,. In contrast to Theorem 1, their theorem
can handle problems for which no admissible sequence exists. The following theorem gives a
generalization and is applicable to any given semi-markovian model (for example, m-graphs
in figure 2 (b) & (c)). It relies on the notion of collider path and two new subsets, R(P*"):
the partitions of R variables and Mb(R()): substantive variables related to R, which we
will define after stating the theorem.

Theorem 2. Given an m-graph G in which no element in V,, is either a neighbor of its
missingness mechanism or connected to its missingness mechanism by a collider path, P(V')
is recoverable if no Mb(R(i)) contains a partially observed variable X such that R, € R®
i.e. Vi, RN Ryp(rtny = 0. Moreover, if recoverable, P(V') is given by,

P(V,R=0)

PV) = - -
V) [T, P(R® = 0|Mb(R®), Ry ey = 0)

In theorem 2:

(i) collider path p between any two nodes X and Y is a path in which every intermediate
node is a collider. Example, X - 7 < —— >Y.

(ii) Rrert = {RM R(A) . RNV are partitions of R variables such that for every element
R, and R, belonging to distinct partitions, the following conditions hold true: (i) R, and



R, are not neighbors and (ii) R, and R, are not connected by a collider path. In figure 2
(b): Rrort = {RMW R®} where R = {R,,R.}, R® = {R,,R,}

(iii) Mb(R™) is the markov blanket of R(*) comprising of all substantive variables that are
either neighbors or connected to variables in R() by a collider path (Richardson [2003]). In
figure 2 (b): Mb(R™M) = {X,Y} and Mb(R®) = {Z, W}.

Appendix 10.6 demonstrates how theorem 2 leads to the recoverability of P(V') in figure 2,
to which theorems in Mohan et al. [2013] do not apply.

The following corollary yields a sufficient condition for recovering the joint distribution from
the class of problems in which no bi-directed edge exists between variables in sets R and
V,UV,, (for example, the m-graph described in Figure 2 (¢)). These problems form a subset

of the class of problems covered in theorem 2. Subset Pa*“*(R()) used in the corollary is
the set of all substantive variables that are parents of variables in R®. In figure 2 (b):
Pas*(RW) = () and Pa*"*(R?)) = {Z,W}.

Corollary 1. Let G be an m-graph such that (i) VX € V,, UV,, no latent variable is a
common parent of X and any member of R, and (i) VY € V,,, Y is not a parent of R,,. If
Vi, Pa“"“b(R(i)) does not contain a partially observed variables whose missing mechanism s
in R® i.e. RO N Rpgsun(rayy =0, then P(V') is recoverable and is given by,

P(v) P(R=0,V)

= IL P(RO=0[Pa**?(R),R 0)

pasub(R(i)):

5 Non-recoverability Criteria for Joint and Conditional
Distributions

Up until now, we dealt with sufficient conditions for recoverability. It is important however
to supplement these results with criteria for non-recoverability in order to alert the user to
the fact that the available assumptions are insufficient to produce a consistent estimate of
the target query. Such criteria have not been treated formally in the literature thus far. In
the following theorem we introduce two graphical conditions that preclude recoverability.

Theorem 3 (Non-recoverability of P(V)). Given a semi-markovian model G, the following
conditions are necessary for recoverability of the joint distribution:

(i) VX € Vi, X and R, are not neighbors and

(i) VX € V,,, there does not exist a path from X to R, in which every intermediate node
is both a collider and a substantive variable.

In the following corollary, we leverage theorem 3 to yield necessary conditions for recovering
conditional distributions.

Corollary 2. [Non-recoverability of P(Y|X)] Let X andY be disjoint subsets of substantive
variables. P(Y'|X) is non-recoverable in m-graph G if one of the following conditions is true:
(1) Y and R, are neighbors

(2) G contains a collider path p connecting Y and R, such that all intermediate nodes in p
are in X.

6 Recovering Causal Queries

Given a causal query and a causal bayesian network a complete algorithm exists for deciding
whether the query is identifiable or not (Shpitser and Pearl [2006]). Obviously, a query that
is not identifiable in the substantive model is not recoverable from missing data. Therefore,
a necessary condition for recoverability of a causal query is its identifiability which we will
assume in the rest of our discussion.

Definition 3 (Trivially Recoverable Query). A causal query Q is said to be trivially recov-
erable given an m-graph G if it has an estimand (in terms of substantive variables) in which
every factor is recoverable.
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Figure 3: m-graph in which Y and R, are not separable but still P(Y'|do(Z)) is recoverable.

Classes of problems that fall into the MCAR, (Missing Completely At Random) and MAR
(Missing At Random) category are much discussed in the literature ((Rubin [1976])) be-
cause in such categories probabilistic queries are recoverable by graph-blind algorithms. An
immediate but important implication of trivial recoverability is that if data are MAR or
MCAR and the query is identifiable, then it is also recoverable by model-blind algorithms.

Example 2. In the gender wage-gap study example in Figure 1 (a), the effect of sex on
income, P(I|do(S)), is identifiable and is given by P(I|S). By theorem 2, P(S,X,Q,I) is
recoverable. Hence P(I|do(S)) is recoverable.

6.1 Recovering P(y|do(z)) when Y and R, are inseparable

The recoverability of P(V') hinges on the separability of a partially observed variable from its
missingness mechanism (a condition established in theorem 3). Remarkably, causal queries
may circumvent this requirement. The following example demonstrates that P(y|do(z)) is
recoverable even when Y and R, are not separable.

Example 3. Ezamine Figure 3. By backdoor criterion, P(y|do(z)) = ", P(y|z,w)P(w).
One might be tempted to conclude that the causal relation is non-recoverable because
P(w, z,y) is non-recoverable (by theorem 2) and P(y|z,w) is not recoverable (by corollary
2). However, P(yldo(z)) is recoverable as demonstrated below:

P(y|do(z)) = P(y|do(z) ZP yldo(z), w, Ry)) P(w|do(2), R;)) (2)

P(yldo(z),w, R;) = P(y|z,w, R;) (by Rule—2 of do-calculus (Pearl [2009])) (3)
P(wl|do(2), R,)) = P(w|R),) (by Rule-3 of do-calculus) ) (4)

Substituting (3) and (4) in (2) we get:

P(y|do(z) ZP (ylz,w, R,)P(w|R;) ZP (y*|z,w, R,)P(w|R;)

The recoverability of P(y|do(z)) in the previous example follows from the notion of d*-
separability and dormant independence [Shpitser and Pearl, 2008].

Definition 4 (d*-separation (Shpitser and Pearl [2008])). Let G be a causal diagram. Vari-
able sets X, Y are d*-separated in G given Z, W (written X L,, Y|Z), if we can find sets
Z,W, such that X 1 Y|Z in G, and P(y,z|z,do(w)) is identifiable.

Definition 5 (Inducing path (Verma and Pearl [1991))). An path p between X and Y is
called inducing path if every node on the path is a collider and an ancestor of either X or

Y.

Theorem 4. Given an m-graph in which |Vy,| = 1 and Y and R, are connected by an
inducing path, P(y|do(z)) is recoverable if there exists Z,W such thatY L, Ry|Z and for
W =W\ X, the following conditions hold:
(1) YJ_LW1|X Z in Gx yy, and
(2) P(Wy, Z|do(X)) and P(Y |do(W1),do(X), Z, R'y) are identifiable.
Moreover, if recoverable then,

P(yldo(x)) = X ow, 7 P(Y|do(W),do(X), Z, R,)) P(Z, W1|do(X))

We can quickly conclude that P(y|do(z)) is recoverable in the m-graph in figure 3 by verifying
that the conditions in theorem 4 hold in the m-graph.
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Figure 4: (a) m-graphs in which P(y|do(x)) is not recoverable (b) m-graphs in which
P(y|do(x)) is recoverable.

7 Attrition

Attrition (i.e. participants dropping out from a study/experiment), is a ubiquitous phe-
nomenon, especially in longitudinal studies. In this section, we shall discuss a special case
of attrition called ‘Simple Attrition’ (Garcia [2013]). In this problem, a researcher conducts
a randomized trial, measures a set of variables (X,Y,Z) and obtains a dataset where outcome
(Y) is corrupted by missing values (due to attrition). Clearly, due to randomization, the
effect of treatment (X) on outcome (Y), P(y|do(x)), is identifiable and is given by P(Y|X).
We shall now demonstrate the usefulness of our previous discussion in recovering P(y|do(z)).
Typical attrition problems are depicted in figure 4. In Figure 4 (b) we can apply theorem 1
to recover P(y|do(z)) as given below: P(Y|X) =3, P(Y*|X, Z, R))P(Z|X). In Figure 4
(a), we observe that Y and R, are connected by a collider path. Therefore by corollary 2,
P(Y]|X) is not recoverable; hence P(y|do(x)) is also not recoverable.

7.1 Recovering Joint Distributions under simple attrition

The following theorem yields the necessary and sufficient condition for recovering joint dis-
tributions from semi-markovian models with a single partially observed variable i.e. |V,,,| =1
which includes models afflicted by simple attrition.

Theorem 5. Let Y € V,, and |V,,| = 1. P(V) is recoverable in m-graph G if and only
if Y and R, are not neighbors and Y and R, are not connected by a path in which all
intermediate nodes are colliders. If both conditions are satisfied, then P(V) is given by,

P(V)=PY|Vo,R,=0)P(Vo)

7.2 Recovering Causal Effects under Simple Attrition

Theorem 6. P(y|do(x)) is recoverable in the simple attrition case (with one partially ob-
served variable) if and only if Y and R, are neither neighbors nor connected by an inducing
path. Moreover, if recoverable,

P(Y|X) =) P(Y'|X,Z R))P(Z|X) ()

where Z is the separating set that d-separates Y from R,.

These results rectify prevailing opinion in the available literature. For example, according
to Garcia [2013] (Theorem-3), a necessary condition for non-recoverability of causal effect
under simple attrition is that X be an ancestor of R,. In Figure 4 (a), X is not an ancestor
of R, and still P(Y|X) is non-recoverable ( due to the collider path between Y and R, ).

8 Related Work

Deletion based methods such as listwise deletion that are easy to understand as well as
implement, guarantee consistent estimates only for certain categories of missingness such as
MCAR (Rubin [1976]). Maximum Likelihood method is known to yield consistent estimates
under MAR assumption; expectation maximization algorithm and gradient based algorithms
are widely used for searching for ML estimates under incomplete data (Lauritzen [1995],
Dempster et al. [1977], Darwiche [2009], Koller and Friedman [2009]). Most work in machine
learning assumes MAR and proceeds with ML or Bayesian inference. However, there are
exceptions such as recent work on collaborative filtering and recommender systems which



develop probabilistic models that explicitly incorporate missing data mechanism (Marlin
et al. [2011], Marlin and Zemel [2009], Marlin et al. [2007]).

Other methods for handling missing data can be classified into two: (a) Inverse Probability
Weighted Methods and (b) Imputation based methods (Rothman et al. [2008]). Inverse
Probability Weighing methods analyze and assign weights to complete records based on
estimated probabilities of completeness (Van der Laan and Robins [2003], Robins et al.
[1994]). Imputation based methods substitute a reasonable guess in the place of a missing
value (Allison [2002]) and Multiple Imputation (Little and Rubin [2002]) is a widely used
imputation method.

Missing data is a special case of coarsened data and data are said to be coarsened at
random (CAR) if the coarsening mechanism is only a function of the observed data (Heitjan
and Rubin [1991]). Robins and Rotnitzky [1992] introduced a methodology for parameter
estimation from data structures for which full data has a non-zero probability of being fully
observed and their methodology was later extended to deal with censored data in which
complete data on subjects are never observed (Van Der Laan and Robins [1998]).

The use of graphical models for handling missing data is a relatively new development.
Daniel et al. [2012] used graphical models for analyzing missing information in the form of
missing cases (due to sample selection bias). Attrition is a common occurrence in longitu-
dinal studies and arises when subjects drop out of the study (Twisk and de Vente [2002],
Shadish [2002]) and Garcia [2013] analysed the problem of attrition using causal graphs.
Thoemmes and Rose [2013] cautioned the practitioner that contrary to popular belief, not
all auxiliary variables reduce bias. Both Garcia [2013] and Thoemmes and Rose [2013]
associate missingness with a single variable and interactions among several missingness
mechanisms are unexplored.

Mohan et al. [2013] employed a formal representation called Missingness Graphs to depict
the missingness process, defined the notion of recoverability and derived conditions under
which queries would be recoverable when datasets are categorized as Missing Not At Random
(MNAR). Tests to detect misspecifications in the m-graph are discussed in Mohan and Pearl
[2014].

9 Conclusion

Graphical models play a critical role in portraying the missingness process, encoding and
communicating assumptions about missingness and deciding recoverability given a dataset
afflicted with missingness. We presented graphical conditions for recovering joint and con-
ditional distributions and sufficient conditions for recovering causal queries. We exemplified
the recoverability of causal queries of the form P(y|do(x)) despite the existence of an in-
separable path between Y and R,, which is an insurmountable obstacle to the recovery of
P(Y). We applied our results to problems of attrition and presented necessary and sufficient
graphical conditions for recovering causal effects in such problems.
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