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Abstract

We present the first sample compression algorithm for nearest neighbors with non-
trivial performance guarantees. We complement these guarantees by demonstrat-
ing almost matching hardness lower bounds, which show that our bound is nearly
optimal. Our result yields new insight into margin-based nearest neighbor classifi-
cation in metric spaces and allows us to significantly sharpen and simplify existing
bounds. Some encouraging empirical results are also presented.

1 Introduction

The nearest neighbor classifier for non-parametric classification is perhaps the most intuitive learn-
ing algorithm. It is apparently the earliest, having been introduced by Fix and Hodges in 1951
(technical report reprinted in [1]). In this model, the learner observes a sampleS of labeled points
(X, Y ) = (Xi, Yi)i∈[n], whereXi is a point in some metric spaceX andYi ∈ {1,−1} is its label.
Being a metric space,X is equipped with a distance functiond : X × X → R. Given a new unla-
beled pointx ∈ X to be classified,x is assigned the same label as its nearest neighbor inS, which is
argminYi∈Y d(x, Xi). Under mild regularity assumptions, the nearest neighbor classifier’s expected
error is asymptotically bounded by twice the Bayesian error, when the sample size tends to infinity
[2].1 These results have inspired a vast body of research on proximity-based classification (see [4, 5]
for extensive background and [6] for a recent refinement of classic results). More recently, strong
margin-dependent generalization bounds were obtained in [7], where the margin is the minimum
distance between opposite labeled points inS.

In addition to provable generalization bounds, nearest neighbor (NN) classification enjoys several
other advantages. These include simple evaluation on new data, immediate extension to multiclass
labels, and minimal structural assumptions — it does not assume a Hilbertian or even a Banach
space. However, the naive NN approach also has disadvantages. In particular, it requires storing the
entire sample, which may be memory-intensive. Further, information-theoretic considerations show
that exact NN evaluation requiresΘ(|S|) time in high-dimensional metric spaces [8] (and possibly
Euclidean space as well [9]) — a phenomenon known as the algorithmic curse of dimensionality.
Lastly, the NN classifier has infinite VC-dimension [5], implying that it tends to overfit the data.

1A Bayes-consistent modification of the1-NN classifier was recently proposed in [3].
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This last problem can be mitigated by taking the majority vote amongk > 1 nearest neighbors
[10, 11, 5], or by deleting some sample points so as to attain alarger margin [12].

Shortcomings in the NN classifier led Hart [13] to pose the problem of sample compression. In-
deed, significant compression of the sample has the potential to simultaneously address the issues
of memory usage, NN search time, and overfitting. Hart considered the minimum Consistent Subset
problem — elsewhere called the Nearest Neighbor Condensingproblem — which seeks to identify
a minimal subsetS∗ ⊂ S that isconsistentwith S, in the sense that the nearest neighbor inS∗ of
everyx ∈ S possesses the same label asx. This problem is known to be NP-hard [14, 15], and Hart
provided a heuristic with runtimeO(n3). The runtime was recently improved by [16] toO(n2), but
neither paper gave performance guarantees.

The Nearest Neighbor Condensing problem has been the subject of extensive research since its in-
troduction [17, 18, 19]. Yet surprisingly, there are no known approximation algorithms for it —
all previous results on this problem are heuristics that lack any non-trivial approximation guaran-
tees. Conversely, no strong hardness-of-approximation results for this problem are known, which
indicates a gap in the current state of knowledge.

Main results. Our contribution aims at closing the existing gap in solutions to the Nearest Neighbor
Condensing problem. We present a simple near-optimal approximation algorithm for this problem,
where our only structural assumption is that the points lie in some metric space. Define thescaled
marginγ < 1 of a sampleS as the ratio of the minimum distance between opposite labeled points
in S to the diameter ofS. Our algorithm produces a consistent setS′ ⊂ S of sized1/γeddim(S)+1

(Theorem 1), whereddim(S) is the doubling dimension of the spaceS. This result can significantly
speed up evaluation on test points, and also yields sharper and simpler generalization bounds than
were previously known (Theorem 3).

To establish optimality, we complement the approximation result with an almost matching
hardness-of-approximation lower-bound. Using a reduction from the Label Cover problem, we
show that the Nearest Neighbor Condensing problem is NP-hard to approximate within factor
2(ddim(S) log(1/γ))1−o(1)

(Theorem 2). Note that the above upper-bound is an absolute size guar-
antee, and stronger than an approximation guarantee.

Additionally, we present a simple heuristic to be applied inconjunction with the algorithm of Theo-
rem 1, that achieves further sample compression. The empirical performances of both our algorithm
and heuristic seem encouraging (see Section 4).

Related work. A well-studied problem related to the Nearest Neighbor Condensing problem is that
of extracting a small set of simple conjunctions consistentwith much of the sample, introduced by
[20] and shown by [21] to be equivalent to minimum Set Cover (see [22, 23] for further extensions).
This problem is monotone in the sense that adding a conjunction to the solution set can only increase
the sample accuracy of the solution. In contrast, in our problem the addition of a point ofS to S∗

can causeS∗ to be inconsistent — and this distinction is critical to the hardness of our problem.

Removal of points from the sample can also yield lower dimensionality, which itself implies faster
nearest neighbor evaluation and better generalization bounds. For metric spaces, [24] and [25] gave
algorithms for dimensionality reduction via point removal(irrespective of margin size).

The use of doubling dimension as a tool to characterize metric learning has appeared several times
in the literature, initially by [26] in the context of nearest neighbor classification, and then in [27]
and [28]. A series of papers by Gottlieb, Kontorovich and Krauthgamer investigate doubling spaces
for classification [12], regression [29], and dimension reduction [25].

k-nearest neighbor. A natural question is whether the Nearest Neighbor Condensing problem of
[13] has a direct analogue when the1-nearest neighbor rule is replaced by a(k > 1)-nearest neighbor
– that is, when the label of a point is determined by the majority vote among itsk nearest neighbors.
A simple argument shows that the analogy breaks down. Indeed, a minimal requirement for the
condensing problem to be meaningful is that the full (uncondensed) setS is feasible, i.e. consistent
with itself. Yet even fork = 3 there exist self-inconsistent sets. Take for example the set S consisting
of two positive points at(0, 1) and(0,−1) and two negative points at(1, 0) and(−1, 0). Then the
3-nearest neighbor rule misclassifies every point inS, henceS itself is inconsistent.
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Paper outline. This paper is organized as follows. In Section 2, we present our algorithm and prove
its performance bound, as well as the reduction implying itsnear optimality (Theorem 2). We then
highlight the implications of this algorithm for learning in Section 3. In Section 4 we describe a
heuristic which refines our algorithm, and present empirical results.

1.1 Preliminaries

Metric spaces. A metric d on a setX is a positive symmetric function satisfying the triangle
inequalityd(x, y) ≤ d(x, z) + d(z, y); together the two comprise the metric space(X , d). The
diameter of a setA ⊆ X , is defined bydiam(A) = supx,y∈A d(x, y). Throughout this paper we
will assume thatdiam(S) = 1; this can always be achieved by scaling.

Doubling dimension. For a metric(X , d), let λ be the smallest value such that every ball inX
of radiusr (for any r) can be covered byλ balls of radiusr

2 . The doubling dimensionof X is
ddim(X ) = log2 λ. A metric isdoublingwhen its doubling dimension is bounded. Note that while a
low Euclidean dimension implies a low doubling dimension (Euclidean metrics of dimensiond have
doubling dimensionO(d) [30]), low doubling dimension is strictly more general thanlow Euclidean
dimension. The following packing property can be demonstrated via a repetitive application of the
doubling property: For setS with doubling dimensionddim(X ) anddiam(S) ≤ β, if the minimum
interpoint distance inS is at leastα < β then

|S| ≤ dβ/αeddim(X )+1 (1)

(see, for example [8]). The above bound is tight up to constant factors, meaning there exist sets of
size(β/α)Ω(ddim(X )).

Nearest Neighbor Condensing. Formally, we define the Nearest Neighbor Condensing (NNC)
problem as follows: We are given a setS = S− ∪S+ of points, and distance metricd : S×S → R.
We must compute a minimal cardinality subsetS′ ⊂ S with the property that for anyp ∈ S, the
nearest neighbor ofp in S′ comes from the same subset{S+, S−} as doesp. If p has multiple exact
nearest neighbors inS′, then they must all be of the same subset.

Label Cover. The Label Cover problem was first introduced by [31] in a seminal paper on the
hardness of computation. Several formulations of this problem have appeared the literature, and we
give the description forwarded by [32]: The input is a bipartite graphG = (U, V, E), with two sets
of labels:A for U andB for V . For each edge(u, v) ∈ E (whereu ∈ U , v ∈ V ), we are given
a relationΠu,v ⊂ A × B consisting of admissible label pairs for that edge. Alabeling (f, g) is a
pair of functionsf : U → 2A andg : V → 2B\{∅} assigning a set of labels to each vertex. A
labelingcoversan edge(u, v) if for every labelb ∈ g(v) there is some labela ∈ f(u) such that
(a, b) ∈ Πu,v. The goal is to find a labeling that covers all edges, and whichminimizes the sum of
the number of labels assigned to eachu ∈ U , that is

∑
u∈U |f(u)|. It was shown in [32] that it is

NP-hard to approximate Label Cover to within a factor2(log n)1−o(1)

, wheren is the total size of the
input.

Learning. We work in theagnosticlearning model [33, 5]. The learner receivesn labeled examples
(Xi, Yi) ∈ X×{−1, 1} drawn iid according to some unknown probability distributionP. Associated
to anyhypothesish : X → {−1, 1} is its empirical error êrr(h) = n−1

∑
i∈[n] 1{h(Xi) 6=Yi} and

generalization errorerr(h) = P(h(X) 6= Y ).

2 Near-optimal approximation algorithm

In this section, we describe a simple approximation algorithm for the Nearest Neighbor Condensing
problem. In Section 2.1 we provide almost tight hardness-of-approximation bounds. We have the
following theorem:

Theorem 1. Given a point setS and its scaled marginγ < 1, there exists an algorithm that in time

min{n2, 2O(ddim(S))n log(1/γ)}

computes a consistent setS′ ⊂ S of size at mostd1/γeddim(S)+1.

Recall that anε-net of point setS is a subsetSε ⊂ S with two properties:

3



(i) Packing.The minimum interpoint distance inSε is at leastε.

(ii) Covering.Every pointp ∈ S has a nearest neighbor inSε strictly within distanceε.

We make the following observation: Since the margin of the point set isγ, aγ-net ofS is consistent
with S. That is, every pointp ∈ S has a neighbor inSγ strictly within distanceγ, and since the
margin ofS is γ, this neighbor must be of the same label set asp. By the packing property of
doubling spaces (Equation 1), the size ofSγ is at mostd1/γeddim(S)+1. The solution returned by
our algorithm isSγ , and satisfies the guarantees claimed in Theorem 1.

It remains only to compute the netSγ . A brute-force greedy algorithm can accomplish this in time
O(n2): For every pointp ∈ S, we addp to Sγ if the distance fromp to all points currently inSγ is
γ or greater,d(p, Sγ) ≥ γ. See Algorithm 1.

Algorithm 1 Brute-force net construction
Require: S
1: Sγ ← arbitrary point ofS
2: for all p ∈ S do
3: if d(p, Sγ) ≥ γ then
4: Sγ = Sγ ∪ {p}
5: end if
6: end for

The construction time can be improved by building anet hierarchy, similar to the one employed by
[8], in total time2O(ddim(S))n log(1/γ). (See also [34, 35, 36].) A hierarchy consists of all nets
S2i for i = 0,−1, . . . , blog γc, whereS2i ⊂ S2i−1 for all i > blog γc. Two pointsp, q ∈ S2i are
neighborsif d(p, q) < 4 · 2i. Further, each pointq ∈ S is a child of a single nearbyparentpoint
p ∈ S2i satisfyingd(p, q) < 2i. By the definition of a net, a parent point must exist. If two points
p, q ∈ S2i are neighbors (d(p, q) < 4 · 2i) then their respective parentsp′, q′ ∈ S2i+1 are necessarily
neighbors as well:d(p′, q′) ≤ d(p′, p) + d(p, q) + d(q, q′) < 2i+1 + 4 · 2i + 2i+1 = 4 · 2i+1.

The netS20 = S1 consists of a single arbitrary point. Having constructedS2i , it is an easy matter
to constructS2i−1 : Since we requireS2i−1 ⊃ S2i , we will initialize S2i−1 = S2i . For eachq ∈ S,
we need only to determine whetherd(q, S2i−1 ) ≥ 2i−1, and if so addq to S2i−1 . Crucially, we need
not compareq to all points ofS2i−1 : If there exists a pointp ∈ S2i with d(q, p) < 2i, then the
respective parentsp′, q′ ∈ S2i of p, q must be neighbors. Let setT include only the children ofq′

and ofq′’s neighbors. To determine the inclusion of everyq ∈ S in S2i−1 , it suffices to compute
whetherd(q, T ) ≥ 2i−1, and son such queries are sufficient to constructS2i−1 . The points ofT
have minimum distance2i−1 and are all contained in a ball of radius4 · 2i + 2i−1 centered atT , so
by the packing property (Equation 1)|T | = 2O(ddim(S)). It follows that the above queryd(q, T ) can
be answered in time2O(ddim(S)). For each point inS we executeO(log(1/γ)) queries, for a total
runtime of2O(ddim(S))n log(1/γ). The above procedure is illustrated in the Appendix.

2.1 Hardness of approximation of NNC

In this section, we prove almost matching hardness results for the NNC problem.

Theorem 2. Given a setS of labeled points with scaled marginγ, it is NP-hard to ap-
proximate the solution to the Nearest Neighbor Condensing problem onS to within a factor
2(ddim(S) log(1/γ))1−o(1)

.

To simplify the proof, we introduce an easier version of NNC called WeightedNearest Neighbor
Condensing (WNNC). In this problem, the input is augmented with a function assigning weight
to each point ofS, and the goal is to find a subsetS′ ⊂ S of minimum total weight. We will
reduce Label Cover to WNNC and then reduce WNNC to NNC (with some mild assumptions on
the admissible range of weights), all while preserving hardness of approximation. The theorem will
follow from the hardness of Label Cover [32].
First reduction. Given a Label Cover instance of sizem = |U |+|V |+|A|+|B|+|E|+

∑
e∈E |ΠE |,

fix large valuec to be specified later, and an infinitesimally small constantη. We create an instance
of WNNC as follows (see Figure 1).

1. We first create a pointp+ ∈ S+ of weight 1.
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Figure 1: Reduction from Label Cover to Nearest Neighbor Condensing.

We introduce setSE ⊂ S− representing edges inE: For each edgee ∈ E, create pointpe of
weight∞. The distance frompe to p+ is 3 + η.

2. We introduce setSV,B ⊂ S− representing pairs inV × B: For each vertexv ∈ V and label
b ∈ B, create pointpv,b of weight 1. If edgee is incident tov and there exists a label(a, b) ∈ Πe

for anya ∈ A, then the distance frompv,b to pe is 3.
Further add a pointp− ∈ S− of weight 1, at distance 2 from all points inSV,B.

3. We introduce setSL ⊂ S+ representing labels inΠe. For each edgee = (u, v) and labelb ∈ B
for which (a, b) ∈ Πe (for anya ∈ A), we create pointpe,b ⊂ SL of weight∞. pe,b represents
the set of labels(a, b) ∈ Πe over alla ∈ A. pe,b is at distance2 + η from pv,b.
Further add a pointp′+ ∈ S+ of weight 1, at distance2 + 2η from all points inSL.

4. We introduce setSU,A ⊂ S+ representing pairs inU × A: For each vertexu ∈ U and label
a ∈ A, create pointpu,a of weightc. For any edgee = (u, v) and labelb ∈ B, if (a, b) ∈ Πe

then the distance frompe,b ∈ SL to pu,a is 2.

The points of each setSE , SV,B, SL andSU,A are packed into respective balls of diameter 1. Fixing
any target doubling dimensionD = Ω(1) and recalling that the cardinality of each of these sets
is less thanm2, we conclude that the minimum interpoint distance in each ball is m−O(1/D). All
interpoint distances not yet specified are set to their maximum possible value. The diameter of the
resulting set is constant, so its scaled margin isγ = m−O(1/D). We claim that a solution of WNNC
on the constructed instance implies some solution of the Label Cover Instance:

1. p+ must appear in any solution: The nearest neighbors ofp+ are the negative points ofSE , so
if p+ is not included the nearest neighbor of setSE is necessarily the nearest neighbor ofp+,
which is not consistent.

2. Points inSE have infinite weight, so no points ofSE appear in the solution. All points ofSE

are at distance exactly3 + η from p+, hence each point ofSE must be covered by some point
of SV,B to which it is connected – other points inSV,B are farther than3 + η. (Note thatSV,B

itself can be covered by including the single pointp−.)
Choosing covering points inSV,B corresponds to assigning labels inB to vertices ofV in the
Label Cover instance.

3. Points inSL have infinite weight, so no points ofSL appear in the solution. Hence, eitherp′+
or some points ofSU,A must be used to cover points ofSL. Specifically, a point inSL ∈ S+

incident on an included point ofSV,B ∈ S− is at distance exactly2 + η from this point, and so
it must be covered by some point ofSU,A to which it is connected, at distance 2 – other points
in SU,A are farther than2 + η. Points ofSL not incident on an included point ofSV,B can be
covered byp′+, which at distance2 + 2η is still closer than any point inSV,B. (Note thatSU,A

itself can be covered by including a single arbitrary point of SU,A, which at distance 1 is closer
than all other point sets.)
Choosing the covering point inSU,A corresponds to assigning labels inA to vertices ofU in
the Label Cover instance, thereby inducing a valid labelingfor some edge and solving the Label
Cover problem.
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Now, a trivial solution to this instance of WNNC is to take allpoints ofSU,A, SV,B and the single
point p+: thenSE andp− are covered bySV,B, andSL andp′+ by SU,A. The size of the resulting
set isc|SU,A| + |SU,B| + 1, and this provides an upper bound on the optimal solution. Bysetting
c = m4 � m3 > m(|SU,B|+1), we ensure that the solution cost of WNNC is asymptotically equal
to the number of points ofSU,A included in its solution. This in turn is exactly the sum of labels
of A assigned to each vertex ofU in a solution to the Label Cover problem. Label Cover is hard
to approximate within a factor2(log m)1−o(1)

, implying that WNNC is hard to approximate within a
factor of2(log m)1−o(1)

= 2(D log(1/γ))1−o(1)

.

Before proceeding to the next reduction, we note that to ruleout the inclusion of points ofSE , SL

in the solution set, infinite weight is not necessary: It suffices to give each heavy point weightc2,
which is itself greater than the weight of the optimal solution by a factor of at leastm2. Hence, we
may assume all weights are restricted to the range[1, mO(1)], and the hardness result for WNNC
still holds.

Second reduction. We now reduce WNNC to NNC, assuming that the weights of then points
are in the range[1, mO(1)]. Let γ be the scaled margin of the WNNC instance. To mimic the
weight assignment of WNNC using the unweighted points of NNC, we introduce the following
gadget graphG(w, D): Given parameterw and doubling dimensionD, create a point setT of size
w whose interpoint distances are the same as those realized bya set of contiguous points on the
D-dimensional̀ 1-grid of side-lengthdw1/De. Now replace each pointp ∈ T by twin positive and
negative points at mutual distanceγ

2 , so that the distance from each twin replacingp to each twin
replacing anyq ∈ T is the same as the distance fromp to q. G(w, D) consists ofT , as well as
a single positive point at distancedw1/De from all positive points ofT , anddw1/De + γ

2 from all
negative points ofT , and a single negative point at distancedw1/De from all negative points ofT ,
anddw1/De+ γ

2 from all positive points ofT .

Clearly, the optimal solution to NNC on the gadget instance is to choose the two points not inT .
Further, if any single point inT is included in the solution, then all ofT must be included in the
solution: First the twin of the included point must also be included in the solution. Then, any point
at distance 1 from both twins must be included as well, along with its own twin. But then all points
within distance 1 of the new twins must be included, etc., until all points of T are found in the
solution.

To effectively assign weight to a positive point of NNC, we add a gadget to the point set, and place
all negative points of the gadget at distancedw1/De from this point. If the point is not included in
the NNC solution, then the cost of the gadget is only 2.2 But if this point is included in the NNC
solution, then it is the nearest neighbor of the negative gadget points, and so all the gadget points
must be included in the solution, incurring a cost ofw. A similar argument allows us to assign
weight to negative points of NNC. The scaled margin of the NNCinstance is of sizeΩ(γ/w1/D) =
Ω(γm−O(1/D)), which completes the proof of Theorem 2.

3 Learning

In this section, we apply Theorem 1 to obtain improved generalization bounds for binary classifica-
tion in doubling spaces. Working in the standard agnostic PAC setting, we take the labeled sample
S to be drawn iid from some unknown distribution overX × {−1, 1}, with respect to which all of
our probabilities will be defined. In a slight abuse of notation, we will blur the distinction between
S ⊂ X as a collection of points in a metric space andS ∈ (X × {−1, 1})n as a sequence of point-
label pairs. As mentioned in the preliminaries, there is no loss of generality in takingdiam(S) = 1.
Partitioning the sampleS = S+ ∪ S− into its positively and negatively labeled subsets, the margin
induced by the sample is given byγ(S) = d(S+, S−), whered(A, B) := minx∈A,x′∈B d(x, x′) for
A, B ⊂ X . Any labeled sampleS induces the nearest-neighbor classifierνS : X → {−1, 1} via

νS(x) =

{
+1 if d(x, S+) < d(x, S−)

−1 else.

2By scaling up all weights by a factor ofn2, we can ensure that the cost of all added gadgets (2n) is
asymptotically negligible.
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We say that̃S ⊂ S is ε-consistentwith S if 1
n

∑
x∈S 1{νS(x) 6=ν

S̃
(x)} ≤ ε. Forε = 0, anε-consistent

S̃ is simply said to beconsistent(which matches our previous notion of consistent subsets).A
sampleS is said to be(ε, γ)-separable(with witnessS̃) if there is anε-consistentS̃ ⊂ S with
γ(S̃) ≥ γ.

We begin by invoking a standard Occam-type argument to show that the existence of smallε-
consistent sets implies good generalization. The generalizing power of sample compression was
independently discovered by [37, 38], and later elaboratedupon by [39].
Theorem 3. For any distributionP, anyn ∈ N and any0 < δ < 1, with probability at least1 − δ
over the random sampleS ∈ (X × {−1, 1})n, the following holds:

(i) If S̃ ⊂ S is consistent withS, then err(νS̃) ≤
1

n− |S̃|

(
|S̃| log n + log n + log

1

δ

)
.

(ii) If S̃ ⊂ S isε-consistent withS, then err(νS̃) ≤
εn

n− |S̃|
+

√
|S̃| log n + 2 log n + log 1

δ

2(n− |S̃|)
.

Proof. Finding a consistent (resp.,ε-consistent)̃S ⊂ S constitutes asample compression scheme of
size|S̃|, as stipulated in [39]. Hence, the bounds in (i) and (ii) follow immediately from Theorems
1 and 2 ibid.

Corollary 1. With probability at least1 − δ, the following holds: IfS is (ε, γ)-separable with
witnessS̃, then

err(νS̃) ≤
εn

n− `
+

√
` log n + 2 log n + log 1

δ

2(n− `)
,

where` = d1/γeddim(S)+1.

Proof. Follows immediately from Theorems 1 and 3(ii).

Remark. It is instructive to compare the bound above to [12, Corollary 5]. Stated in the language
of this paper, the latter upper-bounds the NN generalization error in terms of the sample marginγ
andddim(X ) by

ε +

√
2

n
(dγ ln(34en/dγ) log2(578n) + ln(4/δ)), (2)

wheredγ = d16/γeddim(X )+1 andε is the fraction of the points inS that violate the margin condi-
tion (i.e., opposite-labeled point pairs less thanγ apart ind). Hence, Corollary 1 is a considerable im-
provement over (2) in at least three aspects. First, the data-dependentddim(S) may be significantly
smaller than the dimension of the ambient space,ddim(X ).3 Secondly, the factor of16ddim(X )+1

is shaved off. Finally, (2) relied on some fairly intricate fat-shattering arguments [40, 41], while
Corollary 1 is an almost immediate consequence of much simpler Occam-type results.

One limitation of Theorem 1 is that it requires the sample to be (0, γ)-separable. The form of the
bound in Corollary 1 suggests a natural Structural Risk Minimization (SRM) procedure: minimize
the right-hand size over(ε, γ). A solution to this problem was (essentially) given in [12, Theorem
7]:
Theorem 4. Let R(ε, γ) denote the right-hand size of the inequality in Corollary 1 and put
(ε∗, γ∗) = argminε,γ R(ε, γ). Then (i) One may compute(ε∗, γ∗) in O(n4.376) randomized time.
(ii) One may compute(ε̃, γ̃) satisfyingR(ε̃, γ̃) ≤ 4R(ε∗, γ∗) in O(ddim(S)n2 log n) deterministic
time. Both solutions yield a witness̃S ⊂ S of (ε, γ)-separability as a by-product.

Having thus computed the optimal (or near-optimal)ε̃, γ̃ with the corresponding witness̃S, we may
now run the algorithm furnished by Theorem 1 on the sub-sample S̃ and invoke the generalization
bound in Corollary 1. The latter holds uniformly over allε̃, γ̃.

3 In general,ddim(S) ≤ c ddim(X ) for some universal constantc, as shown in [24].
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4 Experiments

In this section we discuss experimental results. First, we will describe a simple heuristic built upon
our algorithm. The theoretical guarantees in Theorem 1 feature a dependence on the scaled margin
γ, and our heuristic aims to give an improved solution in the problematic case whereγ is small.
Consider the following procedure for obtaining a smaller consistent set. We first extract a netSγ

satisfying the guarantees of Theorem 1. We then remove points fromSγ using the following rule:
for all i ∈ {0, . . . dlog γe}, and for eachp ∈ Sγ , if the distance fromp to all opposite labeled points
in Sγ is at least2 · 2i, then remove fromSγ all points strictly within distance2i − γ of p (see
Algorithm 2). We can show that the resulting set is consistent:

Lemma 5. The above heuristic produces a consistent solution.

Proof. Consider a pointp ∈ Sγ , and assume without loss of generality thatp is positive. If
d(p, S−

γ ) ≥ 2 · 2i, then the positive net-points strictly within distance2i of p are closer top than to
any negative point inSγ , and are “covered” byp. The removed positive net-points at distance2i−γ
themselves cover other positive points ofS within distanceγ, butp covers these points ofS as well.
Further,p cannot be removed at a later stage in the algorithm, sincep’s distance from all remaining
points is at least2i − γ.

Algorithm 2 Consistent pruning heuristic
1: Sγ is produced by Algorithm 1 or its fast version (Appendix)
2: for all i ∈ {0, . . . , dlog γe} do
3: for all p ∈ Sγ do
4: if p ∈ S±

γ andd(p, S∓
γ ) ≥ 2 · 2i then

5: for all q 6= p ∈ Sγ with d(p, q) < 2i − γ do
6: Sγ ← Sγ\{q}
7: end for
8: end if
9: end for

10: end for

As a proof of concept, we tested our sample compression algorithms on several data sets from the
UCI Machine Learning Repository. These included the Skin Segmentation, Statlog Shuttle, and
Covertype sets.4 The final dataset features 7 different label types, which we treated as 21 separate
binary classification problems; we report results for labels 1 vs. 4, 4 vs. 6, and 4 vs. 7, and these
typify the remaining pairs. We stress that the focus of our experiments is to demonstrate that (i) a
significant amount of consistent sample compression is often possible and (ii) the compression does
not adversely affect the generalization error.

For each data set and experiment, we sampled equal sized learning and test sets, with equal repre-
sentation of each label type. TheL1 metric was used for all data sets. We report (i) the initial sample
set size, (ii) the percentage of points retained after the net extraction procedure of Algorithm 1, (iii)
the percentage retained after the pruning heuristic of Algorithm 2, and (iv) the change in predic-
tion accuracy on test data, when comparing the heuristic to the uncompressed sample. The results,
averaged over 500 trials, are summarized in Figure 2.

data set original sample % after net % after heuristic ±% accuracy
Skin Segmentation 10000 35.10 4.78 -0.0010
Statlog Shuttle 2000 65.75 29.65 +0.0080
Covertype 1 vs. 4 2000 35.85 17.70 +0.0200
Covertype 4 vs. 6 2000 96.50 69.00 -0.0300
Covertype 4 vs. 7 2000 4.40 3.40 0.0000

Figure 2: Summary of the performance of NN sample compression algorithms.

4 http://tinyurl.com/skin-data; http://tinyurl.com/shuttle-data;
http://tinyurl.com/cover-data
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