
General Stochastic Networks for Classification

Matthias Zöhrer and Franz Pernkopf
Signal Processing and Speech Communication Laboratory

Graz University of Technology
matthias.zoehrer@tugraz.at, pernkopf@tugraz.at

Abstract

We extend generative stochastic networks to supervised learning of representa-
tions. In particular, we introduce a hybrid training objective considering a genera-
tive and discriminative cost function governed by a trade-off parameter λ. We use
a new variant of network training involving noise injection, i.e. walkback train-
ing, to jointly optimize multiple network layers. Neither additional regularization
constraints, such as `1, `2 norms or dropout variants, nor pooling- or convolu-
tional layers were added. Nevertheless, we are able to obtain state-of-the-art per-
formance on the MNIST dataset, without using permutation invariant digits and
outperform baseline models on sub-variants of the MNIST and rectangles dataset
significantly.

1 Introduction

Since 2006 there has been a boost in machine learning due to improvements in the field of unsu-
pervised learning of representations. Most accomplishments originate from variants of restricted
Boltzmann machines (RBMs) [1], auto-encoders (AE) [2, 3] and sparse-coding [4, 5, 6]. Deep mod-
els in representation learning, also obtain impressive results in supervised learning problems, such
as speech recognition, e.g. [7, 8, 9] and computer vision tasks [10].

If no a-priori knowledge is modeled in the architecture, cf. convolutional layers or pooling layers
[11], generatively pre-trained networks are among the best when applied to supervised learning tasks
[12]. Usually, a generative representation is obtained through a greedy-layerwise training procedure
called contrastive divergence (CD) [1]. In this case, the network layer learns the representation from
the layer below by treating the latter as static input. Despite of the impressive results achieved with
CD, we identify two (minor) drawbacks when used for supervised learning: Firstly, after obtaining
a representation by pre-training a network, a new discriminative model is initialized with the trained
weights, splitting the training into two separate models. This seems to be neither biologically plausi-
ble, nor optimal when it comes to optimization, as carefully designed early stopping criteria have to
be implemented to prevent over- or under-fitting. Secondly, generative and discriminative objectives
might influence each other beneficially when combined during training. CD does not take this into
account.

In this work, we introduce a new training procedure for supervised learning of representations. In
particular we define a hybrid training objective for general stochastic networks (GSN), dividing the
cost function into a generative and discriminative part, controlled by a trade-off parameter λ. It turns
out that by annealing λ, when solving this unconstrained non-convex multi-objective optimization
problem, we do not suffer from the shortcomings described above. We are able to obtain state-
of-the-art performance on the MNIST [13] dataset, without using permutation invariant digits and
significantly outperform baseline models on sub-variants of the MNIST and rectangle database [14].

Our approach is related to the generative-discriminative training approach of RBMs [15]. However
a different model and a new variant of network training involving noise injection, i.e. walkback
training [16, 17], is used to jointly optimize multiple network layers. Most notably, we did not

1



apply any additional regularization constraints, such as `1, `2 norms or dropout variants [12], [18],
unlocking further potential for possible optimizations. The model can be extended to learn multiple
tasks at the same time using jointly trained weights and by introducing multiple objectives. This
might also open a new prospect in the field of transfer learning [19] and multi-task learning [20]
beyond classification.

This paper is organized as follows: Section 2 presents mathematical background material i.e. the
GSN and a hybrid learning criterion. In Section 3 we empirically study the influence of hyper
parameters of GSNs and present experimental results. Section 4 concludes the paper and provides a
perspective on future work.

2 General Stochastic Networks

Recently, a new supervised learning algorithm called walkback training for generalized auto-
encoders (GAE) was introduced [16]. A follow-up study [17] defined a new network model –
generative stochastic networks, extending the idea of walkback training to multiple layers. When
applied to image reconstruction, they were able to outperform various baseline systems, due to its
ability to learn multi-modal representations [17, 21]. In this paper, we extend the work of [17].
First, we provide mathematical background material for generative stochastic networks. Then, we
introduce modifications to make the model suitable for supervised learning. In particular we present
a hybrid training objective, dividing the cost into a generative and discriminative part. This paves
the way for any multi-objective learning of GSNs. We also introduce a new terminology, i.e. gen-
eral stochastic networks, a model class including generative-, discriminative- and hybrid stochastic
network variants.

General Stochastic Networks for Unsupervised Learning

Restricted Boltzmann machines (RBM) [22] and denoising autoencoders (DAE) [3] share the fol-
lowing commonality; The input distribution P (X) is sampled to convergence in a Markov chain.
In the case of the DAE, the transition operator first samples the hidden state Ht from a corruption
distribution C(H|X), and generates a reconstruction from the parametrized model, i.e the density
Pθ2(X|H).

Xt+0 Xt+1 Xt+2 Xt+3 Xt+4

Ht+1 Ht+2 Ht+3 Ht+4

Pθ1

Pθ2

Pθ1

Pθ2

Pθ1

Pθ2

Pθ1

Pθ2

Pθ1

Figure 1: DAE Markov chain.

The resulting DAE Markov chain, shown in Figure 1, is defined as

Ht+1 ∼ Pθ1(H|Xt+0) and Xt+1 ∼ Pθ2(X|Ht+1), (1)

where Xt+0 is the input sample X , fed into the chain at time step 0 and Xt+1 is the reconstruction
of X at time step 1. In the case of a GSN, an additional dependency between the latent variables Ht

over time is introduced to the network graph. The GSN Markov chain is defined as follows:

Ht+1 ∼ Pθ1(H|Ht+0, Xt+0) and Xt+1 ∼ Pθ2(X|Ht+1). (2)

Figure 2 shows the corresponding network graph.

This chain can be expressed with deterministic functions of random variables fθ ⊇ {f̂θ, f̌θ}. In
particular, the density fθ is used to model Ht+1 = fθ(Xt+0, Zt+0, Ht+0), specified for some inde-
pendent noise source Zt+0, with the condition that Xt+0 cannot be recovered exactly from Ht+1.

2



Xt+0 Xt+1 Xt+2 Xt+3 Xt+4

Ht+1 Ht+2 Ht+3 Ht+4Ht+0

Pθ1

Pθ2

Pθ1

Pθ2

Pθ1

Pθ2

Pθ1

Pθ2

Pθ1

Figure 2: GSN Markov chain.

We introduce f̂ iθ as a back-probable stochastic non-linearity of the form f̂ iθ = ηout + g(ηin + âi)
with noise processes Zt ⊇ {ηin, ηout} for layer i. The variable âi is the activation for unit i, where
âi = W iIit + bi with a weight matrix W i and bias bi, representing the parametric distribution. It is
embedded in a non-linear activation function g. The input Iit is either the realization xit of observed
sample Xi

t or the hidden realization hit of Hi
t . In general, f̂ iθ(I

i
t) specifies an upward path in a GSN

for a specific layer i. In the case ofXi
t+1 = f̌ iθ(Zt+0, Ht+1) we define f̌ iθ(H

i
t) = ηout+g(ηin+ ǎi)

as a downward path in the network i.e. ǎi = (W i)THi
t + bi, using the transpose of the weight

matrix W i and the bias bi. This formulation allows to directly back-propagate the reconstruc-
tion log-likelihood P (X|H) for all parameters θ ⊇ {W 0, ...,W d, b0, ..., bd} where d is the
number of hidden layers. In Figure 2 the GSN includes a simple hidden layer. This can be
extended to multiple hidden layers requiring multiple deterministic functions of random variables
fθ ∈ {f̂0θ , ..., f̂dθ , f̌0θ , ...f̌dθ }.

Figure 3 visualizes the Markov chain for a multi-layer GSN, inspired by the unfolded computational
graph of a deep Boltzmann machine Gibbs sampling process.

X0
t+0 X0

t+1 X0
t+2 X0

t+3 X0
t+4

H1
t+1 H1

t+2 H1
t+3 H1

t+4

H2
t+2 H2

t+3 H2
t+4

H3
t+3 H3

t+4

Xt+0 Lt{X0
t+1, Xt+0} Lt{X0

t+2, Xt+0} Lt{X0
t+3, Xt+0} Lt{X0

t+4, Xt+0}

f̂0
θ f̌0

θ f̂0
θ f̌0

θ f̂0
θ f̂0

θf̌0
θ

f̂1
θ

f̌0
θ

f̂1
θ f̌1

θ f̌1
θf̂1

θ f̌1
θ

f̂2
θ f̌2

θ f̂2
θ f̌2

θ

f̂0
θ

f̂1
θ

f̂2
θ

Figure 3: GSN Markov chain with multiple layers and backprop-able stochastic units.

In the training case, alternatively even or odd layers are updated at the same time. The information
is propagated both upwards and downwards for K steps allowing the network to build higher order
representations. An example for this update process is given in Figure 3. In the even update (marked
in red) H1

t+1 = f̂0θ (X0
t+0). In the odd update (marked in blue) X0

t+1 = f̌0θ (H1
t+1) and H2

t+2 =

f̂1θ (H1
t+1) for k = 0. In the case of k = 1, H1

t+2 = f̂0θ (X0
t+1) + f̌1θ (H2

t+2) and H3
t+3 = f̂2θ (H2

t+2)

in the even update and X0
t+2 = f̌0θ (H1

t+2) and H2
t+3 = f̂1θ (H1

t+2) + f̌2θ (H3
t+3) in the odd update.

In case of k = 2, H1
t+3 = f̂0θ (X0

t+2) + f̌1θ (H2
t+3) and H3

t+4 = f̂2θ (H2
t+3) in the even update and

X0
t+3 = f̌0θ (H1

t+3) and H2
t+4 = f̂1θ (H1

t+3) + f̌2θ (H3
t+4) in the odd update.

The cost function of a generative GSN can be written as:

C =

K∑
k=1

Lt{X0
t+k, Xt+0}, (3)

3



Lt is a specific loss-function such as the mean squared error (MSE) at time step t. In general any
arbitrary loss function could be used (as long as they can be seen as a log-likelihood) [16]. X0

t+k

is the reconstruction of the input X0
t+0 at layer 0 after k steps. Optimizing the loss function by

building the sum over the costs of multiple corrupted reconstructions is called walkback training
[16, 17]. This form of network training leads to a significant performance boost when used for input
reconstruction. The network is able to handle multi-modal input representations and is therefore
considerably more favorable than standard generative models [16].

General Stochastic Networks for Supervised Learning

In order to make a GSN suitable for a supervised learning task we introduce the output Y to the
network graph. In this case L = logP (X) + logP (Y |X). Although the target Y is not fed into the
network, it is introduced as an additional cost term. The layer update-process stays the same.

X0
t+0 X0

t+1 X0
t+2 X0

t+3 X0
t+4

H1
t+1 H1

t+2 H1
t+3 H1

t+4

H2
t+2 H2

t+3 H2
t+4

H3
t+3 H3

t+4

Xt+0 Lt{X0
t+1, Xt+0} Lt{X0

t+2, Xt+0} Lt{X0
t+3, Xt+0} Lt{X0

t+4, Xt+0}

Lt{H3
t+1, Yt+0} Lt{H3

t+2, Yt+0}

f̂0
θ f̌0

θ f̂0
θ f̌0

θ f̂0
θ f̂0

θf̌0
θ

f̂1
θ

f̌0
θ

f̂1
θ f̌1

θ f̌1
θf̂1

θ f̌1
θ

f̂2
θ f̌2

θ f̂2
θ f̌2

θ

f̂0
θ

f̂1
θ

f̂2
θ

Figure 4: GSN Markov chain for input Xt+0 and target Yt+0 with backprop-able stochastic units.

We define the following cost function for a 3-layer GSN:

C =
λ

K

K∑
k=1

Lt{Xt+k, Xt+0}︸ ︷︷ ︸
generative

+
1− λ

K − d+ 1

K∑
k=d

Lt{H3
t+k, Yt+0︸ ︷︷ ︸

discriminative

} (4)

This is a non-convex multi-objective optimization problem, where λ weights the generative and
discriminative part of C. The parameter d specifies the number of network layers i.e. depth of the
network. Scaling the mean loss in (4) is not mandatory, but allows to equally balance both loss terms
with λ = 0.5 for input Xt+0 and target Yt+0 scaled to the same range. Again Figure 4 shows the
corresponding network graph for supervised learning with red and blue edges denoting the even and
odd network updates.

In general the hybrid objective optimization criterion is not restricted to 〈X,Y 〉, as additional input
and output terms could be introduced to the network. This setup might be useful for transfer-learning
[19] or multi-task scenarios [20], which is not discussed in this paper.

3 Experimental Results

In order to evaluate the capabilities of GSNs for supervised learning, we studied MNIST digits
[13], variants of MNIST digits [14] and the rectangle datasets [14]. The first database consists of
60.000 labeled training and 10.000 labeled test images of handwritten digits. The second dataset in-
cludes 6 variants of MNIST digits, i.e. { mnist-basic, mnist-rot, mnist-back-rand, mnist-back-image,
mnist-rot-back-image }, with additional factors of variation added to the original data. Each variant
includes 10.000 labeled training, 2000 labeled validation, and 50.000 labeled test images. The third
dataset involves two subsets, i.e. { rectangle, rectangle-image }. The dataset rectangle consists of

4



1000 labeled training, 200 labeled validation, and 50.000 labeled test images. The dataset rectangle-
image includes 10.000 labeled train, 2000 labeled validation and 50.000 labeled test images.

In a first experiment we focused on the multi-objective optimization problem defined in (4). Next we
evaluated the number of walkback steps in a GSN, necessary for convergence. In a third experiment
we analyzed the influence of different Gaussian noise settings during walkback training, improving
the generalization capabilities of the network. Finally we summarize classification results for all
datasets and compare to baseline systems [14].

3.1 Multi-Objective Optimization in a Hybrid Learning Setup

In order to solve the non-convex multi-objective optimization problem, variants of stochastic gradi-
ent descent (SGD) can be used. We applied a search over fixed λ values on all problems. Further-
more, we show that the use of an annealed λ factor, during training works best in practice.

In all experiments a three layer GSN, i.e. GSN-3, with 2000 neurons in each layer, randomly initial-
ized with small Gaussian noise, i.e. 0.01 · N (0, 1), and an MSE loss function for both inputs and
targets was used. Regarding optimization we applied SGD with a learning rate η = 0.1, a momen-
tum term of 0.9 and a multiplicative annealing factor ηn+1 = ηn · 0.99 per epoch n for the learning
rate. A rectifier unit [23] was chosen as activation function. Following the ideas of [24] no explicit
sampling was applied at the input and output layer. In the test case the zero-one loss was computed
averaging the network’s output over k walkback steps.

Analysis of the Hybrid Learning Parameter λ

Concerning the influence of the trade-off parameter λ, we tested fixed λ values in the range
λ ∈ {0.01, 0.1, 0.2, ..., 0.9, 0.99}, where low values emphasize the discriminative part in the ob-
jective and vice versa. Walkback training with K = 6 steps using zero-mean pre- and post-
activation Gaussian noise with zero mean and variance σ = 0.1 was performed for 500 train-
ing epochs. In a more dynamic scenario λn=1 = 1 was annealed by λn+1 = λn · τ to reach
λn=500 ∈ {0.01, 0.1, 0.2, ..., 0.9, 0.99} within 500 epochs, simulating generative pre-training to a
certain extend.

Figure 5: Influence of dynamic and static λ on MNIST variants basic (left), rotated (middle) and
background (right) where ? denotes the training-,4 the validation- and5 the test-set. The dashed
line denotes the static setup, the bold line the dynamic setup.

Figure 5 compares the results of both GSNs, using static and dynamic λ setups on the MNIST
variants basic, rotated and background. The use of a dynamic i.e. annealed λn=500 = 0.01, achieved
the best validation and test error in all experiments. In this case, more attention was given to the
generative proportion P (X) of the objective (4) in the early stage of training. After approximately
400 epochs discriminative training i.e. fine-tuning, dominates. This setup is closely related to DBN
training, where emphasis is on optimizing P (X) at the beginning of the optimization, whereas
P (Y |X) is important at the last stages. In case of the GSN, the annealed λ achieves a more smooth
transition by shifting the weight in the optimization criterion from P (X) to P (Y |X) within one
model.

5



Analysis of Walkback Steps K

In a next experiment we tested the influence of K walkback steps for GSNs. Figure 6 shows the
results for different GSNs, trained with K ∈ {6, 7, 8, 9, 10} walkback steps and annealed λ with
τ = 0.99. In all cases the information was at least propagated once up and once downwards in the
d = 3 layer network using fixed Gaussian pre- and post-activation noise with µ = 0 and σ = 0.1.

Figure 6: Evaluating the number of walkback steps on MNIST variants basic (left), rotated (middle)
and background (right) where ? denotes the training-,4 the validation- and5 the test-set.

Figure 6 shows that increasing the walkback steps, does not improve the generalization capabilities
of the used GSNs. The setup K = 2 ·d is sufficient for convergence and achieves the best validation
and test result in all experiments.

Analysis of Pre- and Post-Activation Noise

Injecting noise during the training process of GSNs serves as a regularizer and improves the gen-
eralization capabilities of the model [17]. In this experiment the influence of Gaussian pre- and
post-activation noise with µ = 0 and σ ∈ {0.05, 0.1, 0.15, 0.2, 0.25, 0.3} and deactivated noise
during training, was tested on a GSN-3 trained for K = 6 walkback steps. The trade-off factor
λ was annealed with τ = 0.99. Figure 7 summarizes the results of the different GSNs for the
MNIST variants basic, rotated and background. Setting σ = 0.1 achieved the best overall result
on the validation- and test-set for all three experiments. In all other cases the GSNs either over- or
underfitted the data.

Figure 7: Evaluating noise injections during training on MNIST variants basic (left), rotated (middle)
and background (right) where ? denotes the training-,4 the validation- and5 the test-set.

3.2 MNIST results

Table 1 presents the average classification error of three runs of all MNIST variation datasets ob-
tained by a GSN-3, using fixed Gaussian pre- and post-activation noise with µ = 0, σ = 0.1 and
K = 6 walkback steps. The hybrid learning parameter λwas annealed with τ = 0.99 and λn=1 = 1.
A small grid test was performed in the range of N × d with N ∈ {1000, 2000, 3000} neurons per
layer for d ∈ {1, 2, 3} layers to find the optimal network configuration.

6



Dataset SVMrbf SVMpoly NNet DBN-1 SAA-3 DBN-3 GSN-3

mnist-basic 3.03
±0.15

3.69
±0.17

4.69
±0.19

3.94
±0.17

3.46
±0.16

3.11
±0.15

2.40
±0.04

mnist-rot* 11.11
±0.28

15.42
±0.32

18.11
±0.34

10.30
±0.27

10.30
±0.27

14.69
±0.31

8.66
±0.08

mnist-back-rand 14.58
±0.31

16.62
±0.33

20.04
±0.35

9.80
±0.26

11.28
±0.28

6.73
±0.22

9.38
±0.03

mnist-back-image 22.61
±0.37

24.01
±0.37

27.41
±0.39

16.15
±0.32

23.00
±0.37

16.31
±0.32

16.04
±0.04

mnist-rot-back-image* 55.18
±0.44

56.41
±0.43

62.16
±0.43

47.39
±0.44

51.93
±0.44

52.21
±0.44

43.86
±0.05

rectangles 2.15
±0.13

2.15
±0.13

7.16
±0.23

4.71
±0.19

2.41
±0.13

2.60
±0.14

2.04
±0.04

rectangles-image 24.04
±0.37

24.05
±0.37

33.20
±0.41

23.69
±0.37

24.05
±0.37

22.50
±0.37

22.10
±0.03

Table 1: MNIST variations and recangle results [14]; For datasets marked by (*) updated results are
shown [25].

Table 1 shows that a three layer GSN clearly outperforms all other models, except for the MNIST
random-background dataset. In particular, when comparing the GSN-3 to the radial basis function
support vector machine (SVMrbf), i.e. the second best model on MNIST basic, the GSN-3 achieved
an relative improvement of 20.79% on the test set. On the MNIST rotated dataset the GSN-3 was
able to beat the second best model i.e. DBN-1, by 15.92% on the test set. On the MNIST rotated-
background there is an relative improvement of 7.25% on the test set between the second best model,
i.e. DBN-1, and the GSN-3. All results are statistically significant. Regarding the number of model
parameters, although we cannot directly compare the models in terms of network parameters, it is
worth to mention that a far smaller grid test was used to generate the results for all GSNs, cf. [14].
When comparing the classification error of the GSN-3 trained without noise, obtained in the previous
experiments (7) with Table 1, the GSN-3 achieved the test error of 2.72% on the MNIST variant
basic, outperforming all other models on this task. On the MNIST variant rotated, the GSN-3 also
outperformed the DBN-3, obtaining a test error of 11.2%. This indicates that not only the Gaussian
regularizer in the walkback training improves the generalization capabilities of the network, but also
the hybrid training criterion of the GSN.

Table 2 lists the results for the MNIST dataset without additional affine transformations applied to
the data i.e. permutation invariant digits. A three layer GSN achieved the state-of-the-art test error
of 0.80%.

Network Result

Rectifier MLP + dropout [12] 1.05%
DBM [26] 0.95%
Maxout MLP + dropout [27] 0.94%
MP-DBM [28] 0.91%
Deep Convex Network [29] 0.83%
Manifold Tangent Classifier [30] 0.81%
DBM + dropout [12] 0.79%
GSN-3 0.80%

Table 2: MNIST results.

7



It might be worth noting that in addition to the noise process in walkback training, no other regular-
izers, such as `1, `2 norms and dropout variants [12], [18] were used in the GSNs. In general ≤ 800
training epochs with early-stopping are necessary for GSN training.

All simulations1 were executed on a GPU with the help of the mathematical expression compiler
Theano [31].

4 Conclusions and Future Work

We have extended GSNs for classification problems. In particular we defined an hybrid multi-
objective training criterion for GSNs, dividing the cost function into a generative and discriminative
part. This renders the need for generative pre-training unnecessary. We analyzed the influence of
the objective’s trade-off parameter λ empirically, showing that by annealing λ we outperform a
static choice of λ. Furthermore, we discussed effects of noise injections and sampling steps during
walkback training. As a conservative starting point we restricted the model to use only rectifier
units. Neither additional regularization constraints, such as `1, `2 norms or dropout variants [12],
[18], nor pooling- [11, 32] or convolutional layers [11] were added. Nevertheless, the GSN was
able to outperform various baseline systems, in particular a deep belief network (DBN), a multi
layer perceptron (MLP), a support vector machine (SVM) and a stacked auto-associator (SSA), on
variants of the MNIST dataset. Furthermore, we also achieved state-of-the-art performance on the
original MNIST dataset without permutation invariant digits. The model not only converges faster
in terms of training iterations, but also show better generalization behavior in most cases. Our
approach opens a wide field of new applications for GSNs. In future research we explore adaptive
noise injection methods for GSNs and non-convex multi-objective optimization strategies.

References
[1] G. E. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for deep belief nets.” Neural computa-

tion, vol. 18, no. 7, pp. 1527–1554, 2006.

[2] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle, “Greedy layer-wise training of deep networks,” in
Advances in Neural Information Processing Systems (NIPS), 2007, pp. 153–160.

[3] P. Vincent, H. Larochelle, Y. Bengio, and P. Manzagol, “Extracting and composing robust features with
denoising autoencoders,” in International Conference on Machine Learning (ICML), 2008, pp. 1096–
1103.

[4] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse coding algorithms,” in Advances in Neural
Information Processing Systems (NIPS), 2007, pp. 801–808.

[5] J. Ngiam, Z. Chen, S. A. Bhaskar, P. W. Koh, and A. Y. Ng, “Sparse filtering,” in Advances in Neural
Information Processing Systems (NIPS), 2011, pp. 1125–1133.

[6] M. Ranzato, M. Poultney, S. Chopra, and Y. LeCun, “Efficient learning of sparse representations with an
energy-based model,” in Advances in Neural Information Processing Systems (NIPS), 2006, pp. 1137–
1144.

[7] G. E. Dahl, M. Ranzato, A. Mohamed, and G. E. Hinton, “Phone recognition with the mean-covariance
restricted Boltzmann machine,” in Advances in Neural Information Processing Systems (NIPS), 2010, pp.
469–477.

[8] L. Deng, M. L. Seltzer, D. Yu, A. Acero, A. Mohamed, and G. E. Hinton, “Binary coding of speech
spectrograms using a deep auto-encoder.” in Interspeech, 2010, pp. 1692–1695.

[9] F. Seide, G. Li, and D. Yu, “Conversational speech transcription using context-dependent deep neural
networks.” in Interspeech, 2011, pp. 437–440.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep convolutional neural
networks,” in Advances in Neural Information Processing Systems (NIPS), 2012, pp. 1097–1105.

[11] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, 1998.

[12] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Improving neural net-
works by preventing co-adaptation of feature detectors,” CoRR, vol. abs/1207.0580, 2012.

1The code will be made publicly available for reproducing the results.

8



[13] Y. Lecun and C. Cortes, “The MNIST database of handwritten digits,” 2014. [Online]. Available:
http://yann.lecun.com/exdb/mnist/

[14] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio, “An empirical evaluation of deep archi-
tectures on problems with many factors of variation,” in International Conference on Machine Learning
(ICML), 2007, pp. 473–480.

[15] H. Larochelle, M. Mandel, R. Pascanu, and Y. Bengio, “Learning algorithms for the classification re-
stricted Boltzmann machine,” Journal of Machine Learning Research (JMLR), vol. 13, pp. 643–669,
2012.

[16] Y. Bengio, L. Yao, G. Alain, and P. Vincent, “Generalized denoising auto-encoders as generative models,”
in Advances in Neural Information Processing Systems (NIPS), 2013, pp. 899–907.

[17] Y. Bengio, E. Thibodeau-Laufer, and J. Yosinski, “Deep generative stochastic networks trainable by back-
prop,” CoRR, vol. abs/1306.1091, 2013.

[18] L. Wan and M. Zeiler, “Regularization of neural networks using dropconnect,” in International Confer-
ence on Machine Learning (ICML), 2013, pp. 109–111.

[19] G. Mesnil, Y. Dauphin, X. Glorot, S. Rifai, Y. Bengio, I. J. Goodfellow, E. Lavoie, X. Muller, G. Des-
jardins, D. Warde-Farley, P. Vincent, A. Courville, and J. Bergstra, “Unsupervised and transfer learning
challenge: a deep learning approach,” in Unsupervised and Transfer Learning challenge and workshop
(JMLR W& CP), 2012, pp. 97–110.

[20] K. Abhishek and D. Hal, “Learning task grouping and overlap in multi-task learning,” in International
Conference on Machine Learning (ICML), 2012.

[21] S. Ozair, L. Yao, and Y. Bengio, “Multimodal transitions for generative stochastic networks.” CoRR, vol.
abs/1312.5578, 2013.

[22] P. Smolensky, Information processing in dynamical systems: Foundations of harmony theory. MIT
Press, 1986, vol. 1, no. 1, pp. 194–281.

[23] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in International Conference
on Artificial Intelligence and Statisitics (AISTATS), 2011, pp. 315–323.

[24] G. E. Hinton, “A practical guide to training restricted boltzmann machines,” in Neural Networks: Tricks
of the Trade (2nd ed.), ser. Lecture Notes in Computer Science. Springer, 2012, pp. 599–619.

[25] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio, “Online companion for
the paper an empirical evaluation of deep architectures on problems with many factors of
variation,” 2014. [Online]. Available: http://www.iro.umontreal.ca/∼lisa/twiki/bin/view.cgi/Public/
DeepVsShallowComparisonICML2007

[26] R. Salakhutdinov and G. E. Hinton, “Deep boltzmann machines,” in International Conference on Artificial
Intelligence and Statistics (AISTATS), 2009, pp. 448–455.

[27] I. J. Goodfellow, D. Warde-Farley, M. Mirza, A. Courville, and Y. Bengio, “Maxout networks,” in Inter-
national Conference on Machine Learning (ICML), 2013, pp. 1319–1327.

[28] I. J. Goodfellow, A. C. Courville, and Y. Bengio, “Joint training deep boltzmann machines for classifica-
tion,” CoRR, vol. abs/1301.3568, 2013.

[29] D. Yu and L. Deng, “Deep convex net: A scalable architecture for speech pattern classification.” in Inter-
speech, 2011, pp. 2285–2288.

[30] S. Rifai, Y. Dauphin, P. Vincent, Y. Bengio, and X. Muller, “The manifold tangent classifier,” in Advances
in Neural Information Processing Systems (NIPS), 2012, pp. 2294–2302.

[31] J. Bergstra, O. Breuleux, F. Bastien, P. Lamblin, R. Pascanu, G. Desjardins, J. Turian, D. Warde-Farley,
and Y. Bengio, “Theano: a CPU and GPU math expression compiler,” in Python for Scientific Computing
Conference (SciPy), 2010.

[32] M. Zeiler and R. Fergus, “Stochastic pooling for regularization of deep convolutional neural networks,”
CoRR, vol. abs/1301.3557, 2013.

9

http://yann.lecun.com/exdb/mnist/
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DeepVsShallowComparisonICML2007
http://www.iro.umontreal.ca/~lisa/twiki/bin/view.cgi/Public/DeepVsShallowComparisonICML2007

