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Abstract

We present a general framework for graph clustering where a label is observed to
each pair of nodes. This allows a very rich encoding of various types of pairwise
interactions between nodes. We propose a new tractable approach to this problem
based on maximum likelihood estimator and convex optimization. We analyze our
algorithm under a general generative model, and provide both necessary and suffi-
cient conditions for successful recovery of the underlying clusters. Our theoretical
results cover and subsume a wide range of existing graph clustering results includ-
ing planted partition, weighted clustering and partially observed graphs. Further-
more, the result is applicable to novel settings including time-varying graphs such
that new insights can be gained on solving these problems. Our theoretical find-
ings are further supported by empirical results on both synthetic and real data.

1 Introduction

In the standard formulation of graph clustering, we are given an unweighted graph and seek a par-
titioning of the nodes into disjoint groups such that members of the same group are more densely
connected than those in different groups. Here, the presence of an edge represents some sort of
affinity or similarity between the nodes, and the absence of an edge represents the lack thereof.

In many applications, from chemical interactions to social networks, the interactions between nodes
are much richer than a simple “edge” or “non-edge”. Such extra information may be used to improve
the clustering quality. We may represent each type of interaction by a label. One simple setting of
this type is weighted graphs, where instead of a 0-1 graph, we have edge weights representing
the strength of the pairwise interaction. In this case the observed label between each pair is a
real number. In a more general setting, the label need not be a number. For example, on social
networks like Facebook, the label between two persons may be “they are friends”, “they went to
different schools”, “they liked 21 common pages”, or the concatenation of these. In such cases
different labels carry different information about the underlying community structure. Standard
approaches convert these pairwise interactions into a simple edge/non-edge, and then apply standard
clustering algorithms, which might lose much of the information. Even in the case of a standard
weighted/unweighted graph, it is not immediately clear how the graph should be used. For example,
should the absence of an edge be interpreted as a neutral observation carrying no information, or as
a negative observation which indicates dissimilarity between the two nodes?

We emphasize that the forms of labels can be very general. In particular, a label can take the form
of a time series, i.e., the record of time varying interaction such as “A and B messaged each other
on June 1st, 4th, 15th and 21st”, or “they used to be friends, but they stop seeing each other since
2012”. Thus, the labeled graph model is an immediate tool for analyzing time-varying graphs.
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In this paper, we present a new and principled approach for graph clustering that is directly based on
pairwise labels. We assume that between each pair of nodes i and j, a label Lij is observed which
is an element of a label set L. The set L may be discrete or continuous, and need not have any
structure. The standard graph model corresponds to a binary label set L = {edge, non-edge}, and
a weighted graph corresponds to L = R. Given the observed labels L = (Lij) ∈ Ln×n, the goal
is to partition the n nodes into disjoint clusters. Our approach is based on finding a partition that
optimizes a weighted objective appropriately constructed from the observed labels. This leads to a
combinatorial optimization problem, and our algorithm uses its convex relaxation.

To systematically evaluate clustering performance, we consider a generalization of the stochastic
block model [1] and the planted partition model [2]. Our model assumes that the observed labels
are generated based on an underlying set of ground truth clusters, where pairs from the same clus-
ter generate labels using a distribution µ over L and pairs from different clusters use a different
distribution ν. The standard stochastic block model corresponds to the case where µ and ν are two-
point distributions with µ(edge) = p and ν(edge) = q. We provide theoretical guarantees for our
algorithm under this generalized model.

Our results cover a wide range of existing clustering settings—with equal or stronger theoretical
guarantees—including the standard stochastic block model, partially observed graphs and weighted
graphs. Perhaps surprisingly, our framework allows us to handle new classes of problems that are not
a priori obvious to be a special case of our model, including the clustering of time-varying graphs.

1.1 Related work

The planted partition model/stochastic block model [1, 2] are standard models for studying graph
clustering. Variants of the models cover partially observed graphs [3, 4] and weighted graphs [5, 6].
All these models are special cases of ours. Various algorithms have been proposed and analyzed
under these models, such as spectral clustering [7, 8, 1], convex optimization approaches [9, 10, 11]
and tensor decomposition methods [12]. Ours is based on convex optimization; we build upon and
extend the approach in [13], which is designed for clustering unweighted graphs whose edges have
different levels of uncertainty, a special case of our problem (cf. Section 4.2 for details).

Most related to our setting is the labelled stochastic block model proposed in [14] and [15]. A
main difference in their model is that they assume each observation is a two-step process: first
an edge/non-edge is observed; if it is an edge then a label is associated with it. In our model
all observations are in the form of labels; in particular, an edge or no-edge is also a label. This
covers their setting as a special case. Our model is therefore more general and natural—as a result
our theory covers a broad class of subproblems including time-varying graphs. Moreover, their
analysis is mainly restricted to the two-cluster setting with edge probabilities on the order of Θ(1/n),
while we allow for an arbitrary number of clusters and a wide range of edge/label distributions.
In addition, we consider the setting where the distributions of the labels are not precisely known.
Algorithmically, they use belief propagation [14] and spectral methods [15].

Clustering time-varying graphs has been studied in various context; see [16, 17, 18, 19, 20] and
the references therein. Most existing algorithms use heuristics and lack theoretical analysis. Our
approach is based on a generative model and has provable performance guarantees.

2 Problem setup and algorithms

We assume n nodes are partitioned into r disjoint clusters of size at leastK, which are unknown and
considered as the ground truth. For each pair (i, j) of nodes, a label Lij ∈ L is observed, where L is
the set of all possible labels.1 These labels are generated independently across pairs according to the
distributions µ and ν. In particular, the probability of observing the label Lij is µ(Lij) if i and j are
in the same cluster, and ν(Lij) otherwise. The goal is to recover the ground truth clusters given the
labels. Let L = (Lij) ∈ Ln×n be the matrix of observed labels. We represent the true clusters by
an n× n cluster matrix Y ∗, where Y ∗ij = 1 if nodes i and j belong to the same cluster and Y ∗ij = 0
otherwise (we use the convention Y ∗ii = 1 for all i). The problem is therefore to find Y ∗ given L.

1Note that L does not have to be finite. Although some of the results are presented for finite L, they can be
easily adapted to the other cases, for instance, by replacing summation with integration.
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We take an optimization approach to this problem. To motivate our algorithm, first consider the
case of clustering a weighted graph, where all labels are real numbers. Positive weights indicate
in-cluster interaction while negative weights indicate cross-cluster interaction. A natural approach
is to cluster the nodes in a way that maximizes the total weight inside the clusters (this is equivalent
to correlation clustering [21]). Mathematically, this is to find a clustering, represented by a cluster
matrix Y , such that

∑
i,j LijYij is maximized. For the case of general labels, we pick a weight

function w : L 7→ R, which assigns a number Wij = w(Lij) to each label, and then solve the
following max-weight problem:

max
Y
〈W,Y 〉 s.t. Y is a cluster matrix; (1)

here 〈W,Y 〉 :=
∑
ijWijYij is the standard trace inner product. Note that this effectively converts

the problem of clustering from labels into a weighted clustering problem.

The program (1) is non-convex due to the constraint. Our algorithm is based on a convex relaxation
of (1), using the now well-known fact that a cluster matrix is a block-diagonal 0-1 matrix and thus
has nuclear norm2 equal to n [22, 3, 23]. This leads to the following convex optimization problem:

max
Y

〈W,Y 〉 (2)

s.t. ‖Y ‖∗ ≤ n; 0 ≤ Yij ≤ 1,∀(i, j).
We say that this program succeeds if it has a unique optimal solution equal to the true cluster matrix
Y ∗. We note that a related approach is considered in [13], which is discussed in section 4.

One has the freedom of choosing the weight function w. Intuitively, w should assign w(Lij) > 0
to a label Lij with µ(Lij) > ν(Lij), so the program (2) is encouraged to place i and j in the same
cluster, the more likely possibility; similarly we should have w(Lij) < 0 if µ(Lij) < ν(Lij). A
good weight function should further reflect the information in µ and ν. Our theoretical results in
section 3 characterize the performance of the program (2) for any given weight function; building
on this, we further derive the optimal choice for the weight function.

3 Theoretical results

In this section, we provide theoretical analysis for the performance of the convex program (2) under
the probabilistic model described in section 2. The proofs are given in the supplementary materials.

Our main result is a general theorem that gives sufficient conditions for (2) to recover the true cluster
matrix Y ∗. The conditions are stated in terms of the label distribution µ and ν, the minimum size
of the true clusters K, and any given weight function w. Define Eµw :=

∑
l∈L w(l)µ(l) and

Varµw :=
∑
l∈L[w(l)− Eµw]2µ(l); Eνw and Varνw are defined similarly.

Theorem 1 (Main). Suppose b is any number that satisfies |w(l)| ≤ b,∀l ∈ L almost surely. There
exists a universal constant c > 0 such that if

−Eνw ≥ c
b log n+

√
K log n

√
Varνw

K
, (3)

Eµw ≥ c
b log n+

√
n log n

√
max(Varµw,Varνw)

K
, (4)

then Y ∗ is the unique solution to (2) with probability at least 1− n−10. 3

The theorem holds for any given weight function w. In the next two subsections, we show how to
choose w optimally, and then address the case where w deviates from the optimal choice.

3.1 Optimal weights

A good candidate for the weight function w can be derived from the maximum likelihood estima-
tor (MLE) of Y ∗. Given the observed labels L, the log-likelihood of the true cluster matrix taking

2The nuclear norm of a matrix is defined as the sum of its singular values. A cluster matrix is positive
semidefinite so its nuclear norm is equal to its trace.

3In all our results, the choice n−10 is arbitrary. In particular, the constant c scales linearly with the exponent.
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the value Y is
log Pr(L|Y ∗ = Y ) =

∑
i,j

log
[
µ(Lij)

Yijν(Lij)
1−Yij

]
= 〈W,Y 〉+ c

where c is independent of Y and W is given by the weight function w(l) = wMLE(l) := log µ(l)
ν(l) .

The MLE thus corresponds to using the log-likelihood ratio wMLE(·) as the weight function. The
following theorem is a consequence of Theorem 1 and characterizes the performance of using the
MLE weights. In the sequel, we use D(·‖·) to denote the KL divergence between two distributions.
Theorem 2 (MLE). Suppose wMLE is used, and b and ζ are any numbers which satisfy with
D(ν||µ) ≤ ζD(µ||ν) and

∣∣∣log µ(l)
ν(l)

∣∣∣ ≤ b,∀l ∈ L. There exists a universal constant c > 0 such

that Y ∗ is the unique solution to (2) with probability at least 1− n−10 if

D(ν||µ) ≥ c(b+ 2)
log n

K
, (5)

D(µ||ν) ≥ c(ζ + 1)(b+ 2)

(
n log n

K2

)
. (6)

Moreover, we always have D(ν||µ) ≤ (2b+ 3)D(µ||ν), so we can take ζ = 2b+ 3.

Note that the theorem has the intuitive interpretation that the in/cross-cluster label distributions µ and
ν should be sufficiently different, measured by their KL divergence. Using a classical result in infor-
mation theory [24], we may replace the KL divergences with a quantity that is often easier to work
with, as summarized below. The LHS of (7) is sometimes called the triangle discrimination [24].
Corollary 1 (MLE 2). Suppose wMLE is used, and b, ζ are defined as in Theorem 2. There exists a
universal constant c such that Y ∗ is the unique solution to (2) with probability at least 1− n−10 if∑

l∈L

(µ(l)− ν(l))2

µ(l) + ν(l)
≥ c(ζ + 1)(b+ 2)

(
n log n

K2

)
. (7)

We may take ζ = 2b+ 3.

The MLE weight wMLE turns out to be near-optimal, at least in the two-cluster case, in the sense that
no other weight function (in fact, no other algorithm) has significantly better performance. This is
shown by establishing a necessary condition for any algorithm to recover Y ∗. Here, an algorithm is
a measurable function Ŷ that maps the data L to a clustering (represented by a cluster matrix).
Theorem 3 (Converse). The following holds for some universal constants c, c′ > 0. Suppose K =
n
2 , and b defined in Theorem 2 satisfies b ≤ c′. If∑

l∈L

(µ(l)− ν(l))2

µ(l) + ν(l)
≤ c log n

n
, (8)

then inf Ŷ supY ∗ P(Ŷ 6= Y ∗) ≥ 1
2 , where the supremum is over all possible cluster matrices.

Under the assumption of Theorem 3, the conditions (7) and (8) match up to a constant factor.
Remark. The MLE weight |wMLE(l)| becomes large if µ(l) = o(ν(l)) or ν(l) = o(µ(l)), i.e., when
the in-cluster probability is negligible compared to the cross-cluster one (or the other way around).
It can be shown that in this case the MLE weight is actually order-wise better than a bounded weight
function. We give this result in the supplementary material due to space constraints.

3.2 Monotonicity

We sometimes do not know the exact true distributions µ and ν to compute wMLE. Instead, we might
compute the weight using the log likelihood ratios of some “incorrect” distribution µ̄ and ν̄. Our
algorithm has a nice monotonicity property: as long as the divergence of the true µ and ν is larger
than that of µ̄ and ν̄ (hence an “easier” problem), then the problem should still have the same, if not
better probability of success, even though the wrong weights are used.

We say that (µ, ν) is more divergent then (µ̄, ν̄) if, for each l ∈ L, we have that either
µ(l)

ν(l)
≥ µ(l)

ν̄(l)
≥ µ̄(l)

ν̄(l)
≥ 1 or

ν(l)

µ(l)
≥ ν(l)

µ̄(l)
≥ ν̄(l)

µ̄(l)
≥ 1.
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Theorem 4 (Monotonicity). Suppose we use the weight function w(l) = log µ̄(l)
ν̄(l) ,∀l, while the

actual label distributions are µ and ν. If the conditions in Theorem 2 or Corollary 1 hold with µ, ν
replaced by µ̄, ν̄, and (µ, ν) is more divergent than (µ̄, ν̄), then with probability at least 1 − n−10

Y ∗ is the unique solution to (2).

This result suggests that one way to choose the weight function is by using the log-likelihood ratio
based on a “conservative” estimate (i.e., a less divergent one) of the true label distribution pair.

3.3 Using inaccurate weights

In the previous subsection we consider using a conservative log-likelihood ratio as the weight. We
now consider a more general weight function w which need not be conservative, but is only required
to be not too far from the true log-likelihood ratio wMLE. Let

ε(l) := w(l)− wMLE(l) = w(l)− log
µ(l)

ν(l)

be the error for each label l ∈ L. Accordingly, let ∆µ :=
∑
l∈L µ(l)ε(l) and ∆ν :=

∑
l∈L ν(l)ε(l)

be the average errors with respect to µ and ν. Note that ∆µ and ∆ν can be either positive or negative.
The following characterizes the performance of using such a w.
Theorem 5 (Inaccurate Weights). Let b and ζ be defined as in Theorem 2. If the weight w satisfies

|w(l)| ≤ λ
∣∣∣∣log

µ(l)

ν(l)

∣∣∣∣ ,∀l ∈ L, |∆µ| ≤ γD(µ||ν), |∆ν | ≤ γD(ν||µ)

for some γ < 1 and λ > 0. Then Y ∗ is unique solution to (2) with probability at least 1− n−10 if

D(ν||µ) ≥ c λ2

(1− γ)2
(b+ 2)

log n

K
and D(µ||ν) ≥ c λ2

(1− γ)2
(ζ + 1)(b+ 2)

(
n log n

K2

)
.

Therefore, as long as the errors ∆µ and ∆ν in w are not too large, the condition for recovery will be
order-wise similar to that in Theorem 2 for using the MLE weight. The numbers λ and γ measure
the amount of inaccuracy in w w.r.t. wMLE. The last two conditions in Theorem 5 thus quantify the
relation between the inaccuracy in w and the price we need to pay for using such a weight.

4 Consequences and applications

We apply the general results in the last section to different special cases. In sections 4.1 and 4.2, we
consider two simple settings and show that two immediate corollaries of our main theorems recover,
and in fact improve upon, existing results. In sections 4.3 and 4.4, we turn to the more complicated
setting of clustering time-varying graphs and derive several novel results.

4.1 Clustering a Gaussian matrix with partial observations

Analogous to the planted partition model for unweighted graphs, the bi-clustering [5] or submatrix-
localization [6, 23] problem concerns with weighted graph whose adjacency matrix has Gaussian
entries. We consider a generalization of this problem where some of the entries are unobserved.

Specifically, we observe a matrix L ∈ (R ∪ {?})n×n, which has r submatrices of size K ×K with
disjoint row and column support, such that Lij =? (meaning unobserved) with probability 1−s and
otherwise Lij ∼ N (uij , 1). Here the means of the Gaussians satisfy: uij = ū if (i, j) is inside the
submatrices and uij = u if outside, where ū > u ≥ 0. Clustering is equivalent to locating these
submatrices with elevated mean, given the large Gaussian matrix L with partial observations.4

This is a special case of our labeled framework with L = R ∪ {?}. Computing the log-likelihood
ratios for two Gaussians, we obtain wMLE(Lij) = 0 if Lij =?, and wMLE(Lij) ∝ Lij − (ū + u)/2
otherwise. This problem is interesting only when ū − u .

√
log n (otherwise simple element-wise

thresholding [5, 6] finds the submatrices), which we assume to hold. ClearlyD (µ‖ν) = D (ν‖µ) =
1
4s(ū− u)2. The following can be proved using our main theorems (proof in the appendix).

4Here for simplicity we consider the clustering setting instead of bi-clustering. The latter setting corresponds
to rectangular L and submatrices. Extending our results to this setting is relatively straightforward.
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Corollary 2 (Gaussian Graphs). Under the above setting, Y ∗ is the unique solution to (2) with
weights w = wMLE with probability at least 1− 2n−10 provided

s (ū− u)
2 ≥ cn log3 n

K2
.

In the fully observed case, this recovers the results in [23, 5, 6] up to log factors. Our results are
more general as we allow for partial observations, which is not considered in previous work.

4.2 Planted Partition with non-uniform edge densities

The work in [13] considers a variant of the planted partition model with non-uniform edge densities,
where each pair (i, j) has an edge with probability 1−uij > 1/2 if they are in the same cluster, and
with probability uij < 1/2 otherwise. The number uij can be considered as a measure of the level of
uncertainty in the observation between i and j, and is known or can be estimated in applications like
cloud-clustering. They show that using the knowledge of {uij} improves clustering performance,
and such a setting covers clustering of partially observed graphs that is considered in [11, 3, 4].

Here we consider a more general setting that does not require the in/cross-cluster edge density to be
symmetric around 1

2 . Suppose each pair (i, j) is associated with two numbers pij and qij , such that
if i and j are in the same cluster (different clusters, resp.), then there is an edge with probability pij
(qij , resp.); we know pij and qij but not which of them is the probability that generates the edge.
The values of pij and qij are generated i.i.d. randomly as (pij , qij) ∼ D by some distribution D on
[0, 1]× [0, 1]. The goal is to find the clusters given the graph adjacency matrix A, (pij) and (qij).

This model is a special case of our labeled framework. The labels have the form Lij =
(Aij , pij , qij) ∈ L = {0, 1} × [0, 1]× [0, 1], generated by the distributions

µ(l) =

{
pD(p, q), l = (1, p, q)

(1− p)D(p, q), l = (0, p, q)
ν(l) =

{
qD(p, q), l = (1, p, q)

(1− q)D(p, q), l = (0, p, q).

The MLE weight has the form wMLE(Lij) = Aij log
pij
qij

+(1−Aij) log
1−pij
1−qij . It turns out it is more

convenient to use a conservative weight in which we replace pij and qij with p̄ij = 3
4pij + 1

4qij and
q̄ij = 1

4pij + 3
4qij . Applying Theorem 4 and Corollary 1, we immediately obtain the following.

Corollary 3 (Non-uniform Density). Program (2) recovers Y ∗ with probability at least 1− n−10 if

ED

[
(pij − qij)2

pij(1− qij)

]
≥ cn log n

K2
,∀(i.j).

Here ED is the expectation w.r.t. the distribution D, and LHS above is in fact independent of (i, j).

Corollary 3 improves upon existing results for several settings.

• Clustering partially observed graphs. Suppose D is such that pij = p and qij = q with proba-
bility s, and pij = qij otherwise, where p > q. This extends the standard planted partition model:
each pair is unobserved with probability 1− s. For this setting we require

s(p− q)2

p(1− q)
&
n log n

K2
.

When s = 1. this matches the best existing bounds for standard planted partition [9, 12] up to a
log factor. For the partial observation setting with s ≤ 1, the work in [4] gives a similar bound
under the additional assumption p > 0.5 > q, which is not required by our result. For general
p and q, the best existing bound is given in [3, 9], which replaces unobserved entries with 0 and
requires the condition s(p−q)2

p(1−sq) & n logn
K2 . Our result is tighter when p and q are close to 1.

• Planted partition with non-uniformity. The model and algorithm in [13] is a special case of ours
with symmetric densities pij ≡ 1−qij , for which we recover their result ED

[
(1−2qij)

2
]
& nlogn

K2 .
Corollary 3 is more general as it removes the symmetry assumption.
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4.3 Clustering time-varying multiple-snapshot graphs

Standard graph clustering concerns with clustering on a single, static graph. We now consider a
setting where the graph can be time-varying. Specifically, we assume that for each time interval
t = 1, 2, . . . , T , we observed a snapshot of the graph L(t) ∈ Ln×n. We assume each snapshot is
generated by the distributions µ and ν, independent of other snapshots.

We can map this problem into our original labeled framework, by considering the whole time se-
quence of L̄ij := (L

(1)
ij , . . . , L

(T )
ij ) observed at the pair (i, j) as a single label. In this case the label

set is thus the set of all possible sequences, i.e., L̄ = (L)T , and the label distributions are (with a
slight abuse of notation) µ(L̄ij) = µ(L

(1)
ij ) . . . µ(L

(T )
ij ), with ν(·) given similarly. The MLE weight

(normalized by T ) is thus the average log-likelihood ratio:

wMLE(L̄ij) =
1

T
log

µ(L
(1)
ij ) . . . µ(L

(T )
ij )

ν(L
(1)
ij ) . . . ν(L

(T )
ij )

=
1

T

T∑
t=1

log
µ(L

(t)
ij )

ν(L
(t)
ij )

.

Since wMLE(L̄ij) is the average of T independent random variables, its variance scales with 1
T .

Applying Theorem 1, with almost identical proof as in Theorem 2 we obtain the following:

Corollary 4 (Independent Snapshots). Suppose | log µ(l)
ν(l) | ≤ b,∀l ∈ L and D(ν||µ) ≤ ζD(µ||ν).

The program (2) with MLE weights given recovers Y ∗ with probability at least 1− n−10 provided

D(ν||µ) ≥ c(b+ 2)
log n

K
, (9)

D(µ||ν) ≥ c(b+ 2) max
{ log n

K
, (ζ + 1)

n log n

TK2

}
. (10)

Setting T = 1 recovers Theorem 2. When the second term in (10) dominates, the corollary says that
the problem becomes easier if we observe more snapshots, with the tradeoff quantified precisely.

4.4 Markov sequence of snapshots

We now consider the more general and useful setting where the snapshots form a Markov chain. For
simplicity we assume that the Markov chain is time-invariant and has a unique stationary distribution
which is also the initial distribution. Therefore, the observations L(t)

ij at each (i, j) are generated by
first drawing a label from the stationary distribution µ̄ (or ν̄) at t = 1, then applying a one-step
transition to obtain the label at each subsequent t. In particular, given the previously observed label
l, let the intra-cluster and inter-cluster conditional distributions be µ(·|l) and ν(·|l). We assume that
the Markov chains with respect to both µ and ν are geometrically ergodic such that for any τ ≥ 1,
and label-pair L(1), L(τ+1),

|Prµ(L(τ+1)|L(1))− µ̄(L(τ+1))| ≤ κγτ and |Prν(L(τ+1)|L(1))− ν̄(L(τ+1))| ≤ κγτ

for some constants κ ≥ 1 and γ < 1 that only depend on µ and ν. LetDl(µ||ν) be the KL-divergence
between µ(·|l) and ν(·|l); Dl(ν||µ) is similarly defined. Let Eµ̄Dl(µ||ν) =

∑
l∈Lµ̄(l)Dl(µ||ν) and

similarly for Eν̄Dl(ν||µ). As in the previous subsection, we use the average log-likelihood ratio as
the weight. Define λ = κ

(1−γ) minl{µ̄(l),ν̄(l)} . Applying Theorem 1 gives the following corollary.
See sections H–I in the supplementary material for the proof and additional discussion.
Corollary 5 (Markov Snapshots). Under the above setting, suppose for each label-pair (l, l′),∣∣∣log µ̄(l)

ν̄(l)

∣∣∣ ≤ b,
∣∣∣log µ(l′|l)

ν(l′|l)

∣∣∣ ≤ b, D(ν̄||µ̄) ≤ ζD(µ̄||ν̄) and Eν̄Dl(ν||µ) ≤ ζEµ̄Dl(µ||ν). The

program (2) with MLE weights recovers Y ∗ with probability at least 1− n−10 provided

1

T
D(ν̄||µ̄) +

(
1− 1

T

)
Eν̄Dl(ν||µ) ≥ c(b+ 2)

log n

K
(11)

1

T
D(µ̄||ν̄) +

(
1− 1

T

)
Eµ̄Dl(µ||ν) ≥ c(b+ 2) max

{ log n

K
, (ζ + 1)λ

n log n

TK2

}
. (12)
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As an illuminating example, consider the case where µ̄ ≈ ν̄, i.e., the marginal distributions for
individual snapshots are identical or very close. It means that the information is contained in the
change of labels, but not in the individual labels, as made evident in the LHSs of (11) and (12).
In this case, it is necessary to use the temporal information in order to perform clustering. Such
information would be lost if we disregard the ordering of the snapshots, for example, by aggregating
or averaging the snapshots then apply a single-snapshot clustering algorithm. This highlights an
essential difference between clustering time-varying graphs and static graphs.

5 Empirical results

To solve the convex program (2), we follow [13, 9] and adapt the ADMM algorithm by [25]. We
perform 100 trials for each experiment, and report the success rate, i.e., the fraction of trials where
the ground-truth clustering is fully recovered. Error bars show 95% confidence interval. Additional
empirical results are provided in the supplementary material.

We first test the planted partition model with partial observations under the challenging sparse (p
and q close to 0) and dense settings (p and q close to 1); cf. section 4.2. Figures 1 and 2 show the
results for n = 1000 with 4 equal-size clusters. In both cases, each pair is observed with probability
0.5. For comparison, we include results for the MLE weights as well as the linear weights (based on
linear approximation of the log-likelihood ratio), uniform weights and a imputation scheme where
all unobserved entries are assumed to be “no-edge”.
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Figure 1: Sparse graphs
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Figure 2: Dense graphs
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Figure 3: Reality Mining dataset

Corollary 3 predicts more success as the ratio s(p−q)2
p(1−q) gets larger. All else being the same, distribu-

tions with small ζ (sparse) are “easier” to solve. Both predictions are consistent with the empirical
results in Figs. 1 and 2. The results also show that the MLE weights outperform the other weights.

For real data, we use the Reality Mining dataset [26], which contains individuals from two main
groups, the MIT Media Lab and the Sloan Business School, which we use as the ground-truth
clusters. The dataset records when two individuals interact, i.e., become proximal of each other or
make a phone call, over a 9-month period. We choose a window of 14 weeks (the Fall semester)
where most individuals have non-empty interaction data. These consist of 85 individuals with 25 of
them from Sloan. We represent the data as a time-varying graph with 14 snapshots (one per week)
and two labels—an “edge” if a pair of individuals interact within the week, and “no-edge” otherwise.

We compare three models: Markov sequence, independent snapshots, and the aggregate (union)
graphs. In each trial, the in/cross-cluster distributions are estimated from a fraction of randomly
selected pairwise interaction data. The vertical axis in Figure 3 shows the fraction of pairs whose
cluster relationship are correctly identified. From the results, we infer that the interactions between
individuals are likely not independent across time, and are better captured by the Markov model.
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