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Abstract

We propose a structured prediction algorithm for object localization based on Sup-
port Vector Machines (SVMs) using privileged information. Privileged informa-
tion provides useful high-level knowledge for image understanding and facilitates
learning a reliable model even with a small number of training examples. In our
setting, we assume that such information is available only at training time since it
may be difficult to obtain from visual data accurately without human supervision.
Our goal is to improve performance by incorporating privileged information into
ordinary learning framework and adjusting model parameters for better general-
ization. We tackle object localization problem based on a novel structural SVM
using privileged information, where an alternating loss-augmented inference pro-
cedure is employed to handle the term in the objective function corresponding to
privileged information. We apply the proposed algorithm to the Caltech-UCSD
Birds 200-2011 dataset, and obtain encouraging results suggesting further inves-
tigation into the benefit of privileged information in structured prediction.

1 Introduction

Object localization is often formulated as a binary classification problem, where a learned classifier
determines the existence or absence of a target object within a candidate window of every location,
size, and aspect ratio. Recently, a structured prediction technique using Support Vector Machine
(SVM) has been applied to this problem [1], where the optimal bounding box containing target ob-
ject is obtained by a trained classifier. This approach provides a unified framework for detection and
post-processing (non-maximum suppression), and handles issues related to the object with variable
aspect ratios naturally. However, object localization is an inherently difficult task due to the large
amount of variations in objects and scenes, e.g., shape deformations, color variations, pose changes,
occlusion, view point changes, background clutter, etc. This issue is aggravated when the size of
training dataset is small.

More reliable model can be learned even with fewer training examples if additional high-level
knowledge about an object of interest is available during training. Such high-level knowledge is
called privileged information, which typically describes useful semantic properties of an object such
as parts, attributes, and segmentations. This idea corresponds to the Learning Using Privileged In-
formation (LUPI) paradigm [3], which exploits the additional information to improve predictive
models in training but does not require the information for prediction. The LUPI framework has
been incorporated into SVM in the form of the SVM+ algorithm [4]. However, the applications of
SVM+ are often limited to binary classification problems [3, 4].

We propose a novel Structural SVM using privileged information (SSVM+) framework, shown in
Figure 1, and apply the algorithm to the problem of object localization. In this formulation, priv-
ileged information, e.g., parts, attributes and segmentations, are incorporated to learn a structured
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Figure 1: Overview of our object localization framework using privileged information. Unlike
visual observations, privileged information is available only during training. We use attributes and
segmentation masks of an object as privileged information to improve generalization of trained
model. To incorporate privileged information during training, we propose an extension of SSVM,
called SSVM+, whose loss-augmented inference is performed by alternating Efficient Subwindow
Search (ESS) [2].

prediction function for object localization. Note that high-level information is available only for
training but not testing in this framework. Our algorithm employs an efficient branch-and-bound
loss-augmented subwindow search procedure to perform the inference by a joint optimization in
original and privileged spaces during training. Since the additional information is not used in test-
ing, the inference in testing phase is the same as the standard Structural SVM (SSVM) case. We
evaluate our method by learning to localize birds in the Caltech-UCSD Birds 200-2011 (CUB-2011)
dataset [5] and exploiting attributes and segmentation masks as privileged information in addition to
standard visual features. The main contributions of our work are as follows:

• We introduce a novel framework for object localization exploiting privileged information
that is not required or needed to be inferred at test time.

• We formulate an SSVM+ framework, where an alternating loss-augmented inference pro-
cedure for efficient subwindow search is incorporated to handle the privileged information
together with the conventional visual features.

• Performance gains in localization and classification are achieved, especially with small
training datasets.

Methods that exploit additional information have been discussed to improve models for image clas-
sification or search in the context of transfer learning [6, 7], learning with side information [8, 9, 10]
and domain adaptation [11], where underlying techniques rely on pair-wise constraints [8], multiple
kernels [9] or metric learning [9]. Zero-shot learning is an extreme framework, where the models
for unseen classes are constructed even without training data [12, 13]. Recent works often rely on
natural language processing techniques to handle pure textual description [14, 15].

Standard learning algorithms require many data to construct a robust model while zero-shot learning
does not need any training examples. LUPI framework is in the middle of traditional data-driven
learning and zero-shot learning since it aims to learn a good model with a small number of training
data by taking advantage of privileged information available at training time. Privileged information
has been considered in face recognition [16], facial feature detection [17], and event recognition
[18], but such works are still uncommon. Our work applies the LUPI framework to an object local-
ization problem based on SSVM. The use of SSVMs for object localization is originally investigated
by [1]. More recently, [19, 20] employ SSVM as part of their localization procedure, however none
of them incorporate privileged information or similar idea. Recently, [21] presented the potential
benefit of SVM+ in object recognition task.

The rest of this paper is organized as follows. We first review the LUPI framework and SSVM
in Section 2, and our SSVM+ formulation for object localization is presented in Section 3. The
performance of our object localization algorithm is evaluated in Section 4.
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2 Background

2.1 Learning Using Privileged Information

The LUPI paradigm [3, 4, 22, 23] is a framework for incorporating additional information during
training that is not available at test time. The inclusion of such information is exploited to find
a better model, which yields lower generalization error. Contrary to classical supervised learn-
ing, where pairs of data are provided (x1, y1), . . . , (xn, yn), xi ∈ X , yi ∈ {−1, 1}, in the LUPI
paradigm additional information x∗ ∈ X ∗ is provided with each training example as well, i.e.,
(x1,x

∗
1, y1), . . . , (xn,x

∗
n, yn), xi ∈ X ,x∗i ∈ X ∗, yi ∈ {−1, 1}. This information is, however, not

required during testing. In both learning paradigms, the task is then to find among a collection of
functions the one that best approximates the underlying decision function from the given data.

Specifically, we formulate object localization within a LUPI framework as learning a pair of func-
tions h : X 7→ Y and φ : X ∗ 7→ Y jointly, where only h is used for prediction. These functions, for
example, map the space of images and attributes to the space of bounding box coordinates Y . The
decision function h and the correcting function φ depend on each other by the following relation,

∀ 1 ≤ i ≤ n, `X (h(xi), yi) ≤ `X∗(φ(x∗i ), yi), (1)

where `X and `X∗ denote the empirical loss functions on the visual (X ) and the privileged space
(X ∗), respectively. This inequality is inspired by the LUPI paradigm [3, 4, 22, 23], where for all
training examples the model h is always corrected to have a smaller loss on data than the model φ on
privileged information. The constraint in Eq. (1) is meaningful when we assume that, for the same
number of training examples, the combination of visual and privileged information provides a space
to learn a better model than visual information alone.

To translate this general learning idea into practice, the SVM+ algorithm for binary classification
has been developed [3, 4, 22]. The SVM+ algorithm replaces the slack variable ξ in the standard
SVM formulation by a correcting function ξ = (〈w∗,x∗〉+ d), which estimates its values from the
privileged information. This results in the following formulation,

min
w,w∗,b,b∗

1

2
‖w‖22 +

γ

2
‖w∗‖22 +

C

n

n∑
i=1

(〈w∗,x∗i 〉+ b∗)︸ ︷︷ ︸
ξi

, (2)

s.t. yi(〈w,xi〉+ b) ≥1− (〈w∗,x∗i 〉+ b∗)︸ ︷︷ ︸
ξi

, (〈w∗,x∗i 〉+ b∗)︸ ︷︷ ︸
ξi

≥ 0, ∀ 1 ≤ i ≤ n,

where the terms w∗,x∗ and b∗ play the same role as w,x and b in the classical SVM, however
within the new correcting space X ∗. Furthermore, γ denotes a regularization parameter for w∗. It is
important to observe that the weight vector w depends not only on x but also on x∗. For this reason
the function that replaces the slack ξ is called the correcting function. As privileged information
is only used to estimate the values of the slacks, it is required only during training but not during
testing. Theoretical analysis [4] shows that the bound on the convergence rate of the above SVM+
algorithm could substantially improve upon standard SVM if suitable privileged information is used.

2.2 Structural SVM (SSVM)

SSVMs discriminatively learn a weight vector w for a scoring function f : X ×Y 7→ R over the set
of training input/output pairs. Once learned, the prediction function h is obtained by maximizing f
over all possible y ∈ Y as follows:

ŷ = h(x) = arg max
y∈Y

f(x,y) = arg max
y∈Y

〈w,Ψ(x,y)〉, (3)

where Ψ : X × Y → Rd is the joint feature map that models the relationship between input x and
structured output y. To learn the weight vector w, the following optimization problem (margin-
rescaling) then needs to be solved:

min
w,ξ

1

2
‖w‖2 +

C

n

n∑
i=1

ξi, (4)

s.t. 〈w, δΨi(y)〉 ≥ ∆(yi,y)− ξi 1 ≤ i ≤ n, ∀y ∈ Y,
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where δΨi(y) ≡ Ψ(xi,yi)−Ψ(xi,y), and ∆(yi,y) is a task-specific loss that measures the quality
of the prediction y with respect to the ground-truth yi. To obtain a prediction, we need to maximize
Eq. (3) over the response variable y for a given input x. SSVMs are a general method for solving a
variety of prediction tasks. For each application, the joint feature map Ψ, the loss function ∆ and an
efficient loss-augmented inference technique need to be customized.

3 Object Localization with Privileged Information

We deal with object localization with privileged information: given a set of training images of
objects, their locations and their attribute and segmentation information, we want to learn a function
to localize objects of interest in yet unseen images. Unlike existing methods, our learned function
does not need explicit or even inferred attribute and segmentation information during prediction.

3.1 Structural SVM with Privileged Information (SSVM+)

We extend the above structured prediction problem to exploit privileged information. Recollecting
Eq. (1), to learn the pair of interdependent functions h and φ, we learn to predict a structure y based
on a training set of triplets, (x1,x

∗
1,y1), . . . , (xn,x

∗
n,yn), xi ∈ X ,x∗i ∈ X ∗, yi ∈ Y , where X

corresponds to various visual features, X ∗ to attributes or segmentations, and Y is the space of all
possible bounding boxes. Once learned, only the function h is used for prediction. It is obtained by
maximizing the learned function over all possible joint features based on input x ∈ X and output
y ∈ Y as in Eq. (3), identically to standard SSVMs.

On the other hand, to jointly learn h and φ, subject to the constraint in Eq. (1), we need to extend the
SSVM framework substantially. The functions h and φ are characterized by the parameter vectors
w and w∗, respectively as

h(x) = arg max
y∈Y

〈w,Ψ(x,y)〉 and φ(x∗) = arg max
y∗∈Y

〈w∗,Ψ(x∗,y∗)〉. (5)

To learn the weight vectors w and w∗ simultaneously, we propose a novel max-margin structured
prediction framework called SSVM+ that incorporates the constraint in Eq. (1) and hence learns two
models jointly as follows:

min
w,w∗,ξ

1

2
‖w‖2 +

γ

2
‖w∗‖2 +

C

n

n∑
i=1

ξi, (6)

s.t. 〈w, δΨi(y)〉+〈w∗, δΨ∗i (y∗)〉 ≥ ∆̄(yi,y,y
∗)− ξi ∀ 1 ≤ i ≤ n, ∀y,y∗ ∈ Y.

where δΨ∗i (y
∗) ≡ Ψ∗(x∗i ,yi)−Ψ∗(x∗i ,y

∗) and the inequality in Eq. (1) is introduced via a surro-
gate task-specific loss ∆̄ derived from [23]. This surrogate loss is defined as

∆̄(yi,y,y
∗) =

1

ρ
∆∗(yi,y

∗) + [∆(yi,y)−∆∗(yi,y
∗)]+, (7)

where [t]+ = max(t, 0) and ρ > 0 is a penalization parameter corresponding to the constraint in
Eq. (1), and task-specific loss functions ∆ and ∆∗ are defined in Section 3.3. Through this surrogate
loss, we can apply the inequality in Eq. (1) within the ordinary max-margin optimization framework.

Our framework enforces that the model learned on attributes and segmentations (w∗) always corrects
the model trained on visual features (w). This results in a model with better generalization on visual
features alone. Similar to SSVMs, we can tractably deal with the exponential number of possible
constraints present in our problem via loss-augmented inference and optimization methods such
as the cutting plane algorithm [24] or the more recent block-coordinate Frank Wolfe method [25].
Pseudocode for solving Eq. (6) using the the cutting plane method is presented in Algorithm 1.

Our formulation has a general form that follows the SSVM framework. This means that Eq. (6) is
independent of the definitions of joint feature map, task-specific loss and loss-augmented inference.
We can therefore apply our method to a variety of other problems in addition to object localization.
All that is required is the definition of the three problem specific components, which are also required
in the standard SSVMs. As will be shown later, only the loss-augmented inference step becomes
harder compared to SSVMs due to the inclusion of privileged information.
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Algorithm 1 Cutting plane method for solving Eq. (6)
1: Input: (x1,x

∗
1,y1), . . . , (xn,x

∗
n,yn), C, ρ, γ, ε

2: Si ← ∅ for all i = 1, . . . , n
3: repeat
4: for i = 1, . . . , n do
5: SET-UP SURROGATE TASK-SPECIFIC LOSS (EQ. (7))
6: ∆̄(yi,y,y

∗) = 1
ρ∆∗(yi,y

∗) + [∆(yi,y)−∆∗(yi,y
∗)]+

7: SET-UP COST FUNCTION (EQ. (12))
8: H(y,y∗) = ∆̄(yi,y,y

∗)− 〈w, δΨi(y)〉 − 〈w∗, δΨ∗i (y∗)〉
9: FIND CUTTING PLANE

10: (ŷ, ŷ∗) = arg maxy,y∗∈Y H(y,y∗)
11: FIND VALUE OF CURRENT SLACK
12: ξi = max{0,maxy,y∗∈Si

H(y,y∗)}
13: if H(ŷ, ŷ∗) > ξi + ε then
14: ADD CONSTRAINT TO WORKING SET
15: Si ← Si ∪ {(ŷ, ŷ∗)}
16: (w,w∗)← optimize Eq. (6) over ∪iSi.
17: end if
18: end for
19: until no Si has changed during iteration

3.2 Joint Feature Map

Our extended structured output regressor, SSVM+, estimates bounding box coordinates within target
images by considering all possible bounding boxes. The structured output space is defined as Y ≡
{(θ, t, l, b, r) | θ ∈ {+1,−1}, (t, l, b, r) ∈ R4}, where θ denotes the presence/absence of an object
and (t, l, b, r) correspond to coordinates of the top, left, bottom, and right corners of a bounding box,
respectively. To model the relationship between input and output variables, we define a joint feature
map, encoding features in x to their bounding boxes defined by y. This is modeled as

Ψ(xi,y) = xi|y, (8)
where x|y denotes the region of an image inside a bounding box with coordinates y. Identically,
for the privileged space, we define another joint feature map, which instead of on visual features, it
operates on the space of attributes aided by segmentation information as

Ψ∗(x∗i ,y
∗) = x∗i |y∗ . (9)

The definition of the joint feature map is problem specific, and we follow the method in [1] pro-
posed for object localization. Implementation details about both joint feature maps are described in
Section 4.2

3.3 Task-Specific Loss

To measure the level of discrepancy between the predicted output y and the true structured label
yi, we need to define a loss function that accurately measures such a level of disagreement. In our
object localization problem, the following task-specific loss, based on the Pascal VOC overlap ratio
[1], is employed in both spaces,

∆(yi,y) =

{
1− area(yi∩y)

area(yi∪y)
if yiθ = yθ = 1

1− ( 1
2 (yiθyθ + 1)) otherwise,

(10)

where yiθ ∈ {+1,−1} denotes the presence (+1) or absence (−1) of an object in the i-th image. In
the case yiθ = −1, Ψ(x|y) = 0, where 0 is an all zero vector. The loss is 0 when bounding boxes
defined by yi and y are identical, and equal to 1 when they are disjoint or yiθ 6= yθ.

3.4 Loss-Augmented Inference

Due to the exponential number of constraints that arise during learning of Eq. (6) and the possibly
very large search space Y dealt with during prediction, we require an efficient inference technique,
which may differ in training and testing in the SSVM+ framework.
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3.4.1 Prediction

The goal is to find the best bounding box given the learned weight vector w and the visual feature x.
Privileged information is not available at testing time, and inference is performed on visual features
only. Therefore, the same maximization problem as in standard SSVMs needs to be solved during
prediction, which is given by

h(x) = arg max
y∈Y

〈w,Ψ(x,y)〉. (11)

This maximization problem is over the space of bounding box coordinates. However, this problem
involves a very large search space and therefore cannot be solved exhaustively. In the object localiza-
tion task, the Efficient Subwindow Search (ESS) algorithm [2] is employed to solve the optimization
problem efficiently.

3.4.2 Learning

Compared to the inference problem required during the prediction step shown in Eq. (11), the op-
timization of our main objective during training involves a more complex inference procedure. We
need to perform the following maximization with the surrogate loss and an additional term corre-
sponding to the privileged space during an iterative procedure:

(ŷ, ŷ∗) = arg max
y,y∗∈Y

∆̄(yi,y,y
∗)− 〈w, δΨi(y)〉 − 〈w∗, δΨ∗i (y∗)〉

= arg max
y,y∗∈Y

∆̄(yi,y,y
∗) + 〈w,Ψ(xi,y)〉+ 〈w∗,Ψ∗(x∗i ,y∗)〉. (12)

Note that 〈w,Ψ(xi,yi)〉 and 〈w∗,Ψ∗(x∗i ,yi)〉 are constants in Eq. (12) and do not affect the opti-
mization. The problem in Eq. (12), called loss-augmented inference, is required during each iteration
of the cutting plane method, which is used for learning the functions h and φ and hence the weight
vectors w and w∗.

We adopt an alternating approach for the inference, where we first solve for y∗ in the privileged
space given the fixed solution in the original space yc

arg max
y∗∈Y

∆̄(yi,yc,y
∗) + 〈w∗,Ψ∗(x∗i ,y∗)〉 (13)

and subsequently perform optimization in the original space while fixing y∗c

arg max
y∈Y

∆̄(yi,y,y
∗
c) + 〈w,Ψ(xi,y)〉. (14)

These two sub-procedures in Eq. (13) and (14) are repeated until convergence, and we obtain the
final solutions w and w∗. In the object localization task, both problems are solved by ESS [2], a
branch-and-bound optimization technique, for which it is essential to derive upper bounds of the
above objective functions over a set of rectangles from Y . Here we derive the upper bounds of only
the surrogate loss terms in Eq. (7); the derivation for the other terms can be found in [2].

When the solution in the privileged space is fixed, we need to consider the upper bound of only
[∆ − ∆∗]+ to obtain the upper bound of the surrogate loss. Since [∆ − ∆∗]+ is a monotonically
increasing function of ∆, its upper bound is derived directly from the upper bound of ∆. Specifically,
the upper bound of ∆ is given by

∆ = 1− area(yi ∩ y)

area(yi ∪ y)
≤ 1− miny∈Y area(yi ∩ y)

maxy∈Y area(yi ∪ y)
, (15)

and the upper bound of the surrogate loss with a fixed ∆∗ is given by

[∆−∆∗]+ ≤
[
1− miny∈Y area(yi ∩ y)

maxy∈Y area(yi ∪ y)
−∆∗

]
+

. (16)

When the original space is fixed, the problem is not straightforward since the surrogate loss becomes
a V-shaped function with ρ > 1. In this case, we need to check outputs of the function at both upper
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and lower bounds of ∆∗. The upper bound of ∆∗ is derived identically to that of ∆, and the lower
bound of ∆∗ is given by

∆∗ = 1− area(yi ∩ y∗)

area(yi ∪ y∗)
≥ 1− maxy∗∈Y area(yi ∩ y∗)

miny∗∈Y area(yi ∪ y∗)
. (17)

Let ∆∗u and ∆∗l be the upper and lower bounds of ∆∗, respectively. Then the upper bound of the
surrogate loss with a fixed ∆ is given by

1

ρ
∆∗ + [∆−∆∗]+ ≤ max

(
1

ρ
∆∗u + [∆−∆∗u]+ ,

1

ρ
∆∗l + [∆−∆∗l ]+

)
. (18)

By identifying the bounds of the surrogate loss as in Eq. (17) and (18), we can optimize the objective
function in Eq. (12) through the alternating procedure based on the standard ESS algorithm.

4 Experiments

4.1 Dataset

Empirical evaluation of our method is performed on the Caltech-UCSD Birds 2011 (CUB-2011)
[5] fine-grained categorization dataset. It contains 200 categories of different species of birds. The
location of each bird is specified using a bounding box. In addition, a large collection of privileged
information is provided in the form of 15 different part annotations, 312 attributes and segmentation
masks, manually labeled in each image by human annotators. Each category contains 30 training
images and around 30 testing images.

4.2 Visual and Privileged Feature Extraction

Our feature descriptor in visual space adopts the bag-of-visual-words model based on Speeded Up
Robust Features (SURF) [26], which is almost identical to [2]. The dimensionality of visual feature
descriptors is 3,000. We additionally employ attributes and segmentation masks as privileged infor-
mation. The information about attributes is described by a 312 dimensional vector, whose element
corresponds to each attribute and which has a binary value depending on its visibility and relevance.
We use segmentation information to inpaint segmentation masks into each image, which results in
an image containing the original background pixels with uniform foreground pixels. Subsequently,
we extract the 3,000-dimensional feature descriptor based on the same bag-of-visual-words model as
in the visual space. The intuition behind this approach is to generate a set of features that provide a
guaranteed strong response in the foreground region. This response is to be stronger than in the orig-
inal space, hence allowing for easier localization in the privileged space. For each sub-window, we
create a histogram based on the presence of attributes and the frequency of the privileged codewords
corresponding to the augmented visual space.

4.3 Evaluation

To evaluate our SSVM+ algorithm, we compare it against the original SSVM localization method
by Blaschko and Lampert [1] in several training scenarios. In all experiments we tune the hyper-
parameters C, λ and ρ on a 4×4×4 space spanning values [2−8, ..., 25]. For SSVM, one dimension
of the search space corresponding to the parameter C is searched.

We first investigate the influence of small training sample sizes on localization performance. For
this setting, we loosely adopt the experimental setup of [27]. For training, we focus on 14 bird
categories corresponding to 2 major bird groups. We train four different models, each trained on
a distinctive number of training images, namely nc = {1, 5, 10, 20} images per class, resulting
in n = {14, 70, 140, 280} training images, respectively. Additionally, we train a model on n =
1000 images, corresponding to 100 bird classes, each with 10 training images. As a validation
set, 500 training images chosen at random from categories other than the ones used for training
are used. For testing, we use all testing images of the entire CUB-2011 dataset. Table 1 presents
results of this experiment. In all cases, our method outperforms the SSVM method in both average
overlap as well as average detection (PASCAL VOC overlap ratio > 50%). This implies that for
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Table 1: Comparison between our SSVM+ and the standard SSVM [1] by varying the number of
classes and training images.

(A) OVERLAP (B) DETECTION

# training images 14 70 140 280 1000 14 70 140 280 1000

SSVM [1] 38.2 43.8 42.3 44.9 48.1 25.9 37.3 34.3 39.8 46.2
SSVM+ 41.3 45.7 45.8 46.9 49.0 32.6 42.4 41.5 43.3 48.1

DIFF. +3.1 +1.9 +3.5 +2.0 +0.9 +6.7 +5.1 +7.2 +3.5 +1.9

Figure 2: Comparison results of average overlap (A) and detection results (B) between our structured
learning with privileged information (SSVM+) and the standard structured learning (SSVM) on 100
classes of the CUB-2011 dataset. The bird classes aligned in x-axis are sorted by the differences of
two methods shown in black area in a non-increasing order.

the same number of training examples, our method consistently converges to a model with better
generalization performance than SSVM. A previously observed trend [4, 23] of decreasing benefit
of privileged information with increasing training set sizes is also apparent here.

To evaluate the benefit of SSVM+ in more depth, we illustrate average overlap and detection per-
formance on all the 100 classes in Figure 2, where 10 images per class are used for training with
14 classes (n = 140). In most of bird classes, SSVM+ shows relatively better performance in both
overlap ratio and detection rate. Note that each class typically has 30 testing images but some classes
have as little as 18 images. Average overlap ratio is 45.8% and average detection is 12.1 (41.5%).

5 Discussion

We presented a structured prediction algorithm for object localization based on SSVM with privi-
leged information. Our algorithm is the first method for incorporating privileged information within
a structured prediction framework. Our method allows the use of various types of additional in-
formation during training to improve generalization performance at testing time. We applied our
proposed method to an object localization problem, which is solved by a novel structural SVM
formulation using privileged information. We employed an alternating loss-augmented inference
procedure to handle the term in the objective function corresponding to privileged information. We
applied the proposed algorithm to the Caltech-UCSD Birds 200-2011 dataset and obtained encour-
aging results, suggesting the potential benefit of exploiting additional information that is available
during training only. Unfortunately, the benefit of privileged information tends to reduce as the
number of training examples increases; our SSVM+ framework would be particularly useful when
there exist only a few training data or annotation cost is very high.
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