
Parallel Direction Method of Multipliers

Huahua Wang , Arindam Banerjee , Zhi-Quan Luo
University of Minnesota, Twin Cities

{huwang,banerjee}@cs.umn.edu, luozq@umn.edu

Abstract

We consider the problem of minimizing block-separable (non-smooth) convex
functions subject to linear constraints. While the Alternating Direction Method of
Multipliers (ADMM) for two-block linear constraints has been intensively studied
both theoretically and empirically, in spite of some preliminary work, effective
generalizations of ADMM to multiple blocks is still unclear. In this paper, we
propose a parallel randomized block coordinate method named Parallel Direction
Method of Multipliers (PDMM) to solve optimization problems with multi-block
linear constraints. At each iteration, PDMM randomly updates some blocks in
parallel, behaving like parallel randomized block coordinate descent. We establish
the global convergence and the iteration complexity for PDMM with constant step
size. We also show that PDMM can do randomized block coordinate descent on
overlapping blocks. Experimental results show that PDMM performs better than
state-of-the-arts methods in two applications, robust principal component analysis
and overlapping group lasso.

1 Introduction

In this paper, we consider the minimization of block-seperable convex functions subject to linear
constraints, with a canonical form:

min
{xj∈Xj}

f(x) =

J∑
j=1

fj(xj) , s.t. Ax =

J∑
j=1

Ac
jxj = a , (1)

where the objective function f(x) is a sum of J block separable (nonsmooth) convex functions,
Ac
j ∈ Rm×nj is the j-th column block of A ∈ Rm×n where n =

∑
j nj , xj ∈ Rnj×1 is the j-th

block coordinate of x, Xj is a local convex constraint of xj and a ∈ Rm×1. The canonical form
can be extended to handle linear inequalities by introducing slack variables, i.e., writing Ax ≤ a as
Ax + z = a, z ≥ 0.

A variety of machine learning problems can be cast into the linearly-constrained optimization prob-
lem (1) [8, 4, 24, 5, 6, 21, 11]. For example, in robust Principal Component Analysis (RPCA) [5],
one attempts to recover a low rank matrix L and a sparse matrix S from an observation matrix M,
i.e., the linear constraint is M = L+S. Further, in the stable version of RPCA [29], an noisy matrix
Z is taken into consideration, and the linear constraint has three blocks, i.e., M = L+S+Z. Prob-
lem (1) can also include composite minimization problems which solve a sum of a loss function and
a set of nonsmooth regularization functions. Due to the increasing interest in structural sparsity [1],
composite regularizers have become widely used, e.g., overlapping group lasso [28]. As the blocks
are overlapping in this class of problems, it is difficult to apply block coordinate descent methods
for large scale problems [16, 18] which assume block-separable. By simply splitting blocks and in-
troducing equality constraints, the composite minimization problem can also formulated as (1) [2].

A classical approach to solving (1) is to relax the linear constraints using the (augmented) La-
grangian, i.e.,

Lρ(x,y) = f(x) + 〈y,Ax− a〉+
ρ

2
‖Ax− a‖22 , (2)

1

where ρ ≥ 0 is called the penalty parameter. We call x the primal variable and y the dual variable. (2)
usually leads to primal-dual algorithms which update the primal and dual variables alternatively.
While the dual update is simply dual gradient descent, the primal update is to solve a minimization
problem of (2) given y. If ρ = 0, the primal update can be solved in a parallel block coordinate
fashion [3, 19], leading to the dual ascent method. While the dual ascent method can achieve mas-
sive parallelism, a careful choice of stepsize and some strict conditions are required for convergence,
particularly when f is nonsmooth. To achieve better numerical efficiency and convergence behavior
compared to the dual ascent method, it is favorable to set ρ > 0 in the augmented Lagrangian (2)
which we call the method of multipliers. However, (2) is no longer separable and solving entire
augmented Lagrangian (2) exactly is computationally expensive. In [20], randomized block coor-
dinate descent (RBCD) [16, 18] is used to solve (2) exactly, but leading to a double-loop algorithm
along with the dual step. More recent results show (2) can be solved inexactly by just sweeping the
coordinates once using the alternating direction method of multipliers (ADMM) [12, 2]. This paper
attempts to develop a parallel randomized block coordinate variant of ADMM.

When J = 2, ADMM has been widely used to solve the augmented Lagragian (2) in many ap-
plications [2]. Encouraged by the success of ADMM with two blocks, ADMM has also been ex-
tended to solve the problem with multiple blocks [15, 14, 10, 17, 13, 7]. The variants of ADMM
can be mainly divided into two categories. The first category considers Gauss-Seidel ADMM
(GSADMM) [15, 14], which solves (2) in a cyclic block coordinate manner. In [13], a back sub-
stitution step was added so that the convergence of ADMM for multiple blocks can be proved. In
some cases, it has been shown that ADMM might not converge for multiple blocks [7]. In [14], a
block successive upper bound minimization method of multipliers (BSUMM) is proposed to solve
the problem (1). The convergence of BSUMM is established under some fairly strict conditions: (i)
certain local error bounds hold; (ii) the step size is either sufficiently small or decreasing. However,
in general, Gauss-Seidel ADMM with multiple blocks is not well understood and its iteration com-
plexity is largely open. The second category considers Jacobian variants of ADMM [26, 10, 17],
which solves (2) in a parallel block coordinate fashion. In [26, 17], (1) is solved by using two-block
ADMM with splitting variables (sADMM). [10] considers a proximal Jacobian ADMM (PJADMM)
by adding proximal terms. A randomized block coordinate variant of ADMM named RBSUMM
was proposed in [14]. However, RBSUMM can only randomly update one block. Moreover, the
convergence of RBSUMM is established under the same conditions as BSUMM and its iteration
complexity is unknown.

In this paper, we propose a parallel randomized block coordinate method named parallel direction
method of multipliers (PDMM) which randomly picks up any number of blocks to update in parallel,
behaving like randomized block coordinate descent [16, 18]. Like the dual ascent method, PDMM
solves the primal update in a parallel block coordinate fashion even with the augmentation term.
Moreover, PDMM inherits the merits of the method of multipliers and can solve a fairly large class
of problems, including nonsmooth functions. Technically, PDMM has three aspects which make it
distinct from such state-of-the-art methods. First, if block coordinates of the primal x is solved ex-
actly, PDMM uses a backward step on the dual update so that the dual variable makes conservative
progress. Second, the sparsity of A and the number of randomized blocks are taken into consider-
ation to determine the step size of the dual update. Third, PDMM can randomly update arbitrary
number of primal blocks in parallel. Moreover, we show that sADMM and PJADMM are the two ex-
treme cases of PDMM. The connection between sADMM and PJADMM through PDMM provides
better understanding of dual backward step. PDMM can also be used to solve overlapping groups in
a randomized block coordinate fashion. Interestingly, the corresponding problem for RBCD [16, 18]
with overlapping blocks is still an open problem. We establish the global convergence and O(1/T)
iteration complexity of PDMM with constant step size. We evaluate the performance of PDMM in
two applications: robust principal component analysis and overlapping group lasso.

The rest of the paper is organized as follows: We introduce PDMM in Section 2, and establish
convergence results in Section 3. We evaluate the performance of PDMM in Section 4 and conclude
in Section 5. The technical analysis and detailed proofs are provided in the supplement.

Notations: Assume that A ∈ Rm×n is divided into I × J blocks. Let Ar
i ∈ Rmi×n be the i-th row

block of A, Ac
j ∈ Rm×nj be the j-th column block of A, and Aij ∈ Rmi×nj be the ij-th block of

A. Let yi ∈ Rmi×1 be the i-th block of y ∈ Rm×1. Let N (i) be a set of nonzero blocks Aij in the

2

i-th row block Ar
i and di = |N (i)| be the number of nonzero blocks. Let K̃i = min{di,K} where

K is the number of blocks randomly chosen by PDMM and T be the number of iterations.

2 Parallel Direction Method of Multipliers
Consider a direct Jacobi version of ADMM which updates all blocks in parallel:

xt+1
j = argminxj∈Xj

Lρ(xj ,x
t
k 6=j ,y

t) , (3)

yt+1 = yt + τρ(Axt+1 − a) . (4)

where τ is a shrinkage factor for the step size of the dual gradient ascent update. However, empirical
results show that it is almost impossible to make the direct Jacobi updates (3)-(4) to converge even
when τ is extremely small. [15, 10] also noticed that the direct Jacobi updates may not converge.

To address the problem in (3) and (4), we propose a backward step on the dual update. Moreover,
instead of updating all blocks, the blocks xj will be updated in a parallel randomized block coordi-
nate fashion. We call the algorithm Parallel Direction Method of Multipliers (PDMM). PDMM first
randomly select K blocks denoted by set Jt at time t, then executes the following iterates:

xt+1
jt

= argmin
xjt∈Xjt

Lρ(xjt ,x
t
k 6=jt , ŷ

t) + ηjtBφjt
(xjt ,x

t
jt) , jt ∈ Jt, (5)

yt+1
i = yti + τiρ(Aix

t+1 − ai) , (6)

ŷt+1
i = yt+1

i − νiρ(Aix
t+1 − ai) , (7)

where τi > 0, 0 ≤ νi < 1, ηjt ≥ 0, and Bφjt
(xjt ,x

t
jt

) is a Bregman divergence. Note xt+1 =

(xt+1
Jt ,xtk/∈Jt) in (6) and (7). (6) and (7) update all dual blocks. We show that PDMM can also do

randomized dual block coordinate ascent in an extended work [25]. Let K̃i = min{di,K}. τi and
νi can take the following values:

τi =
K

K̃i(2J −K)
, νi = 1− 1

K̃i

. (8)

In the xjt -update (5), a Bregman divergence is addded so that exact PDMM and its inexact variants
can be analyzed in an unified framework [23, 11]. In particular, if ηjt = 0, (5) is an exact update. If
ηjt > 0, by choosing a suitable Bregman divergence, (5) can be solved by various inexact updates,
often yielding a closed-form for the xjt update (see Section 2.1).

To better understand PDMM, we discuss the following three aspects which play roles in choosing τi
and νi: the dual backward step (7), the sparsity of A, and the choice of randomized blocks.

Dual Backward Step: We attribute the failure of the Jacobi updates (3)-(4) to the following obser-
vation in (3), which can be rewritten as:

xt+1
j = argminxj∈Xj

fj(xj) + 〈yt + ρ(Axt − a),Ac
jxj〉+

ρ

2
‖Ac

j(xj − xtj)‖22 . (9)

In the primal xj update, the quadratic penalty term implicitly adds full gradient ascent step to the
dual variable, i.e., yt+ρ(Axt−a), which we call implicit dual ascent. The implicit dual ascent along
with the explicit dual ascent (4) may lead to too aggressive progress on the dual variable, particularly
when the number of blocks is large. Based on this observation, we introduce an intermediate variable
ŷt to replace yt in (9) so that the implicit dual ascent in (9) makes conservative progress, e.g.,
ŷt + ρ(Axt − a) = yt + (1 − ν)ρ(Axt − a) , where 0 < ν < 1. ŷt is the result of a ‘backward
step’ on the dual variable, i.e., ŷt = yt − νρ(Axt − a).

Moreover, one can show that τ and ν have also been implicitly used when using two-block ADMM
with splitting variables (sADMM) to solve (1) [17, 26]. Section 2.2 shows sADMM is a special case
of PDMM. The connection helps in understanding the role of the two parameters τi, νi in PDMM.
Interestingly, the step sizes τi and νi can be improved by considering the block sparsity of A and
the number of random blocks K to be updated.

Sparsity of A: Assume A is divided into I × J blocks. While xj can be updated in parallel,
the matrix multiplication Ax in the dual update (4) requires synchronization to gather messages
from all block coordinates jt ∈ Jt. For updating the i-th block of the dual yi, we need Aix

t+1 =∑
jt∈Jt Aijtx

t+1
jt

+
∑
k/∈Jt Aikx

t
k which aggregates “messages” from all xjt . If Aijt is a block of

3

zeros, there is no “message” from xjt to yi. More precisely, Aix
t+1 =

∑
jt∈Jt∩N (i) Aijtx

t+1
jt

+∑
k/∈Jt Aikx

t
k where N (i) denotes a set of nonzero blocks in the i-th row block Ai. N (i) can be

considered as the set of neighbors of the i-th dual block yi and di = |N (i)| is the degree of the i-th
dual block yi. If A is sparse, di could be far smaller than J . According to (8), a low di will lead to
bigger step sizes τi for the dual update and smaller step sizes for the dual backward step (7). Further,
as shown in Section 2.3, when using PDMM with all blocks to solve composite minimization with
overlapping blocks, PDMM can use τi = 0.5 which is much larger than 1/J in sADMM.

Randomized Blocks: The number of blocks to be randomly chosen also has the effect on τi, νi.
If randomly choosing one block (K = 1), then νi = 0, τi = 1

2J−1 . The dual backward step (7)
vanishes. As K increases, νi increases from 0 to 1 − 1

di
and τi increases from 1

2J−1 to 1
di

. If
updating all blocks (K = J), τi = 1

di
, νi = 1− 1

di
.

PDMM does not necessarily choose any K combination of J blocks. The J blocks can be randomly
partitioned into J/K groups where each group has K blocks. Then PDMM randomly picks some
groups. A simple way is to permutate the J blocks and choose K blocks cyclically.

2.1 Inexact PDMM

If ηjt > 0, there is an extra Bregman divergence term in (5), which can serve two purposes. First,
choosing a suitable Bregman divergence can lead to an efficient solution for (5). Second, if ηjt is
sufficiently large, the dual update can use a large step size (τi = 1) and the backward step (7) can be
removed (νi = 0), leading to the same updates as PJADMM [10] (see Section 2.2).

Given a continuously differentiable and strictly convex function ψjt , its Bregman divergence is
defiend as

Bψjt
(xjt ,x

t
jt) = ψjt(xjt)− ψjt(xtjt)− 〈∇ψjt(x

t
jt),xjt − xtjt〉, (10)

where∇ψjt denotes the gradient of ψjt . Rearranging the terms yields

ψjt(xjt)−Bψjt
(xjt ,x

t
jt) = ψjt(x

t
jt) + 〈∇ψjt(xtjt),xjt − xtjt〉, (11)

which is exactly the linearization of ψjt(xjt) at xtjt . Therefore, if solving (5) exactly becomes
difficult due to some problematic terms, we can use the Bregman divergence to linearize these
problematic terms so that (5) can be solved efficiently. More specifically, in (5), we can choose
φjt = ϕjt − 1

ηjt
ψjt assuming ψjt is the problematic term. Using the linearity of Bregman diver-

gence,
Bφjt

(xjt ,x
t
jt) = Bϕjt

(xjt ,x
t
jt)−

1

ηjt
Bψjt

(xjt ,x
t
jt) . (12)

For instance, if fjt is a logistic function, solving (5) exactly requires an iterative algorithm. Setting
ψjt = fjt , ϕjt = 1

2‖· ‖
2
2 in (12) and plugging into (5) yield

xt+1
jt

=argmin
xjt∈Xjt

〈∇fjt(xtjt),xjt〉+〈ŷ
t,Ajtxjt〉+

ρ

2
‖Ajtxjt +

∑
k 6=jt

Akx
t
k−a‖22+ηjt‖xjt−xtjt‖

2
2 ,

which has a closed-form solution. Similarly, if the quadratic penalty term ρ
2‖A

c
jt
xjt +∑

k 6=jt A
c
kx

t
k − a‖22 is a problematic term, we can set ψjt(xjt) = ρ

2‖A
c
jt
xjt‖22, then

Bψjt
(xjt ,x

t
jt

) = ρ
2‖A

c
jt

(xjt − xtjt)‖
2
2 can be used to linearize the quadratic penalty term.

In (12), the nonnegativeness of Bφjt
implies that Bϕjt

≥ 1
ηjt
Bψjt

. This condition can be satisfied
as long as ϕjt is more convex than ψjt . Technically, we assume that ϕjt is σ/ηjt -strongly convex
and ψjt has Lipschitz continuous gradient with constant σ, which has been shown in [23].

2.2 Connections to Related Work

Consider the case when all blocks are used in PDMM. There are also two other methods which
update all blocks in parallel. If solving the primal updates exactly, two-block ADMM with splitting
variables (sADMM) is considered in [17, 26]. We show that sADMM is a special case of PDMM
when setting τi = 1

J and νi = 1 − 1
J (Appendix B in [25]). If the primal updates are solved

inexactly, [10] considers a proximal Jacobian ADMM (PJADMM) by adding proximal terms where

4

the converge rate is improved to o(1/T) given the sufficiently large proximal terms. We show that
PJADMM [10] is also a special case of PDMM (Appendix C in [25]). sADMM and PJADMM are
two extreme cases of PDMM. The connection between sADMM and PJADMM through PDMM can
provide better understanding of the three methods and the role of dual backward step. If the primal
update is solved exactly which makes sufficient progress, the dual update should take small step, e.g.,
sADMM. On the other hand, if the primal update takes small progress by adding proximal terms,
the dual update can take full gradient step, e.g. PJADMM. While sADMM is a direct derivation of
ADMM, PJADMM introduces more terms and parameters.

In addition to PDMM, RBUSMM [14] can also randomly update one block. The convergence
of RBSUMM requires certain local error bounds to be hold and decreasing step size. Moreover,
the iteration complexity of RBSUMM is still unknown. In contast, PDMM converges at a rate of
O(1/T) with the constant step size.

2.3 Randomized Overlapping Block Coordinate Descent

Consider the composite minimization problem of a sum of a loss function `(w) and composite
regularizers gj(wj):

min
w

`(w) +
L∑
j=1

gj(wj) , (13)

which considers L overlapping groups wj ∈ Rb×1. Let J = L + 1,xJ = w. For 1 ≤ j ≤ L,
denote xj = wj , then xj = UT

j xJ , where Uj ∈ Rb×L is the columns of an identity matrix and
extracts the coordinates of xJ . Denote U = [U1, · · · ,UL] ∈ Rn×(bL) and A = [IbL,−UT] where
bL denotes b× L. By letting fj(xj) = gj(wj) and fJ(xJ) = `(w), (13) can be written as:

min
x

J∑
j=1

fj(xj) s.t. Ax = 0. (14)

where x = [x1; · · · ;xL;xL+1] ∈ Rb×J . (14) can be solved by PDMM in a randomized block
coordinate fashion. In A, for b rows block, there are only two nonzero blocks, i.e., di = 2. There-
fore, τi = K

2(2J−K) , νi = 0.5. In particular, if K = J , τi = νi = 0.5. In contrast, sADMM uses
τi = 1/J � 0.5, νi = 1− 1/J > 0.5 if J is larger.

Remark 1 (a) ADMM [2] can solve (14) where the equality constraint is xj = UT
j xJ .

(b) In this setting, Gauss-Seidel ADMM (GSADMM) and BSUMM [14] are the same as ADMM.
BSUMM should converge with constant stepsize ρ (not necessarily sufficiently small), although the
theory of BSUMM does not include this special case.

3 Theoretical Results
We establish the convergence results for PDMM under fairly simple assumptions:

Assumption 1

(1) fj : Rnj 7→ R ∪ {+∞} are closed, proper, and convex.

(2) A KKT point of the Lagrangian (ρ = 0 in (2)) of Problem (1) exists.

Assumption 1 is the same as that required by ADMM [2, 22]. Assume that {x∗j ∈ Xj ,y∗i } satisfies
the KKT conditions of the Lagrangian (ρ = 0 in (2)), i.e.,

−AT
j y
∗ ∈ ∂fj(x∗j) , (15)

Ax∗ − a = 0. (16)

During iterations, (16) is satisfied if Axt+1 = a. Let f ′j(x
t+1
j) ∈ ∂fj(x

t+1
j) where ∂fj be the

subdifferential of fj . For x∗j ∈ Xj , the optimality conditions for the xj update (5) is

〈f ′j(xt+1
j)+Ac

j [y
t+(1−ν)ρ(Axt−a)+Ac

j(x
t+1
j −x

t
j)]+ηj(∇φj(xt+1

j)−∇φj(xtj)),xt+1
j −x

∗
j 〉≤0 .

When Axt+1 = a, yt+1 = yt. If Ac
j(x

t+1
j − xtj) = 0, then Axt − a = 0. When ηj ≥ 0, further

assuming Bφj
(xt+1
j ,xtj) = 0, (15) will be satisfied. Note x∗j ∈ Xj is always satisfied in (5) in

5

PDMM. Overall, the KKT conditions (15)-(16) are satisfied if the following optimality conditions
are satisfied by the iterates:

Axt+1 = a ,Ac
j(x

t+1
j − xtj) = 0 , (17)

Bφj (xt+1
j ,xtj) = 0 . (18)

The above optimality conditions are sufficient for the KKT conditions. (17) are the optimality con-
ditions for the exact PDMM. (18) is needed only when ηj > 0.

Let zij = Aijxj ∈ Rmi×1, zri = [zTi1, · · · , zTiJ]T ∈ RmiJ×1 and z = [(zr1)T , · · · , (zrI)T]T ∈
RJm×1. Define the residual of optimality conditions (17)-(18) as

R(xt+1) =
ρ

2
‖zt+1 − zt‖2Pt

+
ρ

2

I∑
i=1

βi‖Ar
ix
t+1 − ai‖22 +

J∑
j=1

ηjBφj (xt+1
j ,xtj) . (19)

where Pt is some positive semi-definite matrix and βi = K
JK̃i

. If R(xt+1) → 0, (17)-(18) will be
satisfied and thus PDMM converges to the KKT point {x∗,y∗}. Define the current iterate vt =
(xtj ,y

t
i) and h(v∗,vt) as a distance from vt to a KKT point v∗ = (x∗j ∈ Xj ,y∗i):

h(v∗,vt) =
K

J

I∑
i=1

1

2τiρ
‖y∗i − yt−1i ‖22 + L̃ρ(xt,yt) +

ρ

2
‖z∗ − zt‖2Q +

J∑
j=1

ηjBφj (x∗j ,x
t
j) , (20)

where Q is a positive semi-definite matrix and L̃ρ(xt,yt) with γi = 2(J−K)

K̃i(2J−K)
+ 1

di
− K

JK̃i
is

L̃ρ(xt,yt) = f(xt)− f(x∗) +

I∑
i=1

{
〈yti ,Ar

ix
t − ai〉+

(γi − τi)ρ
2

‖Ar
ix
t − ai‖22

}
. (21)

The following Lemma shows that h(v∗,vt) ≥ 0.

Lemma 1 Let vt = (xtj ,y
t
i) be generated by PDMM (5)-(7) and h(v∗,vt) be defined in (20).

Setting νi = 1− 1
K̃i

and τi = K
K̃i(2J−K)

, we have

h(v∗,vt) ≥ ρ

2

I∑
i=1

ζi‖Ar
ix
t − ai‖22 +

ρ

2
‖z∗ − zt‖2Q +

J∑
j=1

ηjBφj (x∗j ,x
t
j) ≥ 0 . (22)

where ζi = J−K
K̃i(2J−K)

+ 1
di
− K

JK̃i
≥ 0. Moreover, if h(v∗,vt) = 0, then Ar

ix
t = ai, z

t = z∗ and

Bφj
(x∗j ,x

t
j) = 0. Thus, (15)-(16) are satisfied.

In PDMM, yt+1 depends on xt+1, which in turn depends on Jt. xt and yt are independent of Jt. xt
depends on the observed realizations of the random variable ξt−1 = {J1, · · · , Jt−1} .The following
theorem shows that h(v∗,vt) decreases monotonically and thus establishes the global convergence
of PDMM.

Theorem 1 (Global Convergence) Let vt = (xtj ,y
t
i) be generated by PDMM (5)-(7) and v∗ =

(x∗j ∈ Xj ,y∗i) be a KKT point satisfying (15)-(16). Setting νi = 1 − 1
K̃i

and τi = K
K̃i(2J−K)

, we
have

0 ≤ Eξth(v∗,vt+1) ≤ Eξt−1
h(v∗,vt) , EξtR(xt+1)→ 0 . (23)

The following theorem establishes the iteration complexity of PDMM in an ergodic sense.

Theorem 2 (Iteration Complexity) Let (xtj ,y
t
i) be generated by PDMM (5)-(7). Let x̄T =∑T

t=1 x
t. Setting νi = 1− 1

K̃i
and τi = K

K̃i(2J−K)
, we have

Ef(x̄T)− f(x∗) ≤
J
K

{∑I
i=1

1
2βiρ
‖y∗i ‖22 + L̃ρ(x1,y1) + ρ

2‖z
∗ − z1‖2Q +

∑J
j=1 ηjBφj (x∗j ,x

1
j)
}

T
,

E
I∑
i=1

βi‖Ar
i x̄
T − ai‖22 ≤

2
ρh(v∗,v0)

T
.

where βi = K
JK̃i

, Q is a positive semi-definite matrix, and the expectation is over Jt.

6

0 100 200 300 400 500 600 700 800
−5

−4

−3

−2

−1

0

1

2

3

4

time (s)

re
s

id
u

a
l

(l
o

g
)

PDMM1

PDMM2

PDMM3

GSADMM

RBSUMM

sADMM

0 50 100 150 200 250
−5

−4

−3

−2

−1

0

1

2

3

4

iterations

re
s

id
u

a
l

(l
o

g
)

PDMM1

PDMM2

PDMM3

GSADMM

RBSUMM

sADMM

50 100 150 200 250 300
7.8

7.85

7.9

7.95

8

8.05

8.1

8.15

time (s)

o
b

je
c

ti
v

e
 (

lo
g

)

PDMM1

PDMM2

PDMM3

GSADMM

RBSUMM

sADMM

Figure 1: Comparison of the convergence of PDMM with ADMM methods in RPCA.

Table 1: The best results of PDMM with tuning parameters τi, νi in RPCA.
time (s) iteration residual(×10−5) objective (log)

PDMM1 118.83 40 3.60 8.07
PDMM2 137.46 34 5.51 8.07
PDMM3 147.82 31 6.54 8.07

GSADMM 163.09 28 6.84 8.07
RBSUMM 206.96 141 8.55 8.07
sADMM1 731.51 139 9.73 8.07

Remark 2 PDMM converges at the same rate as ADMM and its variants. In Theorem 2, PDMM
can achieve the fastest convergence by setting J = K = 1, τi = 1, νi = 0, i.e., the entire matrix A
is considered as a single block, indicating PDMM reduces to the method of multipliers. In this case,
however, the resulting subproblem may be difficult to solve, as discussed in Section 1. Therefore,
the number of blocks in PDMM depends on the trade-off between the number of subproblems and
how efficiently each subproblem can be solved.

4 Experimental Results
In this section, we evaluate the performance of PDMM in solving robust principal component
analysis (RPCA) and overlapping group lasso [28]. We compared PDMM with ADMM [2] or
GSADMM (no theory guarantee), sADMM [17, 26], and RBSUMM [14]. Note GSADMM in-
cludes BSUMM [14]. All experiments are implemented in Matlab and run sequentially. We run
the experiments 10 times and report the average results. The stopping criterion is either when the
residual is smaller than 10−4 or when the number of iterations exceeds 2000.

RPCA: RPCA is used to obtain a low rank and sparse decomposition of a given matrix A corrupted
by noise [5, 17]:

min
1

2
‖X1‖2F + γ2‖X2‖1 + γ3‖X3‖∗ s.t. A = X1 + X2 + X3 . (24)

where A ∈ Rm×n, X1 is a noise matrix, X2 is a sparse matrix and X3 is a low rank matrix.
A = L + S + V is generated in the same way as [17]1. In this experiment, m = 1000, n = 5000
and the rank is 100. The number appended to PDMM denotes the number of blocks (K) to be chosen
in PDMM, e.g., PDMM1 randomly updates one block.

Figure 1 compares the convegence results of PDMM with ADMM methods. In PDMM, ρ = 1
and τi, νi are chosen according to (8), i.e., (τi, νi) = {(1

5 , 0), (1
4 ,

1
2), (1

3 ,
1
3)} for PDMM1, PDMM2

and PDMM3 respectively. We choose the ‘best’results for GSADMM (ρ = 1) and RBSUMM
(ρ = 1, α = ρ 11√

t+10
) and sADMM (ρ = 1). PDMMs perform better than RBSUMM and sADMM.

Note the public available code of sADMM1 does not have dual update, i.e., τi = 0. sADMM should
be the same as PDMM3 if τi = 1

3 . Since τi = 0, sADMM is the slowest algorithm. Without
tuning the parameters of PDMM, GSADMM converges faster than PDMM. Note PDMM can run
in parallel but GSADMM only runs sequentially. PDMM3 is faster than two randomized version
of PDMM since the costs of extra iterations in PDMM1 and PDMM2 have surpassed the savings
at each iteration. For the two randomized one block coordinate methods, PDMM1 converges faster
than RBSUMM in terms of both the number of iterations and runtime.

The effect of τi, νi: We tuned the parameter τi, νi in PDMMs. Three randomized meth-
ods (RBSUMM, PDMM1 and PDMM2) choose the blocks cyclically instead of randomly. Ta-
ble 1 compares the ‘best’results of PDMM with other ADMM methods. In PDMM, (τi, νi) =

1http://www.stanford.edu/ boyd/papers/prox algs/matrix decomp.html

7

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

time (s)

o
b

je
c
ti

v
e

PA−APG

S−APG

PDMM

ADMM

sADMM

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

iteration

o
b

je
c
ti

v
e

PA−APG

S−APG

PDMM

ADMM

sADMM

20 30 40 50 60 70
−5

−4

−3

−2

−1

0

time (s)

re
s
id

u
a
l
(l

o
g

)

1

21

41

61

81

101

Figure 2: Comparison of convergence of PDMM and other methods in overlapping group Lasso.

{(1
2 , 0), (1

3 ,
1
2), (1

2 ,
1
2)}. GSADMM converges with the smallest number of iterations, but PDMMs

can converge faster than GSADMM in terms of runtime. The computation per iteration in
GSADMM is slightly higher than PDMM3 because GSADMM updates the sum X1 +X2 +X3 but
PDMM3 can reuse the sum. Therefore, if the numbers of iterations of the two methods are close,
PDMM3 can be faster than GSADMM. PDMM1 and PDMM2 can be faster than PDMM3. By
simply updating one block, PDMM1 is the fastest algorithm and achieves the lowest residual.

Overlapping Group Lasso: We consider solving the overlapping group lasso problem [28]:

min
w

1

2Lλ
‖Aw − b‖22 +

∑
g∈G

dg‖wg‖2 . (25)

where A ∈ Rm×n,w ∈ Rn×1 and wg ∈ Rb×1 is the vector of overlapping group indexed by
g. dg is some positive weight of group g ∈ G. As shown in Section 2.3, (25) can be rewritten
as the form (14). The data is generated in a same way as [27, 9]: the elements of A are sampled
from normal distribution, b = Ax + ε with noise ε sampled from normal distribution, and xj =
(−1)j exp(−(j − 1)/100). In this experiment, m = 5000, the number of groups is L = 100, and
dg = 1

L , λ = L
5 in (25). The size of each group is 100 and the overlap is 10. The total number of

blocks in PDMM and sADMM is J = 101. τi, νi in PDMM are computed according to (8).

In Figure 2, the first two figures plot the convergence of objective in terms of the number of iterations
and time. PDMM uses all 101 blocks and is the fastest algorithm. ADMM is the same as GSADMM
in this problem, but is slower than PDMM. Since sADMM does not consider the sparsity, it uses
τi = 1

J+1 , νi = 1− 1
J+1 , leading to slow convergence. The two accelerated methods, PA-APG [27]

and S-APG [9], are slower than PDMM and ADMM.

The effect of K: The third figure shows PDMM with different number of blocks K. Although the
complexity of each iteration is the lowest when K = 1, PDMM takes much more iterations than
other cases and thus takes the longest time. As K increases, PDMM converges faster and faster.
When K = 20, the runtime is already same as using all blocks. When K > 21, PDMM takes less
time to converge than using all blocks. The runtime of PDMM decreases as K increases from 21
to 61. However, the speedup from 61 to 81 is negligable. We tried different set of parameters for
RBSUMM ρ i

2+1
i+t (0 ≤ i ≤ 5, ρ = 0.01, 0.1, 1) or sufficiently small step size, but could not see the

convergence of the objective within 5000 iterations. Therefore, the results are not included here.

5 Conclusions
We proposed a randomized block coordinate variant of ADMM named Parallel Direction Method of
Multipliers (PDMM) to solve the class of problem of minimizing block-separable convex functions
subject to linear constraints. PDMM considers the sparsity and the number of blocks to be updated
when setting the step size. We show two existing Jacobian ADMM methods are special cases of
PDMM. We also use PDMM to solve overlapping block problems. The global convergence and
the iteration complexity are established with constant step size. Experiments on robust PCA and
overlapping group lasso show that PDMM is faster than existing methods.

Acknowledgment
H. W. and A. B. acknowledge the support of NSF via IIS-1447566, IIS-1422557, CCF-1451986, CNS-1314560,
IIS-0953274, IIS-1029711, IIS-0916750, and NASA grant NNX12AQ39A. H. W. acknowledges the support
of DDF (2013-2014) from the University of Minnesota. A.B. acknowledges support from IBM and Yahoo.
Z.Q. Luo is supported in part by the US AFOSR via grant number FA9550-12-1-0340 and the National Science
Foundation via grant number DMS-1015346.

8

References
[1] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Convex Optimization with Sparsity-Inducing Norms.

S. Sra, S. Nowozin, S. J. Wright., editors, Optimization for Machine Learning, MIT Press, 2011.

[2] S. Boyd, E. Chu N. Parikh, B. Peleato, and J. Eckstein. Distributed optimization and statistical learning via
the alternating direction method of multipliers. Foundation and Trends Machine Learning, 3(1):1–122,
2011.

[3] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[4] T. Cai, W. Liu, and X. Luo. A constrained `1 minimization approach to sparse precision matrix estimation.
Journal of American Statistical Association, 106:594–607, 2011.

[5] E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis ?. Journal of the ACM,
58:1–37, 2011.

[6] V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky. Latent variable graphical model selection via convex
optimization. Annals of Statistics, 40:1935–1967, 2012.

[7] C. Chen, B. He, Y. Ye, and X. Yuan. The direct extension of ADMM for multi-block convex minimization
problems is not necessarily convergent. Preprint, 2013.

[8] S. Chen, D.L. Donoho, and M.A. Saunders. Atomic decomposition by basis pursuit. SIAM review,
43:129–159, 2001.

[9] X. Chen, Q. Lin, S. Kim, J. G. Carbonell, and E. P. Xing. Smoothing proximal gradient method for
general structured sparse regression. The Annals of Applied Statistics, 6:719752, 2012.

[10] W. Deng, M. Lai, Z. Peng, and W. Yin. Parallel multi-block admm with o(1/k) convergence. ArXiv,
2014.

[11] Q. Fu, H. Wang, and A. Banerjee. Bethe-ADMM for tree decomposition based parallel MAP inference.
In UAI, 2013.

[12] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear variational problems via finite-
element approximations. Computers and Mathematics with Applications, 2:17–40, 1976.

[13] B. He, M. Tao, and X. Yuan. Alternating direction method with Gaussian back substitution for separable
convex programming. SIAM Journal of Optimization, pages 313–340, 2012.

[14] M. Hong, T. Chang, X. Wang, M. Razaviyayn, S. Ma, and Z. Luo. A block successive upper bound
minimization method of multipliers for linearly constrained convex optimization. Preprint, 2013.

[15] M. Hong and Z. Luo. On the linear convergence of the alternating direction method of multipliers. ArXiv,
2012.

[16] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization methods. SIAM Journal
on Optimization, 22(2):341362, 2012.

[17] N. Parikh and S. Boyd. Proximal algorithms. Foundations and Trends in Optimization, 1:123–231, 2014.

[18] P. Richtarik and M. Takac. Iteration complexity of randomized block-coordinate descent methods for
minimizing a composite function. Mathematical Programming, 2012.

[19] N. Z. Shor. Minimization Methods for Non-Differentiable Functions. Springer-Verlag, 1985.

[20] R. Tappenden, P. Richtarik, and B. Buke. Separable approximations and decomposition methods for the
augmented lagrangian. Preprint, 2013.

[21] M. J. Wainwright and M. I. Jordan. Graphical models, exponential families, and variational inference.
Foundations and Trends in Machine Learning, 1:1–305, 2008.

[22] H. Wang and A. Banerjee. Online alternating direction method. In ICML, 2012.

[23] H. Wang and A. Banerjee. Bregman alternating direction method of multipliers. In NIPS, 2014.

[24] H. Wang, A. Banerjee, C. Hsieh, P. Ravikumar, and I. Dhillon. Large scale distributed sparse precesion
estimation. In NIPS, 2013.

[25] H. Wang, A. Banerjee, and Z. Luo. Parallel direction method of multipliers. ArXiv, 2014.

[26] X. Wang, M. Hong, S. Ma, and Z. Luo. Solving multiple-block separable convex minimization problems
using two-block alternating direction method of multipliers. Preprint, 2013.

[27] Y. Yu. Better approximation and faster algorithm using the proximal average. In NIPS, 2012.

[28] P. Zhao, G. Rocha, and B. Yu. The composite absolute penalties family for grouped and hierarchical
variable selection. Annals of Statistics, 37:34683497, 2009.

[29] Z. Zhou, X. Li, J. Wright, E. Candes, and Y. Ma. Stable principal component pursuit. In IEEE Interna-
tional Symposium on Information Theory, 2010.

9

