Probabilistic Differential Dynamic Programming

Yunpeng Pan and Evangelos A. Theodorou
Daniel Guggenheim School of Aerospace Engineering
Institute for Robotics and Intelligent Machines
Georgia Institute of Technology
Atlanta, GA 30332
ypan37@gatech.edu, evangelos.theodoroulae.gatech.edu

Abstract

We present a data-driven, probabilistic trajectory optimization framework for sys-
tems with unknown dynamics, called Probabilistic Differential Dynamic Program-
ming (PDDP). PDDP takes into account uncertainty explicitly for dynamics mod-
els using Gaussian processes (GPs). Based on the second-order local approxi-
mation of the value function, PDDP performs Dynamic Programming around a
nominal trajectory in Gaussian belief spaces. Different from typical gradient-
based policy search methods, PDDP does not require a policy parameterization
and learns a locally optimal, time-varying control policy. We demonstrate the ef-
fectiveness and efficiency of the proposed algorithm using two nontrivial tasks.
Compared with the classical DDP and a state-of-the-art GP-based policy search
method, PDDP offers a superior combination of data-efficiency, learning speed,
and applicability.

1 Introduction

Differential Dynamic Programming (DDP) is a powerful trajectory optimization approach. Origi-
nally introduced in [1]], DDP generates locally optimal feedforward and feedback control policies
along with an optimal state trajectory. Compared with global optimal control approaches, the lo-
cal optimal DDP shows superior computational efficiency and scalability to high-dimensional prob-
lems. In the last decade, variations of DDP have been proposed in both control and machine learning
communities [2/][3][4][S][6]. Recently, DDP was applied for high-dimensional policy search which
achieved promising results in challenging control tasks [7]].

DDP is derived based on linear approximations of the nonlinear dynamics along state and control
trajectories, therefore it relies on accurate and explicit dynamics models. However, modeling a
dynamical system is in general a challenging task and model uncertainty is one of the principal
limitations of model-based methods. Various parametric and semi-parametric approaches have been
developed to address these issues, such as minimax DDP using Receptive Field Weighted Regression
(RFWR) by Morimoto and Atkeson [8]], and DDP using expert-demonstrated trajectories by Abbeel
et al. [9]. Motivated by the complexity of the relationships between states, controls and observations
in autonomous systems, in this work we take a Bayesian non-parametric approach using Gaussian
Processes (GPs).

Over last few years, GP-based control and Reinforcement Learning (RL) algorithms have increas-
ingly drawn more attention in control theory and machine learning communities. For instance,
the works by Rasmussen et al.[10]], Nguyen-Tuong et al.[11]], Deisenroth et al.[12][13]][14] and
Hemakumara et al.[15]] have demonstrated the remarkable applicability of GP-based control and RL
methods in robotics. In particular, a recently proposed GP-based policy search framework called
PILCO, developed by Deisenroth and Rasmussen [13]] (an improved version has been developed by
Deisenroth, Fox and Rasmussen [14]) has achieved unprecedented performances in terms of data-



efficiency and policy learning speed. PILCO as well as most gradient-based policy search algorithms
require iterative methods (e.g.,CG or BFGS) for solving non-convex optimization to obtain optimal
policies.

The proposed approach does not require a policy parameterization. Instead PDDP finds a linear, time
varying control policy based on Bayesian non-parametric representation of the dynamics and out-
performs PILCO in terms of control learning speed while maintaining a comparable data-efficiency.

2 Proposed Approach

The proposed PDDP framework consists of 1) a Bayesian non-parametric representation of the un-
known dynamics; 2) local approximations of the dynamics and value functions; 3) locally optimal
controller learning.

2.1 Problem formulation

We consider a general unknown stochastic system described by the following differential equation
dx = f(x,u)dt + C(x,u)dw, x(tp) =x¢, dw~N(0,%,), (D)

where x € R" is the state, u € R™ is the control, ¢ is time and w € RP is standard Brownian motion
noise. The trajectory optimization problem is defined as finding a sequence of state and controls that
minimize the expected cost

T

J™(x(to)) = E[h (X(T)) + / £(x(t), w(x(t)),t) dt} 2)
to

where h(x(T')) is the terminal cost, £(x(t),m(x(t)),t) is the instantaneous cost rate, u(t) =

m(x(t)) is the control policy. The cost J™(x(to)) is defined as the expectation of the total cost

accumulated from ¢y to 7'. For the rest of our analysis, we denote x; = x(f) in discrete-time

where k£ = 0,1, ..., H is the time step, we use this subscript rule for other variables as well.

2.2 Probabilistic dynamics model learning

The continuous functional mapping from state-control pair X = (x,u) € R"*™ to state tran-
sition dx can be viewed as an inference with the goal of inferring dx given Xx. We view this
inference as a nonlinear regression problem. In this subsection, we introduce the Gaussian pro-
cesses (GP) approach to learning the dynamics model in (I). A GP is defined as a collection of
random variables, any finite number subset of which have a joint Gaussian distribution. Given a se-
quence of state-control pairs X = {(xg, uo), ... (Xm,un)}, and the corresponding state transition
dX = {dxo,...,dxg}, a GP is completely defined by a mean function and a covariance function.
The joint distribution of the observed output and the output corresponding to a given test state-

control pair X* = (x*,u*) can be written as p ( o ) ~ N(O, { K(fi’(f) ;f(;’"'l Ilfgi ’;f:)) } )

The covariance of this multivariate Gaussian distribution is defined via a kernel matrix K(x;,x;). In
particular, in this paper we consider the Gaussian kernel K (x;,x;) = 02 exp(— 4 (x;—x;) TW (x; —
x;))+02, with s, 0,,, W the hyper-parameters. The kernel function can be interpreted as a similar-
ity measure of random variables. More specifically, if the training pairs X; and X; are close to each
other in the kernel space, their outputs dx; and dx; are highly correlated. The posterior distribution,
which is also a Gaussian, can be obtained by constraining the joint distribution to contain the output
dx* that is consistent with the observations. Assuming independent outputs (no correlation between
each output dimension) and given a test input X, = (xj, uy) at time step k, the one-step predictive
mean and variance of the state transition are specified as

Ee[dxy] = K (X, X)(K(X, X) + 0,,I)"1dX, 3)
VARe[dx] = K (Xp, %) — K(Xp, X)(K(X, X) + 0, 1) 'K(X, %p).

The state distribution at k& = 1 is p(x1) ~ N (p,, %) where the state mean and variance are
py = x0+Eg[dxo], X1 = VAR¢[dx]. When propagating the GP-based dynamics over a trajectory
of time horizon H, the input state-control pair X; becomes uncertain with a Gaussian distribution



(initially X is deterministic). Here we define the joint distribution over state-control pair at k as
p xk) = p(xk, ug) ~ N(fiy,, Xg). Thus the distribution over state transition becomes p(dxy) =
J p(f(xx)|%x%)p(Xx)dXs. Generally, this predictive distribution cannot be computed analytically
because the nonlinear mapping of an input Gaussian distribution lead to a non-Gaussian predictive
distribution. However, the predictive distribution can be approximated by a Gaussian p(dxy) ~
N (dpy,, dXy) [16]. Thus the state distribution at k + 1 is also a Gaussian N (g, 1, Xp1) [14]
Bppr = Mg +dpy, g = 3 +dEg + COVg g, [xg, dxi] + COVe 5, [dxg, xz]. (4

Given an input joint distribution A (fiy, Y k), we employ the moment matching approach [16][14]
to compute the posterior GP. The predictive mean d,, is evaluated as

dpy, = Ex, [Ee[dxi]] = /Ef[dxk]/\f(ﬁk,ik)dik.

Next, we compute the predictive covariance matrix
VAR g, [dxp, ] oo COVg g, [dxg,, , dxg, ]

d¥, =

COVe , [dxyy . dxy,] - - VARf x, [dxy,, ]
where the variance term on the diagonal for output dimension ¢ is obtained as
2
VAR x, [dxy,] = Ex, [VARg[dxy,]] + Ex, [Ee[dxy,]?] — Ex, [Ee[dxs,]]”, 5
and the off-diagonal covariance term for output dimension i, j is given by the expression
(C@Vf’;(k [dxki N kaj] = ]Egk []Ef [kal]Ef [ka]H — Eik [Ef[dX]ﬁHEik [Ef [dxk].]]. (6)
The input-output cross-covariance is formulated as
COVg g, Rk, dxs] = Bx, [%xEeldx] "] — Ex, [Ri]Eg z, [dxs] T (7
COVs %, [Xk, dxy] can be easily obtained as a sub-matrix of . The kernel or hyper-parameters
O = (o, 05, W) can be learned by maximizing the log-likelihood of the training outputs given the

inputs
O* = argmax { log (p (dX|X, @)) } (8)
©

This optimization problem can be solved using numerical methods such as conjugate gradient [17].

2.3 Local dynamics model

In DDP-related algorithms, a local model along a nominal trajectory (X, uy), is created based
on: i) a first or second-order linear approximation of the dynamics model; ii) a second-order lo-
cal approximation of the value function. In our proposed PDDP framework, we will create a local
model along a trajectory of state distribution-control pair (p(Xy), Gx). In order to incorporate un-
certainty explicitly in the local model, we introduce the Gaussian belief augmented state vector
z¥ = [py, vec(Ey)]T € R"TX" where vec(Xy,) is the vectorization of 3. Now we create a local
linear model of the dynamics. Based on eq.()), the dynamics model with the augmented state is

zi 1 = Flzg,ug). 9)
Define the control and state variations 6z = zj, — z and duy, = uy — Uy. In this work we consider
the first-order expansion of the dynamics. More precisely we have
0z, = Fj 0z, + Fioug, (10)
where the Jacobian matrices F;/ and F}! are specified as
a""k+1 8iu’k+1

T _ o ) (n+n?)x (n+n?)
]:k = ka]: = 3219]11 EkJrkl cR x s
op,, a3y, (11)
al'l’k+1 )
Fi=VaF=| 8% | eRmxm
ouy,

Oy OMyyy 8%py1 03ep1 OMiy: 8pq
) R ) R
Their forms are provided in the supplementary document of this work. For numerical implementa-
tion, the dimension of the augmented state can be reduced by eliminating the redundancy of 3 and

the principle square root of 33 may be used for numerical robustness [6]].

The partial derivatives can be computed analytically.



2.4 Cost function

In the classical DDP and many optimal control problems, the following quadratic cost function is
used
L(xp,ug) = (x5, — x2°NTQ(x), — x9°) + uf Ruy, (12)

where x9° s the target state. Given the distribution p(xy) ~ N (py,, Xk), the expectation of
original quadratic cost function is formulated as

Ex [0k, u)| = (@) + (g = x4 Q1 — x{°*!) + uf Ruy. (13)

In PDDP, we use the cost function £(z7, uy) = Ex, [£(X, ux)]. The analytic expressions of partial
derivatives a—%ﬁ(zi ,uy) and %L(zi, uy) can be easily obtained. The cost function (13) scales
linearly with the state covariance, therefore the exploration strategy of PDDP is balanced between
the distance from the target and the variance of the state. This strategy fits well with DDP-related
frameworks that rely on local approximations of the dynamics. A locally optimal controller obtained
from high-risk explorations in uncertain regions might be highly undesirable.

2.5 Control policy

The Bellman equation for the value function in discrete-time is specified as follows

V(z%, k) = minE

uy

£(zﬁ,uk)+V(]:(zi,uk),k;+1) |xk] (14)

Q(z3,ux)

We create a quadratic local model of the value function by expanding the Q-function up to the
second order

T
Qi (2 02, w+0uy) ~ QY+ QY078+ Qpduy+ = [ ok } [ S G } { ok } . (15)
where the superscripts of the Q-function indicate derivatives. For instance, QF = V,Qu (27, ug).
For the rest of the paper, we will use this superscript rule for £ and V' as well. To find the optimal
control policy, we compute the local variations in control 415 that maximize the Q-function

duy, = arg max | Qp(zj + oz, uy, + 5“}9)} = —(Qi")'QE —(QE") QR 0z = T, + Loz
Ik Llc
(16)
The optimal control can be found as G, = g + duy. The quadratic expansion of the value function
is backward propagated based on the equations that follow

T _ Ci}:‘?‘ 4 (]:}f)T‘/'kmc]_~]:;c7 uac Eum (.FU>TV]€T,E.7:]€£7 uu £uqt (F];L)Tvkxmfg’
Vi1 = Vi + Qi 14, Viey = Qk + Qi Ly, Vit = Qi + Qk: Ly. (I7)

The second-order local approximation of the value function is propagated backward in time iter-
atively. We use the learned controller to generate a locally optimal trajectory by propagating the
dynamics forward in time. The control policy is a linear function of the augmented state z3, there-
fore the controller is deterministic. The state propagations have been discussed in Sec. 2.2}

2.6 Summary of algorithm

The proposed algorithm can be summarized in Algorithm 1. The algorithm consists of 8 modules.
In Model learning (Step 1-2) we sample trajectories from the original physical system in order to
collect training data and learn a probabilistic model. In Local approximation (Step 4) we obtain
a local linear approximation (I0) of the learned probabilistic model along a nominal trajectory by
computing Jacobian matrices (11). In Controller learning (Step 5) we compute a local optimal con-
trol sequence by backward-propagation of the value function (I7). To ensure convergence, we



employ the line search strategy as in [2]. We compute the control law as 00y, = al + Lidz3.
Initially o = 1, then decrease it until the expected cost is smaller than the previous one. In Forward
propagation (Step 6), we apply the control sequence from last step and obtain a new nominal trajec-
tory for the next iteration. In Convergence condition (Step 7), we set a threshold on the accumulated
cost J* such that when J™ < J*, the algorithm is terminated with the optimized state and control
trajectory. In Interaction condition (Step 8), when the state covariance 3, exceeds a threshold 324,
we sample new trajectories from the physical system using the control obtained in step 5, and go
back to step 2 to learn a more accurate model. The old GP training data points are removed from
the training set to keep its size fixed. Finally in Nominal trajectory update (step 9), the trajectory
obtained in Step 6 or 8 becomes the new nominal trajectory for the next iteration. An simple illustra-
tion of the algorithm is shown in Fig. Intuitively, PDDP requires interactions with the physical
systems only if the GP model no longer represents the true dynamics around the nominal trajectory.

Given: A system with unknown dynamics, target states
Goal : An optimized trajectory of state and control

1 Generate N state trajectories by applying random control sequences to the physical system (1);
2 Obtain state and control training pairs from sampled trajectories and optimize the
hyper-parameters of GP (8);
3 fori=1to I,,,, do
4 Compute a linear approximation of the dynamics along (z7, U) ;
5 Backpropagate in time to get the locally optimal control G, = 11, + dUy, and value function
V (27, k) according to (17);
6 Forward propagate the dynamics @) by applying the optimal control i, obtain a new
trajectory (z%, ug);
7 if Converge then Break the for loop;
8 if 35 > 3, then apply the optimal control to the original physical system to generate a
new nominal trajectory (z7, u;) and N — 1 additional trajectories by applying small
variations of the learned controller, update the GP training set and go back to step 2;
9 Set 2, = z7, Uy, = u, and ¢ = ¢ + 1, go back to step 4;
10 end
11 Apply the optimized controller to the physical system, obtain the optimized trajectory.
Algorithm 1: PDDP algorithm

2.7 Computational complexity

Dynamics propagation: The major computational effort is devoted to GP inferences. In particular,
the complexity of one-step moment matching is O((N)?n*(n-+m)) [14], which is fixed during
the iterative process of PDDP. We found a small number of sampled trajectories (N < 5) are able
to provide good performances for a system of moderate size (6-12 state dimensions). However, for
higher dimensional problems, sparse or local approximation of GP (e.g. [LL][1S8][19], etc) may be
used to reduce the computational cost of GP dynamics propagation.

Controller learning: According to (I6), learning policy parameters I, and Lj requires computing
the inverse of Q}“, which has the computational complexity of O(m?), where m is the dimension
of control input. As a local trajectory optimization method, PDDP offers comparable scalability to
the classical DDP.

2.8 Relation to existing works

Here we summarize the novel features of PDDP in comparison with some notable DDP-related
frameworks for stochastic systems (see also Table E]) First, PDDP shares some similarities with
the belief space iLQG [6]] framework, which approximates the belief dynamics using an extended
Kalman filter. Belief space iLQG assumes a dynamics model is given and the stochasticity comes
from the process noises. PDDP, however, is a data-driven approach that learns the dynamics models
and controls from sampled data, and it takes into account model uncertainties by using GPs. Second,
PDDP is also comparable with iLQG-LD [3], which applies Locally Weighted Projection Regression
(LWPR) to represent the dynamics. iLQG-LD does not incorporate model uncertainty therefore
requires a large amount of data to learn an accurate model. Third, PDDP does not suffer from the



high computational cost of finite differences used to numerically compute the first-order expansions
[2][6] and second-order expansions [4] of the underlying stochastic dynamics. PDDP computes
Jacobian matrices analytically (TT).

PDDP Belief space iLQG[6] iLQG-LD[S] iLQG[2]/sDDP[4]
State By, 2k By X Xk X
Dynamics model Unknown Known Unknown Known
Linearization ||Analytic Jacobian Finite differences |Analytic Jacobian Finite differences

Table 1: Comparison with DDP-related frameworks

3 Experimental Evaluation

We evaluate the PDDP framework using two nontrivial simulated examples: i) cart-double inverted
pendulum swing-up; ii) six-link robotic arm reaching. We also compare the learning efficiency
of PDDP with the classical DDP [1]] and PILCO [13][14]. All experiments were performed in
MATLAB.

3.1 Cart-double inverted pendulum swing-up

Cart-Double Inverted Pendulum (CDIP) swing-up is a challenging control problem because the sys-
tem is highly underactuated with 3 degrees of freedom and only 1 control input. The system has 6
state-dimensions (cart position/velocity, link 1,2 angles and angular velocities). The swing-up prob-
lem is to find a sequence of control input to force both pendulums from initial position (7,7) to the
inverted position (27,27). The balancing task requires the velocity of the cart, angular velocities of
both pendulums to be zero. We sample 4 initial trajectories with time horizon H = 50. The CDIP
swing-up problem has been solved by two controllers for swing-up and balancing, respectively [20]].
PILCO [14] is one of the few RL methods that is able to complete this task without knowing the
dynamics. The results are shown in Fig[l]

CDIP state trajectories CDIP cost
T T T T T T

o 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 5
Time steps Time steps

(a) (b)

Figure 1: Results for the CDIP task. (a) Optimized state trajectories of PDDP. Solid lines indicate
means, errorbars indicate variances. (b) Cost comparison of PDDP, DDP and PILCO. Costs (eq. 13)
were computed based on sampled trajectories by applying the final controllers.

3.2 Six-link robotic arm

The six-link robotic arm model consist of six links of equal length and mass, connected in an open
chain with revolute joints. The system has 6 degrees of freedom, and 12 state dimensions (angle
and angular velocity for each joint). The goal for the first 3 joints is to move to the target angle 7
and for the rest 3 joints to —7. The desired velocities for all 6 joints are zeros. We sample 2 initial
trajectories with time horizon H = 50. The results are shown in Fig.

3.3 Comparative analysis

DDP: Originally introduced in the 70’s, the classical DDP [[1] is still one of the most effective and
efficient trajectory optimization approaches. The major differences between DDP and PDDP can



Angle 6-link arm Cost
T T T T T T T

T T T T T T
/ —DDP
o | 25 —+PILCO

1 . . . . . : : : I
5 10 15 20 25 30 35 40 45 50
Angular velocity 15r

5 10 15 20 35 40 45 50 o 5 10 15 20__ 25 30 35 40 45 50
Time steps

(a) (b)

25 30
Time steps

Figure 2: Results for the 6-link arm task. (a) Optimized state trajectories of PDDP. Solid lines
indicate means, errorbars indicate variances. (b) Cost comparison of PDDP, DDP and PILCO. Costs
(eq. 13) were computed based on sampled trajectories by applying the final controllers.

be summarized as follow: firstly, DDP relies on a given accurate dynamics model, while PDDP is
a data-driven framework that learns a locally accurate model by forward sampling; secondly, DDP
does not deal with model uncertainty, PDDP takes into account model uncertainty using GPs and
perform local dynamic programming in Gaussian belief spaces; thirdly, generally in applications
of DDP linearizations are performed using finite differences while in PDDP Jacobian matrices are
computed analytically (TT).

PILCO: The recently proposed PILCO [14] framework has demonstrated state-of-the-art learning
efficiency compared with other methods such as [21]][22]]. The proposed PDDP is different from
PILCO in several ways. Firstly, based on local linear approximation of dynamics and quadratic
approximation of the value function, PDDP finds linear, time-varying feedforward and feedback
policy, PILCO requires an a priori policy parameterization and an extra optimization solver. Sec-
ondly, PDDP keeps a fixed size of training data for GP inferences, while PILCO adds new data to
the training set after each trial (recently, the authors applied sparse GP approximation [19] in an
improved version of PILCO when the data size reached a threshold). Thirdly, by using the Gaussian
belief augmented state and cost function , PDDP’s exploration scheme is balanced between the
distance from the target and the variance of the state. PILCO employs a saturating cost function
which leads to automatic explorations in the high-variance regions in the early stages of learning.

In both tasks, PDDP, DDP and PILCO bring the system to the desired states. The resulting tra-
jectories for PDDP are shown in Fig[Ta]and 2a] The reason for low variances of some optimized
trajectories is that during final stage of learning, interactions with the physical systems (forward
samplings using the locally optimal controller) would reduce the variances significantly. The costs
are shown in Fig. [Ib|and [2b] For both tasks, PDDP and DDP performs similarly and slightly differ-
ent from PILCO in terms of cost reduction. The major reasons for this difference are: i) different cost
functions used by these methods; ii) we did not impose any convergence condition for the optimized
trajectories on PILCO. We now compare PDDP with DDP and PILCO in terms of data-efficiency
and controller learning speed.

Data-efficiency: As shown in Fig[dal in both tasks, PDDP performs slightly worse than PILCO in
terms of data-efficiency based on the number of interactions required with the physical systems. For
the systems used for testing, PDDP requires around 15% — 25% more interactions than PILCO.
The number of interactions indicates the amount of sampled trajectories required from the physical
system. At each trial we sample NN trajectories from the physical systems (algorithm [I)). Possible
reasons for the slightly worse performances are: i) PDDP’s policy is linear which is restrictive, while
PILCO yields nonlinear policy parameterizations; ii) PDDP’s exploration scheme is more conser-
vative than PILCO in the early stages of learning. We believe PILCO is the most data-efficient
framework for these tasks. However, PDDP is able to offer close performances thanks to the proba-
bilistic representation of the dynamics as well as the use of Gaussian belief augmented state.

Learning speed: In terms of total computational time required to obtain the final controller, PDDP
outperforms PILCO significantly as shown in Fig4b] For the 6 and 12 dimensional systems used
for testing, PILCO requires an iterative method (e.g.,CG or BFGS) to solve high dimensional opti-
mization problems (depending on the policy parameterization), while PDDP computes local optimal
controls (I6) without an extra optimizer. In terms of computational time per iteration, as shown in



Fig[3b] PDDP is slower than the classical DDP due to the high computational cost of GP dynamics
propagations. However, for DDP, the time dedicated to linearizing the dynamics model is around
70% — 90% of the total time per iteration for the two tasks considered in this work. PDDP avoids
the high computational cost of finite differences by evaluating all Jacobian matrices analytically, the
time dedicated to linearization is less than 10% of the total time per iteration.

H Time per iteration (sec) for CDIP Time per iteration (sec) for 6-link arm
Physical = | = |
Dynamics linearization Dyanmics linearization
SyStem 14 B Forward/backward pass 50 B Forward/backward pass
/ \ 12 "

Control . GP 10
30
* + 20
Local Model 10
Cost function o
DDP PDDP DDP PDDP
(a) (b)

Figure 3: (a) An intuitive illustration of the PDDP framework. (b) Comparison of PDDP and DDP
in terms of the computational time per iteration (in seconds) for the CDIP (left subfigure) and 6-link
arm (right subfigure) tasks. Green indicates time for performing linearization, cyan indicates time
for forward and backward sweeps (Sec. @)

o N N o

Number of interactions Total time (minutes)

IlPDDP [
HlPILCO 1500!/{HEPILCO

1000

5001

6-Link arm CD‘IP 6—Lini< arm
(a) (b)

Figure 4: Comparison of PDDP and PILCO in terms of data-efficiency and controller learning speed.
(a) Number of interactions with the physical systems required to obtain the final results in Fig. [I]
and@ (b) Total computational time (in minutes) consumed to obtain the final controllers.

4 Conclusions

In this work we have introduced a probabilistic model-based control and trajectory optimization
method for systems with unknown dynamics based on Differential Dynamic Programming (DDP)
and Gaussian processes (GPs), called Probabilistic Differential Dynamic Programming (PDDP).
PDDP takes model uncertainty into account explicitly by representing the dynamics using GPs and
performing local Dynamic Programming in Gaussian belief spaces. Based on the quadratic approxi-
mation of the value function, PDDP yields a linear, locally optimal control policy and features a more
efficient control improvement scheme compared with typical gradient-based policy search methods.
Thanks to the probabilistic representation of the dynamics, PDDP offers reasonable data-efficiency
comparable to a state of the art GP-based policy search method [14]. In general, local trajectory op-
timization is a powerful approach to challenging control and RL problems. Due to its model-based
nature, model inaccuracy has always been the major obstacle for advanced applications. Grounded
on the solid developments of classical trajectory optimization and Bayesian machine learning, the
proposed PDDP has demonstrated encouraging performance and potential for many applications.

Acknowledgments

This work was partially supported by a National Science Foundation grant NRI-1426945.



References

[1] D. Jacobson and D. Mayne. Differential dynamic programming. 1970.

[2] E. Todorov and W. Li. A generalized iterative lqg method for locally-optimal feedback control
of constrained nonlinear stochastic systems. In American Control Conference, pages 300-306,
June 2005.

[3] Y. Tassa, T. Erez, and W. D. Smart. Receding horizon differential dynamic programming. In
NIPS, pages 1465-1472.

[4] E. Theodorou, Y. Tassa, and E. Todorov. Stochastic differential dynamic programming. In
American Control Conference, pages 1125-1132, June 2010.

[5] D. Mitrovic, S. Klanke, and S. Vijayakumar. Adaptive optimal feedback control with learned
internal dynamics models. In From Motor Learning to Interaction Learning in Robots, pages
65-84. Springer, 2010.

[6] J. Van Den Berg, S. Patil, and R. Alterovitz. Motion planning under uncertainty using it-
erative local optimization in belief space. The International Journal of Robotics Research,
31(11):1263-1278, 2012.

[7] S. Levine and V. Koltun. Variational policy search via trajectory optimization. In NIPS, pages
207-215. 2013.

[8] J. Morimoto and C.G. Atkeson. Minimax differential dynamic programming: An application
to robust biped walking. In NIPS, pages 1539-1546, 2002.

[9] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng. An application of reinforcement learning to
aerobatic helicopter flight. In NIPS, pages 1-8, 2007.

[10] C. E. Rasmussen and M. Kuss. Gaussian processes in reinforcement learning. In NIPS, pages
751-759, 2003.

[11] D. Nguyen-Tuong, J. Peters, and M. Seeger. Local gaussian process regression for real time
online model learning. In NIPS, pages 1193-1200, 2008.

[12] M. P. Deisenroth, C. E. Rasmussen, and J. Peters. Gaussian process dynamic programming.
Neurocomputing, 72(7):1508-1524, 2009.

[13] M. P. Deisenroth and C. E. Rasmussen. Pilco: A model-based and data-efficient approach to
policy search. In ICML, pages 465—472, 2011.

[14] M. P. Deisenroth, D. Fox, and C. E. Rasmussen. Gaussian processes for data-efficient learning
in robotics and control. IEEE Transsactions on Pattern Analysis and Machine Intelligence,
27:75-90, 2014.

[15] P. Hemakumara and S. Sukkarieh. Learning uav stability and control derivatives using gaussian
processes. IEEE Transactions on Robotics, 29:813-824, 2013.

[16] J. Quinonero Candela, A. Girard, J. Larsen, and C. E. Rasmussen. Propagation of uncertainty in
bayesian kernel models-application to multiple-step ahead forecasting. In IEEE International
Conference on Acoustics, Speech, and Signal Processing, 2003.

[17] C.K.I Williams and C.E. Rasmussen. Gaussian processes for machine learning. MIT Press,
2006.

[18] L. Csaté and M. Opper. Sparse on-line gaussian processes. Neural Computation, 14(3):641—
668, 2002.

[19] E. Snelson and Z. Ghahramani. Sparse gaussian processes using pseudo-inputs. In NIPS, pages
1257-1264, 2005.

[20] W. Zhong and H. Rock. Energy and passivity based control of the double inverted pendulum
on a cart. In International Conference on Control Applications, pages 896-901, Sept 2001.

[21] T. Raiko and M. Tornio. Variational bayesian learning of nonlinear hidden state-space models
for model predictive control. Neurocomputing, 72(16):3704-3712, 2009.

[22] H. van Hasselt. Insights in reinforcement learning. Hado van Hasselt, 2011.



