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Abstract

Spectral graph partitioning methods have received significant attention from both
practitioners and theorists in computer science. Some notable studies have been
carried out regarding the behavior of these methods for infinitely large sample size
(von Luxburg et al., 2008; Rohe et al., 2011), which provide sufficient confidence
to practitioners about the effectiveness of these methods. On the other hand, recent
developments in computer vision have led to a plethora of applications, where the
model deals with multi-way affinity relations and can be posed as uniform hyper-
graphs. In this paper, we view these models as random m-uniform hypergraphs
and establish the consistency of spectral algorithm in this general setting. We de-
velop a planted partition model or stochastic blockmodel for such problems using
higher order tensors, present a spectral technique suited for the purpose and study
its large sample behavior. The analysis reveals that the algorithm is consistent for
m-uniform hypergraphs for larger values of m, and also the rate of convergence
improves for increasing m. Our result provides the first theoretical evidence that
establishes the importance of m-way affinities.

1 Introduction

The central theme in approaches like kernel machines [1] and spectral clustering [2, 3] is the use
of symmetric matrices that encode certain similarity relations between pairs of data instances. This
allows one to use the tools of matrix theory to design efficient algorithms and provide theoretical
analysis for the same. Spectral graph theory [4] provides classic examples of this methodology,
where various hard combinatorial problems pertaining to graphs are relaxed to problems of matrix
theory. In this work, we focus on spectral partitioning, where the aim is to group the nodes of a graph
into disjoint sets using the eigenvectors of the adjacency matrix or the Laplacian operator. A statis-
tical framework for this partitioning problem is the planted partition or stochastic blockmodel [5].
Here, one assumes the existence of an unknown map that partitions the nodes of a random graph,
and the probability of occurrence of any edge follows the partition rule. In a recent work, Rohe et
al. [6] studied normalized spectral clustering under the stochastic blockmodel and proved that, for
this method, the fractional number of misclustered nodes goes to zero as the sample size grows.

However, recent developments in signal processing, computer vision and statistical modeling have
posed numerous problems, where one is interested in computing multi-way similarity functions that
compute similarity among more than two data points. A few applications are listed below.
Example 1. In geometric grouping, one is required to cluster points sampled from a number of
geometric objects or manifolds [7]. Usually, these objects are highly overlapping, and one cannot
use standard distance based pairwise affinities to retrieve the desired clusters. Hence, one needs to
construct multi-point similarities based on the geometric structure. A special case is the subspace
clustering problem encountered in motion segmentation [7], face clustering [8] etc.
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Example 2. The problem of point-set matching [9] underlies several problems in computer vision
including image registration, object recognition, feature tracking etc. The problem is often formu-
lated as finding a strongly connected component in a uniform hypergraph [9, 10], where the strongly
connected component represents the correct matching. This formulation has the flavor of the stan-
dard problem of detecting cliques in random graphs.

Both of the above problems are variants of the classic hypergraph partitioning problem, that arose in
the VLSI community [11] in 1980s, and has been an active area of research till date [12]. Spectral ap-
proaches for hypergraph partitioning also exist in the literature [13, 14, 15], and various definitions of
the hypergraph Laplacian matrix has been proposed based on different criteria. Recent studies [16]
suggest an alternative representation of uniform hypergraphs in terms of the “affinity tensor”. Ten-
sors have been popular in machine learning and signal processing for a considerable time (see [17]),
and have even found use in graph partitioning and detecting planted partitions [17, 18]. But their
role in hypergraph partitioning have been mostly overlooked in the literature. Recently, techniques
have emerged in computer vision that use such affinity tensors in hypergraph partitioning [8, 9].

This paper provides the first consistency result on uniform hypergraph partitioning by analyzing the
spectral decomposition of the affinity tensor. The main contributions of this work are the following.
(1) We propose a planted partition model for random uniform hypergraphs similar to that of
graphs [5]. We show that the above examples are special cases of the proposed partition model.
(2) We present a spectral technique to extract the underlying partitions of the model. This method
relies on a spectral decomposition of tensors [19] that can be computed in polynomial time, and
hence, it is computationally efficient than the tensorial approaches in [10, 8].
(3) We analyze the proposed approach and provide almost sure bounds on the number of misclus-
tered nodes. Our analysis reveals that the presented method is consistent almost surely in the group-
ing problem and for detection of a strongly connected component, whenever one uses m-way affini-
ties for any m ≥ 3 and m ≥ 4, respectively. The derived rate of convergence also shows that the
use of higher order affinities lead to a faster decay in the number of misclustered nodes.
(4) We numerically demonstrate the performance of the approach on benchmark datasets.

2 Planted partitions in random uniform hypergraphs

We describe the planted partition model for an undirected unweighted graph. Let ψ : {1, . . . , n} →
{1, . . . , k} be an (unknown) partition of n nodes into k disjoint groups, i.e., ψi = ψ(i) denotes the
partition in which node-i belongs. We also define an assignment matrix Zn ∈ {0, 1}n×k such that
(Zn)ij = 1 if j = ψi, and 0 otherwise. For some unknown symmetric matrix B ∈ [0, 1]k×k, the
random graph on the n nodes contains the edge (i, j) with probability Bψiψj

. Let the symmetric
matrix An ∈ {0, 1}n×n be a realization of the affinity matrix of the random graph on n nodes. The
aim is to identify Zn given the matrix An. In some cases, one also needs to estimate the entries in
B. One can hope to achieve this goal for the following reason: IfAn ∈ Rn×n contains the expected
values of the entries in An conditioned on B and ψ, then one can write An as An = ZnBZ

T
n [6].

Thus, if one can find An, then this relation can be used to find Zn.

We generalize the partition model to uniform hypergraphs. A hypergraph is a structure on n nodes
with multi-way connections or hyperedges. Formally, each hyperedge in an undirected unweighted
hypergraph is a collection of an arbitrary number of vertices. A special case is that of m-uniform
hypergraph, where each hyperedge contains exactly m nodes. One can note that a graph is a 2-
uniform hypergraph. An often cited example of uniform hypergraph is as follows [10]. Let the
nodes be representative of points in an Euclidean space, where a hyperedge exists if the points
are collinear. For m = 2, we obtain a complete graph that does not convey enough information
about the nodes. However, for m = 3, the constructed hypergraph is a union of several connected
components, each component representing a set of collinear points. The affinity relations of an m-
uniform hypergraph can be represented in the form of an mth-order tensor An ∈ {0, 1}n×n×...×n,
which we call an affinity tensor. The entry (An)i1...im = 1 if there exists a hyperedge on nodes
i1, . . . , im. One can observe that the tensor is symmetric, i.e., invariant under any permutation of
indices. In some works [16], the tensor is scaled by a factor of 1/(m− 1)! for certain reasons.

Let ψ and Zn be as defined above, and B ∈ [0, 1]k×...×k be an mth-order k-dimensional symmetric
tensor. The random m-uniform hypergraph on the n nodes is constructed such that a hyperedge
occurs on nodes i1, . . . , im with probability Bψi1

...ψim
. If An is a random affinity tensor of the
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hypergraph, our aim is to find Zn or ψ from An. Notice that if An ∈ Rn×...×n contains the
expected values of the entries in An, then one can write the entries in An as

(An)i1...im = Bψi1
...ψim

=

k∑
j1,...,jm=1

Bj1...jm(Zn)i1j1 . . . (Zn)imjm . (1)

The subscript n in the above terms emphasizes their dependence on the number of nodes. We now
describe how two standard applications in computer vision can be formulated as the problem of
detecting planted partitions in uniform hypergraphs.

2.1 Subspace clustering problem

In motion segmentation [7, 20] or illumination invariant face clustering [8], the data belong to a
high dimensional space. However, the instances belonging to each cluster approximately span a
low-dimensional subspace (usually, of dimension 3 or 4). Here, one needs to check whether m
points approximate such a subspace, where this information is useful only when m is larger than the
dimension of the underlying subspace of interest. The model can be represented as an m-uniform
hypergraph, where a hyperedge occurs on m nodes whenever they approximately span a subspace.

The partition model for this problem is similar to the standard four parameter blockmodel [6]. The
number of partitions is k, and each partition contains s nodes, i.e., n = ks. There exists probabilities
p ∈ (0, 1] and q ∈ [0, p) such that any set of m vectors span a subspace with probability p if all m
vectors belong to the same group, and with probability q if they come from different groups. Thus,
the tensor B has the form Bi...i = p for all i = 1, . . . , k, and Bi1...im = q for all the other entries.

2.2 Point set matching problem

We consider a simplified version of the matching problem [10], where one is given two sets of
points of interest, each of size s. In practice, these points may come from two different images
of the same object or scene, and the goal is to match the corresponding points. One can see that
there are s2 candidate matches. However, if one considers m correct matches then certain properties
are preserved. For instance, let i1, . . . , im be some points from the first image, and i′1, . . . , i

′
m be

the corresponding points in the second image, then the angles or ratio of areas of triangles formed
among these points are more or less preserved [9]. Thus, the set of matches (i1, i

′
1), . . . , (im, i

′
m)

have a certain connection, which is usually not present if the matches are not exact.

The above model is an m-uniform hypergraph on n = s2 nodes, each node representing a candi-
date match, and a hyperedge is formed if properties (like preservation of angles) is satisfied by m
candidate matches. Here, one can see that there are only s =

√
n correct matches, which have a

large number of hyperedges among them, whereas very few hyperedges may be present for other
combinations. Thus, the partition model has two groups of size

√
n and (n−

√
n), respectively. For

p, q ∈ [0, 1], p� q, p denotes the probability of a hyperedge among m correct matches and for any
other m candidates, there is a hyperedge with probability q. Thus, if the first partition is the strongly
connected component, then we have B ∈ [0, 1]2×...×2 with B1...1 = p and Bi1...im = q otherwise.

3 Spectral partitioning algorithm and its consistency

Before presenting the algorithm, we provide some background on spectral decomposition of tensors.
In the related literature, one can find a number of significantly different characterizations of the
spectral properties of tensors. While the work in [16] builds on a variational characterization, De
Lathauwer et al. [19] provide an explicit decomposition of a tensor in the spirit of the singular
value decomposition of matrices. The second line of study is more appropriate for our work since
our analysis significantly relies on the use of Davis-Kahan perturbation theorem [21] that uses an
explicit decomposition, and has been often used to analyze spectral clustering [2, 6].

The work in [19] provides a way of expressing any mth-order n-dimensional symmetric tensor,
An, as a mode-k product [19] of a certain core tensor with m orthonormal matrices, where each
orthonormal matrix is formed from the orthonormal left singular vectors of Ân ∈ {0, 1}n×n

m−1

,
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whose entries, for all i = 1, . . . , n and j = 1, . . . , nm−1, are defined as

(Ân)ij = (An)i1i2...im , if i = i1 and j = 1 +

m∑
l=2

(il − 1)nl−2 . (2)

The above matrix Ân, often called the mode-1 flattened matrix, forms a key component of the
partitioning algorithm. Later, we show that the leading k left singular vectors of Ân contain infor-
mation about the true partitions in the hypergraph. It is easier to work with the symmetric matrix
Wn = ÂnÂ

T
n ∈ Rn×n, whose eigenvectors correspond to the left singular vectors of Ân. The

spectral partitioning algorithm is presented in Algorithm 1, which is quite similar to the normalized
spectral clustering [2]. Such a tensor based approach was first studied in [7] for geometric group-
ing. Subsequent improvements of the algorithm were proposed in [22, 20]. However, we deviate
from these methods as we do not normalize the rows of the eigenvector matrix. The method in [9]
also uses the largest eigenvector of the flattened matrix for the point set matching problem. This is
computed via tensor power iterations. To keep the analysis simple, we do not use such iterations.
The complexity of Algorithm 1 is O(nm+1), which can be significantly improved using sampling
techniques as in [7, 9, 20]. The matrix Dn is used for normalization as in spectral clustering.

Algorithm 1 Spectral partitioning of m-uniform hypergraph

1. From the mth-order affinity tensor An, construct Ân using (2).

2. Let Wn = ÂnÂ
T
n , and Dn ∈ Rn×n be diagonal with (Dn)ii =

∑n
j=1(Wn)ij .

3. Set Ln = D
−1/2
n WnD

−1/2
n .

4. Compute leading k orthonormal eigenvectors of Ln, denoted by matrix Xn ∈ Rn×k.
5. Cluster the rows of Xn into k clusters using k-means clustering.
6. Assign node-i of hypergraph to jth partition if ith row of Xn is grouped in jth cluster.

An alternative technique of using eigenvectors of Laplacian matrix is often preferred in graph par-
titioning [3], and has been extended to hypergraphs [13, 15]. Unlike the flattened matrix, Ân, in
Algorithm 1, such Laplacians do not preserve the spectral properties of a higher-order structure such
as the affinity tensor that accurately represents the affinities of the hypergraph. Hence, we avoid the
use of hypergraph Laplacian.

3.1 Consistency of above algorithm

We now comment on the error incurred by Algorithm 1. For this, let Mn be the set of nodes that
are incorrectly clustered by Algorithm 1. It is tricky to formalize the definition of Mn in clustering
problems. We follow the definition of Mn given in [6] that requires some details of the analysis
and hence, a formal definition is postponed till Section 4. In addition, we need the following terms.
The analysis depends on the tensor B ∈ [0, 1]k×...×k of the underlying random model. Let B̂ ∈
[0, 1]k×k

m−1

be the flattening of tensor B using (2). We also define a matrix Cn ∈ Rk×k as

Cn = (ZTn Zn)1/2B̂(ZTn Zn)⊗(m−1)B̂T (ZTn Zn)1/2, (3)

where (ZTn Zn)⊗(m−1) is the (m − 1)-times Kronecker product of ZTn Zn with itself. Use of such
Kronecker product is quite common in tensor decompositions (see [19]). Observe that the positive
semi-definite matrix Cn contains information regarding the connectivity of clusters (stored in B)
and the cluster sizes (diagonal entries of ZTn Zn). Let λk(Cn) be the smallest eigenvalue of Cn,
which is non-negative. In addition, define Dn ∈ Rn×n as the expectation of the diagonal matrix
Dn. One can see that (Dn)ii ≤ nm for all i = 1, . . . , n. Let Dn and Dn be the smallest and largest
values in Dn. Also, let Sn and Sn be the sizes of the smallest and largest partitions, respectively.
We have the following bound on the number of misclustered nodes.
Theorem 1. If there exists N such that for all n > N ,

δn :=

(
λk(Cn)

Dn
− 2nm−1

Dn

)
> 0 and Dn ≥ nm(m− 1)!

√
2

log n
,
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and if (log n)3/2 = o
(
δnn

m−1
2

)
, then the number of misclustered nodes

|Mn| = O

(
Sn(log n)2nm+1

δ2nD
2
n

)
almost surely.

The above result is too general to provide conclusive remarks about consistency of the algorithm.
Hence, we focus on two examples, precisely the ones described in Sections 2.1 and 2.2. However,
without loss of generality, we assume here that q > 0 since otherwise, the problem of detecting the
partitions is trivial (at least for reasonably large n) as we can construct the partitions only based on
the presence of hyperedges. The following results are proved in the appendix. The proofs mainly
depend on computation of λk(Cn), which can be derived for the first example, while for the second,
it is enough to work with a lower bound of λk(Cn). Further, in the first example, we make the result
general by allowing the number of clusters, k, to grow with n under certain conditions.

Corollary 2. Consider the setting of subspace clustering described in Section 2.1. If the number
of clusters k satisfy k = O

(
n

1
2m (log n)−1

)
, then the conditions in Theorem 1 are satisfied and

|Mn| = O

(
k2m−1(log n)2

nm−2

)
= O

(
(log n)3−2m

nm−3+
1

2m

)
almost surely. Hence, for m > 2, |Mn| → 0

a.s. as n→∞, i.e., the algorithm is consistent. For m = 2, we can only conclude
|Mn|
n
→ 0 a.s.

From the above result, it is evident that the rate of convergence improves as m increases, indicating
that, ignoring practical considerations, one should prefer the use of higher order affinities. How-
ever, the condition of number of clusters becomes more strict in such cases. We note here that our
result and conditions are quite similar to those given in [6] for the case of four-parameter block-
model. Thus, Algorithm 1 is comparable to spectral clustering [6]. Next, we consider the setting of
Section 2.2.

Corollary 3. For the problem of point set matching described in Section 2.2, the conditions in

Theorem 1 are satisfied for m ≥ 3 and |Mn| = O

(
(log n)2

nm−3

)
a.s. Hence, for m > 3, |Mn| → 0

a.s. as n→∞, i.e., the algorithm is consistent. For m = 3, we can only conclude
|Mn|
n
→ 0 a.s.

The above result shows, theoretically, why higher order matching provides high accuracy in prac-
tice [9]. It also suggests that increase in the order of tensor will lead to a better convergence rate.
We note that the following result does not hold for graphs (m = 2). In Corollary 3, we used the fact
that the smaller partition is of size s =

√
n. The result can be made more general in terms of s, i.e.,

for m > 4, if s ≥ 3p
q3 eventually, then Algorithm 1 is consistent.

Before providing the detailed analysis (proof of Theorem 1), we briefly comment on the model
considered here. In Section 2, we have followed the lines of [6] to define the model with An =
ZnBZ

T
n . However, this would mean that the diagonal entries in An are non-negative, and hence,

there is a non-zero probability of formation of self loops that is not common in practice. The same
issue exists for hypergraphs. To avoid this, one can add a correction term to An so that the entries
with repeated indices become zero. Under this correction, conditions in Theorem 1 should not
change significantly. This is easy to verify for graphs, but it is not straightforward for hypergraphs.

4 Analysis of partitioning algorithm

In this section, we prove Theorem 1. The result follows from a series of lemmas. The proof requires
defining certain terms. Let Ân be the flattening of the tensor An defined in (1). Then we can
write Ân = ZnB̂(ZTn )⊗(m−1), where (ZTn )⊗(m−1) is (m − 1)-times Kronecker product of ZTn
with itself. Along with the definitions in Section 3, letWn ∈ Rn×n be the expectation of Wn, and

Ln = D−1/2n WnD−1/2n . One can see thatWn can be written asWn = ÂnÂn
T

+ Pn, where Pn is
a diagonal matrix defined in terms of the entries in Ân. The proof contains the following steps:
(1) For any fixed n, we show that if δn > 0 (stated in Theorem 1), the leading k orthonormal
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eigenvectors of Ln has k distinct rows, where each row is a representative of a partition.
(2) Since, Ln is not the expectation of Ln, we derive a bound on the Frobenius norm of their
difference. The bound holds almost surely for all n if eventually Dn ≥ nm(m− 1)!

√
2

logn .
(3) We use a version of Davis-Kahan sin-Θ theorem given in [6] that almost surely bounds the
difference in the leading eigenvectors of Ln and Ln if (log n)3/2 = o

(
δnn

m−1
2

)
.

(4) Finally, we rely on [6, Lemma 3.2], which holds in our case, to define the set of misclustered
nodes Mn, and its size is bounded almost surely using the previously derived bounds.

We now present the statements for the above results. The proofs can be found in the appendix.
Lemma 4. Fix n and let δn be as defined in Theorem 1. If δn > 0, then there exists µn ∈ Rk×k such
that the columns of Znµn are the leading k orthonormal eigenvectors of Ln. Moreover, for nodes i
and j, ψi = ψj if and only if the ith and jth rows of Znµn are identical.

Thus, clustering the rows of Znµn into k clusters will provide the true partitions, and the cluster
centers will precisely be these rows. The condition δn > 0 is required to ensure that the eigenvalues
corresponding to the columns of Znµn are strictly greater than other eigenvalues. The requirement
of a positive eigen-gap is essential for analysis of any spectral partitioning method [2, 23]. Next, we
focus on deriving the upper bound for ‖Ln − Ln‖F .

Lemma 5. If there exists N such that Dn ≥ nm(m− 1)!
√

2
logn for all n > N , then

‖Ln − Ln‖F ≤
4n

m+1
2 log n

Dn
, almost surely. (4)

The condition in the above result implies that each vertex is reasonably connected to other vertices
of the hypergraph, i.e., there are no outliers. It is easy to satisfy this condition in the stated examples
as Dn ≥ q2nm and hence, it holds for all q > 0. Under the condition, one can also see that the

bound in (4) is O
(

(logn)3/2

n
m−1

2

)
and hence goes to zero as n increases. Note that in Lemma 4, δn > 0

need not hold for all n, but if it holds eventually, then we can choose N such that the conditions in
Lemmas 4 and 5 both hold for all n > N . Under such a case, we use the Davis-Kahan perturbation
theorem [21] as stated in [6, Theorem 2.1] to claim the following.
Lemma 6. Let Xn ∈ Rn×k contain the leading k orthonormal eigenvectors of Ln. If (log n)3/2 =

o
(
δnn

m−1
2

)
and there exists N such that δn > 0 and Dn ≥ nm(m − 1)!

√
2

logn for all n > N ,

then there exists an orthonormal (rotation) matrix On ∈ Rk×k such that

‖Xn − ZnµnOn‖F ≤
16n

m+1
2 log n

δnDn
, almost surely. (5)

The condition (log n)3/2 = o
(
δnn

m−1
2

)
is crucial as it ensures that the difference in eigenvalues

of Ln and Ln decays much faster than the eigen-gap in Ln. This condition requires the eigen-gap
(lower bounded by δn) to decay at a relatively slow rate, and is necessary for using [6, Theorem 2.1].
The bound (5) only says that rows of Xn converges to some rotation of the rows of Znµn. However,
this is not an issue since the k-means algorithm is expected to perform well as long as the rows of
Xn corresponding to each partition are tightly clustered, and the k clusters are well-separated. Now,
let z1, . . . , zn be the rows of Zn, and let ci be the center of the cluster in which ith row of Xn is
grouped for each i ∈ {1, . . . , n}. We use a key result from [6] that is applicable in our setting.
Lemma 7. [6, Lemma 3.2] For the matrix On from Lemma 6, if ‖ci − ziµnOn‖2 < 1√

2Sn

, then

‖ci − ziµnOn‖2 < ‖ci − zjµnOn‖2 for all zj 6= zi.

This result hints that one may use the definition of correct clustering as follows. Node-i is correctly
clustered if its center ci is closer to ziµnOn than the rows corresponding to other partitions. A suffi-
cient condition to satisfy this definition is ‖ci − ziµnOn‖2 < 1√

2Sn

. Hence, the set of misclustered

nodes is defined as [6]

Mn =

{
i ∈ {1, . . . , n} : ‖ci − ziµnOn‖2 ≥

1√
2Sn

}
. (6)
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It is easy to see that if Mn is empty, i.e., all nodes satisfy the condition ‖ci − ziµnOn‖2 < 1√
2Sn

,

then the clustering leads to true partitions, and does not incur any error. Hence, for statements, where
|Mn| is small (at least compared to n), one can always use such a definition for misclustered nodes.
The next result provides a simple bound on |Mn|, that immediately leads to Theorem 1.
Lemma 8. If the k-means algorithm achieves its global optimum, then the set Mn satisfies

|Mn| ≤ 8Sn‖Xn − ZnµnOn‖2F . (7)

In practice, k-means algorithm tries to find a local minimum, and hence, one should run this step
with multiple initializations to achieve a global minimum. However, empirically we found that
good performance is achieved even if we use a single run of k-means. From above lemma, it is
straightforward to arrive at Theorem 1 by using the bound in Lemma 6.

5 Experiments

5.1 Validation of Corollaries 2 and 3

We demonstrate the claims of Corollaries 2 and 3, where we stated that for higher order tensors, the
number of misclustered nodes decays to zero at a faster rate. We run Algorithm 1 on both the models
of subspace clustering and point-set matching, varying the number of nodes n, the results for each n
being averaged over 10 trials. For the clustering model (Section 2.1), we choose p = 0.6, q = 0.4,
and consider two cases of k = 2 and 3 cluster problems. Figure 1 (top row) shows that in this model,
the number of errors eventually decreases for all m, even m = 2. This observation is similar to the
one in [6]. However, the decrease is much faster for m = 3, where accurate partitioning is often
observed for n ≥ 100. We also observe that error rises for larger k, thus validating the dependence
of the bound on k. A similar inference can be drawn from Figure 1 (second row) for the matching
problem (Section 2.2), where we use p = 0.9, q = 0.1 and the number of correct matches as

√
n.

5.2 Motion Segmentation on Hopkins 155 dataset

We now turn to practical applications, and test the performance of Algorithm 1 in motion segmenta-
tion. We perform the experiments on the Hopkins 155 dataset [24], which contains 120 videos with
2 independent affine motions. Figure 1 (third row) shows two cases, where Algorithm 1 correctly
clusters the trajectories into their true groups. We used 4th-order tensors in the approach, where the
large dimensionality of Ân is tackled by using only 500 uniformly sampled columns of Ân for com-
puting Wn. We also compare the performance of Algorithm 1, averaged over 20 runs, with some
standard approaches. The results for other methods have been taken from [20]. We observe that Al-
gorithm 1 performs reasonably well, while the best performance is obtained using Sparse Grassmann
Clustering (SGC) [20], which is expected as SGC is an iterative improvement of Algorithm 1.

5.3 Matching point sets from the Mpeg-7 shape database

We now consider a matching problem using points sampled from images in Mpeg-7 database [25].
This problem has been considered in [10]. We use 70 random images, one from each shape class.
Ten points were sampled from the boundary of each shape, which formed one point set. The other
set of points was generated by adding Gaussian noise of variance σ2 to the original points and then
using a random affine transformation on the points. In Figure 1 (last row), we compare performance
of Algorithm 1 with the methods in [9, 10], which have been shown to outperform other methods.
We use 4-way similarities based on ratio of areas of two triangles. We show the variation in the
number of correctly detected matches and the F1-score for all methods as σ increases from 0 to
0.2. The results show that Algorithm 1 is quite robust compared to [10] in detecting true matches.
However, Algorithm 1 does not use additional post-processing as in [9], and hence, allows high
number of false positives that reduces F1-score, whereas [9, 10] show similar trends in both plots.

6 Concluding remarks

In this paper, we presented a planted partition model for unweighted undirected uniform hyper-
graphs. We devised a spectral approach (Algorithm 1) for detecting the partitions from the affinity
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The plots show variation in the
number (left) and fraction (right)
of misclustered nodes as n in-
creases in k = 2 and 3 clus-
ter problems for 2 and 3-uniform
hypergraphs. Black lines are for
m = 2 and red for m = 3. Solid
lines for k = 2, and dashed lines
for k = 3.

The plots show variation in num-
ber (left) and fraction (right) of
incorrect matches as n increases
in matching problem for 2 and
3-uniform hypergraphs. Black
lines are for m = 2 and red for
m = 3.

Percentage error in clustering
LSA 4.23 %
SCC 2.89 %

LRR-H 2.13 %
LRSC 3.69 %
SSC 1.52 %
SGC 1.03 %

Algorithm 1 1.83 %

Figure 1: First row: Number of misclustered nodes in clustering problem as n increases.
Second row: Number of misclustered nodes in matching problem as n increases.
Third row: Grouping two affine motions with Algorithm 1 (left), and performance comparison of
Algorithm 1 with other methods (right).
Fourth row: Variation in number of correct matches detected (left) and F1-score (middle) as noise
level, σ increases. (right) A pair of images where Algorithm 1 correctly matches all sampled points.

tensor of the corresponding random hypergraph. The above model is appropriate for a number of
problems in computer vision including motion segmentation, illumination-invariant face clustering,
point-set matching, feature tracking etc. We analyzed the approach to provide an almost sure upper
bound on the number of misclustered nodes (c.f. Theorem 1). Using this bound, we conclude that
for the problems of subspace clustering and point-set matching, Algorithm 1 is consistent form ≥ 3
and m ≥ 4, respectively. To the best of our knowledge, this is the first theoretical study of the above
problems in a probabilistic setting, and also the first theoretical evidence that shows importance of
m-way affinities.
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