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Abstract

We propose a new framework for how to use sequential Monte Carlo (SMC) al-
gorithms for inference in probabilistic graphical models (PGM). Via a sequential
decomposition of the PGM we find a sequence of auxiliary distributions defined
on a monotonically increasing sequence of probability spaces. By targeting these
auxiliary distributions using SMC we are able to approximate the full joint distri-
bution defined by the PGM. One of the key merits of the SMC sampler is that it
provides an unbiased estimate of the partition function of the model. We also show
how it can be used within a particle Markov chain Monte Carlo framework in order
to construct high-dimensional block-sampling algorithms for general PGMs.

1 Introduction

Bayesian inference in statistical models involving a large number of latent random variables is in
general a difficult problem. This renders inference methods that are capable of efficiently utilizing
structure important tools. Probabilistic Graphical Models (PGMs) are an intuitive and useful way
to represent and make use of underlying structure in probability distributions with many interesting
areas of applications [1].

Our main contribution is a new framework for constructing non-standard (auxiliary) target distribu-
tions of PGMs, utilizing what we call a sequential decomposition of the underlying factor graph, to
be targeted by a sequential Monte Carlo (SMC) sampler. This construction enables us to make use
of SMC methods developed and studied over the last 20 years, to approximate the full joint distribu-
tion defined by the PGM. As a byproduct, the SMC algorithm provides an unbiased estimate of the
partition function (normalization constant). We show how the proposed method can be used as an
alternative to standard methods such as the Annealed Importance Sampling (AIS) proposed in [2],
when estimating the partition function. We also make use of the proposed SMC algorithm to design
efficient, high-dimensional MCMC kernels for the latent variables of the PGM in a particle MCMC
framework. This enables inference about the latent variables as well as learning of unknown model
parameters in an MCMC setting.

During the last decade there has been substantial work on how to leverage SMC algorithms [3] to
solve inference problems in PGMs. The first approaches were PAMPAS [4] and nonparametric belief
propagation by Sudderth et al. [5, 6]. Since then, several different variants and refinements have been
proposed by e.g. Briers et al. [7], Ihler and Mcallester [8], Frank et al. [9]. They all rely on various
particle approximations of messages sent in a loopy belief propagation algorithm. This means that
in general, even in the limit of Monte Carlo samples, they are approximate methods. Compared
to these approaches our proposed methods are consistent and provide an unbiased estimate of the
normalization constant as a by-product.

Another branch of SMC-based methods for graphical models has been suggested by Hamze and
de Freitas [10]. Their method builds on the SMC sampler by Del Moral et al. [11], where the
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initial target is a spanning tree of the original graph and subsequent steps add edges according to an
annealing schedule. Everitt [12] extends these ideas to learn parameters using particle MCMC [13].
Yet another take is provided by Carbonetto and de Freitas [14], where an SMC sampler is combined
with mean field approximations. Compared to these methods we can handle both non-Gaussian
and/or non-discrete interactions between variables and there is no requirement to perform MCMC
steps within each SMC step.

The left-right methods described by Wallach et al. [15] and extended by Buntine [16] to estimate
the likelihood of held-out documents in topic models are somewhat related in that they are SMC-
inspired. However, these are not actual SMC algorithms and they do not produce an unbiased
estimate of the partition function for finite sample set. On the other hand, a particle learning based
approach was recently proposed by Scott and Baldridge [17] and it can be viewed as a special case
of our method for this specific type of model.

2 Graphical models

A graphical model is a probabilistic model which factorizes according to the structure of an under-
lying graph G = {V, E}, with vertex set V and edge set E . By this we mean that the joint probability
density function (PDF) of the set of random variables indexed by V , XV := {x1, . . . , x|V|}, can be
represented as a product of factors over the cliques of the graph:

p(XV) =
1

Z

∏
C∈C

ψC(XC), (1)

where C is the set of cliques in G, ψC is the factor for clique C, and Z =
∫ ∏

C∈C ψC(xC)dXV is
the partition function.
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(b) Factor graph.

Figure 1: Undirected PGM and a
corresponding factor graph.

We will frequently use the notation XI =
⋃
i∈I{xi} for some

subset I ⊆ {1, . . . , |V|} and we write XI for the range of XI

(i.e., XI ∈ XI). To make the interactions between the random
variables explicit we define a factor graph F = {V,Ψ, E ′}
corresponding to G. The factor graph consists of two types
of vertices, the original set of random variables XV and the
factors Ψ = {ψC : C ∈ C}. The edge set E ′ consists only
of edges from variables to factors. In Figure 1a we show a
simple toy example of an undirected graphical model, and one
possible corresponding factor graph, Figure 1b, making the de-
pendencies explicit. Both directed and undirected graphs can
be represented by factor graphs.

3 Sequential Monte Carlo

In this section we propose a way to sequentially decompose a graphical model which we then make
use of to design an SMC algorithm for the PGM.

3.1 Sequential decomposition of graphical models

SMC methods can be used to approximate a sequence of probability distributions on a sequence of
probability spaces of increasing dimension. This is done by recursively updating a set of samples—
or particles—with corresponding nonnegative importance weights. The typical scenario is that of
state inference in state-space models, where the probability distributions targeted by the SMC sam-
pler are the joint smoothing distributions of a sequence of latent states conditionally on a sequence
of observations; see e.g., Doucet and Johansen [18] for applications of this type. However, SMC is
not limited to these cases and it is applicable to a much wider class of models.

To be able to use SMC for inference in PGMs we have to define a sequence of target distributions.
However, these target distributions do not have to be marginal distributions under p(XV). Indeed, as
long as the sequence of target distributions is constructed in such a way that, at some final iteration,
we recover p(XV), all the intermediate target distributions may be chosen quite arbitrarily.
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Figure 2: Examples of five- (top) and three-step (bottom) sequential decomposition of Figure 1.

This is key to our development, since it lets us use the structure of the PGM to define a sequence of
intermediate target distributions for the sampler. We do this by a so called sequential decomposition
of the graphical model. This amounts to simply adding factors to the target distribution, from the
product of factors in (1), at each step of the algorithm and iterate until all the factors have been
added. Constructing an artificial sequence of intermediate target distributions for an SMC sampler
is a simple, albeit underutilized, idea as it opens up for using SMC samplers for inference in a wide
range of probabilistic models; see e.g., Bouchard-Côté et al. [19], Del Moral et al. [11] for a few
applications of this approach.

Given a graph G with cliques C, let {ψk}Kk=1 be a sequence of factors defined as follows ψk(XIk) =∏
C∈Ck ψC(XC), where Ck ⊂ C are chosen such that

⋃K
k=1 Ck = C and Ci ∩ Cj = ∅, i 6= j, and

where Ik ⊆ {1, . . . , |V|} is the index set of the variables in the domain of ψk, Ik =
⋃
C∈Ck C.

We emphasize that the cliques in C need not be maximal. In fact even auxiliary factors may be
introduced to allow for e.g. annealing between distributions. It follows that the PDF in (1) can be
written as p(XV) = 1

Z

∏K
k=1 ψk(XIk). Principally, the choices and the ordering of the Ck’s is

arbitrary, but in practice it will affect the performance of the proposed sampler. However, in many
common PGMs an intuitive ordering can be deduced from the structure of the model, see Section 5.

The sequential decomposition of the PGM is then based on the auxiliary quantities γ̃k(XLk
) :=∏k

`=1 ψ`(XI`), with Lk :=
⋃k
`=1 I`, for k ∈ {1, . . . , K}. By construction, LK = V and

the joint PDF p(XLK
) will be proportional to γ̃K(XLK

). Consequently, by using γ̃k(XLk
) as

the basis for the target sequence for an SMC sampler, we will obtain the correct target distribu-
tion at iteration K. However, a further requirement for this to be possible is that all the func-
tions in the sequence are normalizable. For many graphical models this is indeed the case, and
then we can use γ̃k(XLk

), k = 1 to K, directly as our sequence of intermediate target densities.
If, however,

∫
γ̃k(XLk

)dXLk
= ∞ for some k < K, an easy remedy is to modify the target

density to ensure normalizability. This is done by setting γk(XLk
) = γ̃k(XLk

)qk(XLk
), where

qk(XLk
) is choosen so that

∫
γk(XLk

)dXLk
< ∞. We set qK(XLK

) ≡ 1 to make sure that
γK(XLK

) ∝ p(XLk
). Note that the integral

∫
γk(XLk

)dXLk
need not be computed explicitly, as

long as it can be established that it is finite. With this modification we obtain a sequence of un-
normalized intermediate target densities for the SMC sampler as γ1(XL1

) = q1(XL1
)ψ1(XL1

) and
γk(XLk

) = γk−1(XLk−1
)

qk(XLk )

qk−1(XLk−1
)ψk(XIk) for k = 2, . . . , K. The corresponding normalized

PDFs are given by γ̄k(XLk
) = γk(XLk

)/Zk, where Zk =
∫
γk(XLk

)dXLk
. Figure 2 shows two

examples of possible subgraphs when applying the decomposition, in two different ways, to the
factor graph example in Figure 1.

3.2 Sequential Monte Carlo for PGMs

At iteration k, the SMC sampler approximates the target distribution γ̄k by a collection of weighted
particles {Xi

Lk
, wik}Ni=1. These samples define an empirical point-mass approximation of the target

distribution. In what follows, we shall use the notation ξk := XIk\Lk−1
to refer to the collection of

random variables that are in the domain of γk, but not in the domain of γk−1. This corresponds to
the collection of random variables, with which the particles are augmented at each iteration.

Initially, γ̄1 is approximated by importance sampling. We proceed inductively and assume that we
have at hand a weighted sample {Xi

Lk−1
, wik−1}Ni=1, approximating γ̄k−1(XLk−1

). This sample is
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propagated forward by simulating, conditionally independently given the particle generation up to
iteration k − 1, and drawing an ancestor index aik with P(aik = j) ∝ νjk−1w

j
k−1, j = 1, . . . , N ,

where νik−1 := νk−1(Xi
Lk−1

)—known as adjustment multiplier weights—are used in the auxiliary
SMC framework to adapt the resampling procedure to the current target density γ̄k [20]. Given the
ancestor indices, we simulate particle increments {ξik}Ni=1 from a proposal density ξik ∼ rk(·|Xaik

Lk−1
)

on XIk\Lk−1
, and augment the particles as Xi

Lk
:= X

aik
Lk−1

∪ ξik.

After having performed this procedure for the N ancestor indices and particles, they are assigned
importance weights wik = Wk(Xi

Lk
). The weight function, for k ≥ 2, is given by

Wk(XLk
) =

γk(XLk
)

γk−1(XLk−1
)νk−1(XLk−1

)rk(ξk|XLk−1
)
, (2)

where, again, we write ξk = XIk\Lk−1
. We give a summary of the SMC method in Algorithm 1.

Algorithm 1 Sequential Monte Carlo (SMC)

Perform each step for i = 1, . . . , N .
Sample Xi

L1
∼ r1(·).

Set wi1 = γ1(Xi
L1

)/r1(Xi
L1

).
for k = 2 to K do

Sample aik according to P(aik = j) =
νj
k−1w

j
k−1∑

l ν
l
k−1w

l
k−1

.

Sample ξik ∼ rk(·|Xaik
Lk−1

) and set Xi
Lk

= X
aik
Lk−1

∪ ξik.
Set wik = Wk(Xi

Lk
).

end for

In the case that Ik \ Lk−1 = ∅ for
some k, resampling and propagation
steps are superfluous. The easiest
way to handle this is to simply skip
these steps and directly compute im-
portance weights. An alternative ap-
proach is to bridge the two target dis-
tributions γ̄k−1 and γ̄k similarly to
Del Moral et al. [11].

Since the proposed sampler for
PGMs falls within a general SMC
framework, standard convergence
analysis applies. See e.g., Del Moral [21] for a comprehensive collection of theoretical results
on consistency, central limit theorems, and non-asymptotic bounds for SMC samplers.

The choices of proposal density and adjustment multipliers can quite significantly affect the per-
formance of the sampler. It follows from (2) that Wk(XLk

) ≡ 1 if we choose νk−1(XLk−1
) =∫ γk(XLk )

γk−1(XLk−1
)dξk and rk(ξk|XLk−1

) =
γk(XLk )

νk−1(XLk−1
)γk−1(XLk−1

) . In this case, the SMC sampler is
said to be fully adapted.

3.3 Estimating the partition function

The partition function of a graphical model is a very interesting quantity in many applications.
Examples include likelihood-based learning of the parameters of the PGM, statistical mechanics
where it is related to the free energy of a system of objects, and information theory where it is
related to the capacity of a channel. However, as stated by Hamze and de Freitas [10], estimating
the partition function of a loopy graphical model is a “notoriously difficult” task. Indeed, even for
discrete problems simple and accurate estimators have proved to be elusive, and MCMC methods
do not provide any simple way of computing the partition function.

On the contrary, SMC provides a straightforward estimator of the normalizing constant (i.e. the
partition function), given as a byproduct of the sampler according to,

ẐNk :=

(
1

N

N∑
i=1

wik

){
k−1∏
`=1

1

N

N∑
i=1

νi`w
i
`

}
. (3)

It may not be obvious to see why (3) is a natural estimator of the normalizing constant Zk. However,
a by now well known result is that this SMC-based estimator is unbiased. This result is due to
Del Moral [21, Proposition 7.4.1] and, for the special case of inference in state-space models, it has
also been established by Pitt et al. [22]. For completeness we also offer a proof using the present
notation in the supplementary material. Since ZK = Z, we thus obtain an estimator of the partition
function of the PGM at iteration K of the sampler. Besides from being unbiased, this estimator is
also consistent and asymptotically normal; see Del Moral [21].
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In [23] we have studied a specific information theoretic application (computing the capacity of a
two-dimensional channel) and inspired by the algorithm proposed here we were able to design a
sampler with significantly improved performance compared to the previous state-of-the-art.

4 Particle MCMC and partial blocking

Two shortcomings of SMC are: (i) it does not solve the parameter learning problem, and (ii) the
quality of the estimates of marginal distributions p(XLk

) =
∫
γ̄K(XLK

)dXLK\Lk
deteriorates for

k � K due to the fact that the particle trajectories degenerate as the particle system evolves (see
e.g., [18]). Many methods have been proposed in the literature to address these problems; see e.g.
[24] and the references therein. Among these, the recently proposed particle MCMC (PMCMC)
framework [13], plays a prominent role. PMCMC algorithms make use of SMC to construct (in
general) high-dimensional Markov kernels that can be used within MCMC. These methods were
shown by [13] to be exact, in the sense that the apparent particle approximation in the construction
of the kernel does not change its invariant distribution. This property holds for any number of
particles N ≥ 2, i.e., PMCMC does not rely on asymptotics in N for correctness.

The fact that the SMC sampler for PGMs presented in Algorithm 1 fits under a general SMC um-
brella implies that we can also straightforwardly make use of this algorithm within PMCMC. This
allows us to construct a Markov kernel (indexed by the number of particlesN ) on the space of latent
variables of the PGM, PN (X ′LK

,dXLK
), which leaves the full joint distribution p(XV) invariant.

We do not dwell on the details of the implementation here, but refer instead to [13] for the general
setup and [25] for the specific method that we have used in the numerical illustration in Section 5.

PMCMC methods enable blocking of the latent variables of the PGM in an MCMC scheme. Simu-
lating all the latent variables XLK

jointly is useful since, in general, this will reduce the autocorrela-
tion when compared to simulating the variables xj one at a time [26]. However, it is also possible to
employ PMCMC to construct an algorithm in between these two extremes, a strategy that we believe
will be particularly useful in the context of PGMs. Let {Vm, m ∈ {1, . . . , M}} be a partition of V .
Ideally, a Gibbs sampler for the joint distribution p(XV) could then be constructed by simulating,
using a systematic or a random scan, from the conditional distributions

p(XVm |XV\Vm) for m = 1, . . . , M. (4)

We refer to this strategy as partial blocking, since it amounts to simulating a subset of the variables,
but not necessarily all of them, jointly. Note that, if we set M = |V| and Vm = {m} for m =
1, . . . , M , this scheme reduces to a standard Gibbs sampler. On the other extreme, with M = 1
and V1 = V , we get a fully blocked sampler which targets directly the full joint distribution p(XV).

From (1) it follows that the conditional distributions (4) can be expressed as

p(XVm |XV\Vm) ∝
∏
C∈Cm

ψC(XC), (5)

where Cm = {C ∈ C : C ∩ Vm 6= ∅}. While it is in general not possible to sample exactly from
these conditionals, we can make use of PMCMC to facilitate a partially blocked Gibbs sampler for
a PGM. By letting p(XVm |XV\Vm) be the target distribution for the SMC sampler of Algorithm 1,
we can construct a PMCMC kernel PmN that leaves the conditional distribution (5) invariant. This
suggests the following approach: with X ′V being the current state of the Markov chain, update block
m by sampling

XVm ∼ PmN 〈X ′V\Vm〉(X ′Vm , ·). (6)

Here we have indicated explicitly in the notation that the PMCMC kernel for the conditional dis-
tribution p(XVm |XV\Vm) depends on both X ′V\Vm (which is considered to be fixed throughout the
sampling procedure) and on X ′Vm (which defines the current state of the PMCMC procedure).

As mentioned above, while being generally applicable, we believe that partial blocking of PMCMC
samplers will be particularly useful for PGMs. The reason is that we can choose the vertex sets Vm
form = 1, . . . , M in order to facilitate simple sequential decompositions of the induced subgraphs.
For instance, it is always possible to choose the partition in such a way that all the induced subgraphs
are chains.
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5 Experiments

In this section we evaluate the proposed SMC sampler on three examples to illustrate the merits of
our approach. Additional details and results are available in the supplementary material and code to
reproduce results can be found in [27]. We first consider an example from statistical mechanics, the
classical XY model, to illustrate the impact of the sequential decomposition. Furthermore, we profile
our algorithm with the “gold standard” AIS [2] and Annealed Sequential Importance Resampling
(ASIR1) [11]. In the second example we apply the proposed method to the problem of scoring of
topic models, and finally we consider a simple toy model, a Gaussian Markov random field (MRF),
which illustrates that our proposed method has the potential to significantly decrease correlations
between samples in an MCMC scheme. Furthermore, we provide an exact SMC-approximation of
the tree-sampler by Hamze and de Freitas [28] and thereby extend the scope of this powerful method.

5.1 Classical XY model
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Figure 3: Mean-squared-errors for sample size N
in the estimates of logZ for AIS and four different
orderings in the proposed SMC framework.

The classical XY model (see e.g. [29]) is a
member in the family of n-vector models used
in statistical mechanics. It can be seen as a
generalization of the well known Ising model
with a two-dimensional electromagnetic spin.
The spin vector is described by its angle x ∈
(−π, π]. We will consider square lattices with
periodic boundary conditions. The joint PDF of
the classical XY model with equal interaction is
given by

p(XV) ∝ eβ
∑

(i,j)∈E cos(xi−xj), (7)
where β denotes the inverse temperature.

To evaluate the effect of different sequence or-
ders on the accuracy of the estimates of the log-
normalizing-constant logZ we ran several ex-
periments on a 16 × 16 XY model with β = 1.1 (approximately the critical inverse temperature
[30]). For simplicity we add one node at a time and all factors bridging this node with previously
added nodes. Full adaptation in this case is possible due to the optimal proposal being a von Mises
distribution. We show results for the following cases: Random neighbour (RND-N) First node se-
lected randomly among all nodes, concurrent nodes selected randomly from the set of nodes with a
neighbour in XLk−1

. Diagonal (DIAG) Nodes added by traversing diagonally (45◦ angle) from left
to right. Spiral (SPIRAL) Nodes added spiralling in towards the middle from the edges. Left-Right
(L-R) Nodes added by traversing the graph left to right, from top to bottom.

We also give results of AIS with single-site-Gibbs updates and 1 000 annealing distributions linearly
spaced from zero to one, starting from a uniform distribution (geometric spacing did not yield any
improvement over linear spacing for this case). The “true value” was estimated using AIS with
10 000 intermediate distributions and 5 000 importance samples. We can see from the results in Fig-
ure 3 that designing a good sequential decomposition for the SMC sampler is important. However,
the intuitive and fairly simple choice L-R does give very good results comparable to that of AIS.

Furthermore, we consider a larger size of 64× 64 and evaluate the performance of the L-R ordering
compared to AIS and the ASIR method. Figure 4 displays box-plots of 10 independent runs. We
set N = 105 for the proposed SMC sampler and then match the computational costs of AIS and
ASIR with this computational budget. A fair amount of time was spent in tuning the AIS and ASIR
algorithms; 10 000 linear annealing distributions seemed to give best performance in these cases. We
can see that the L-R ordering gives results comparable to fairly well-tuned AIS and ASIR algorithms;
the ordering of the methods depending on the temperature of the model. One option that does make
the SMC algorithm interesting for these types of applications is that it can easily be parallelized
over the particles, whereas AIS/ASIR has limited possibilities of parallel implementation over the
(crucial) annealing steps.

1ASIR is a specific instance of the SMC sampler by [11], corresponding to AIS with the addition of resam-
pling steps, but to avoid confusion with the proposed method we choose to refer to it as ASIR.

6



8063.95

8064

8064.05

8064.1

8064.15

AIS ASIR SMC L−R

lo
g(
Ẑ
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Figure 4: The logarithm of the estimated partition function for the 64 × 64 XY model with inverse
temperature 0.5 (left), 1.1 (middle) and 1.7 (right).
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Figure 6: Estimates of the log-likelihood of heldout documents for various datasets.

5.2 Likelihood estimation in topic models
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· · ·
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Figure 5: LDA as graph-
ical model.

Topic models such as Latent Dirichlet Allocation (LDA) [31] are popular
models for reasoning about large text corpora. Model evaluation is often
conducted by computing the likelihood of held-out documents w.r.t. a
learnt model. However, this is a challenging problem on its own—which
has received much recent interest [15, 16, 17]—since it essentially cor-
responds to computing the partition function of a graphical model; see
Figure 5. The SMC procedure of Algorithm 1 can used to solve this prob-
lem by defining a sequential decomposition of the graphical model. In
particular, we consider the decomposition corresponding to first includ-
ing the node θ and then, subsequently, introducing the nodes z1 to zM in
any order. Interestingly, if we then make use of a Rao-Blackwellization
over the variable θ, the SMC sampler of Algorithm 1 reduces exactly
to a method that has previously been proposed for this specific problem
[17]. In [17], the method is derived by reformulating the model in terms
of its sufficient statistics and phrasing this as a particle learning problem;
here we obtain the same procedure as a special case of the general SMC
algorithm operating on the original model.

We use the same data and learnt models as Wallach et al. [15], i.e. 20 newsgroups, and PubMed
Central abstracts (PMC). We compare with the Left-Right-Sequential (LRS) sampler [16], which is
an improvement over the method proposed by Wallach et al. [15]. Results on simulated and real data
experiments are provided in Figure 6. For the simulated example (Figure 6a), we use a small model
with 10 words and 4 topics to be able to compute the exact log-likelihood. We keep the number of
particles in the SMC algorithm equal to the number of Gibbs steps in LRS; this means LRS is about
an order-of-magnitude more computationally demanding than the SMC method. Despite the fact that
the SMC sampler uses only about a tenth of the computational time of the LRS sampler, it performs
significantly better in terms of estimator variance. The other two plots show results on real data with
10 held-out documents for each dataset. For a fixed number of Gibbs steps we choose the number of
particles for each document to make the computational cost approximately equal. Run #2 has twice
the number of particles/samples as in run #1. We show the mean of 10 runs and error-bars estimated
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using bootstrapping with 10 000 samples. Computing the logarithm of Ẑ introduces a negative bias,
which means larger values of log Ẑ typically implies more accurate results. The results on real
data do not show the drastic improvement we see in the simulated example, which could be due to
degeneracy problems for long documents. An interesting approach that could improve results would
be to use an SMC algorithm tailored to discrete distributions, e.g. Fearnhead and Clifford [32].

5.3 Gaussian MRF

Finally, we consider a simple toy model to illustrate how the SMC sampler of Algorithm 1 can be
incorporated in PMCMC sampling. We simulate data from a zero mean Gaussian 10 × 10 lattice
MRF with observation and interaction standard deviations of σi = 1 and σij = 0.1 respectively.
We use the proposed SMC algorithm together with the PMCMC method by Lindsten et al. [25]. We
compare this with standard Gibbs sampling and the tree sampler by Hamze and de Freitas [28].
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Figure 7: The empirical ACF for Gibbs
sampling, PMCMC, PMCMC with par-
tial blocking, and tree sampling.

We use a moderate number of N = 50 particles in the
PMCMC sampler (recall that it admits the correct invari-
ant distribution for any N ≥ 2). In Figure 7 we can
see the empirical autocorrelation funtions (ACF) centered
around the true posterior mean for variable x82 (selected
randomly from among XV ; similar results hold for all
the variables of the model). Due to the strong interac-
tion between the latent variables, the samples generated
by the standard Gibbs sampler are strongly correlated.
Tree-sampling and PMCMC with partial blocking show
nearly identical gains compared to Gibbs. This is interest-
ing, since it suggest that simulating from the SMC-based
PMCMC kernel can be almost as efficient as exact sim-
ulation, even using a moderate number of particles. In-
deed, PMCMC with partial blocking can be viewed as an
exact SMC-approximation of the tree sampler, extending
the scope of tree-sampling beyond discrete and Gaussian models. The fully blocked PMCMC al-
gorithm achieves the best ACF, dropping off to zero considerably faster than for the other methods.
This is not surprising since this sampler simulates all the latent variables jointly which reduces the
autocorrelation, in particular when the latent variables are strongly dependent. However, it should
be noted that this method also has the highest computational cost per iteration.

6 Conclusion

We have proposed a new framework for inference in PGMs using SMC and illustrated it on three
examples. These examples show that it can be a viable alternative to standard methods used for infer-
ence and partition function estimation problems. An interesting avenue for future work is combining
our proposed methods with AIS, to see if we can improve on both.
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