Scalable Nonlinear Learning with
Adaptive Polynomial Expansions

Alekh Agarwal Alina Beygelzimer
Microsoft Research Yahoo! Labs
alekha@microsoft.com beygel@yahoo-inc.com
Daniel Hsu John Langford Matus Telgarsky*
Columbia University Microsoft Research Rutgers University

djhsul@cs.columbia.edu jcl@microsoft.com mtelgars@cs.ucsd.edu

Abstract

Can we effectively learn a nonlinear representation in time comparable to linear
learning? We describe a new algorithm that explicitly and adaptively expands
higher-order interaction features over base linear representations. The algorithm
is designed for extreme computational efficiency, and an extensive experimental
study shows that its computation/prediction tradeoff ability compares very favor-
ably against strong baselines.

1 Introduction

When faced with large datasets, it is commonly observed that using all the data with a simpler
algorithm is superior to using a small fraction of the data with a more computationally intense but
possibly more effective algorithm. The question becomes: What is the most sophisticated algorithm
that can be executed given a computational constraint?

At the largest scales, Naive Bayes approaches offer a simple, easily distributed single-pass algo-
rithm. A more computationally difficult, but commonly better-performing approach is large scale
linear regression, which has been effectively parallelized in several ways on real-world large scale
datasets [|1,]2]. Is there a modestly more computationally difficult approach that allows us to com-
monly achieve superior statistical performance?

The approach developed here starts with a fast parallelized online learning algorithm for linear mod-
els, and explicitly and adaptively adds higher-order interaction features over the course of training,
using the learned weights as a guide. The resulting space of polynomial functions increases the
approximation power over the base linear representation at a modest increase in computational cost.

Several natural folklore baselines exist. For example, it is common to enrich feature spaces with n-
grams or low-order interactions. These approaches are naturally computationally appealing, because
these nonlinear features can be computed on-the-fly avoiding I/O bottlenecks. With I/O bottlenecked
datasets, this can sometimes even be done so efficiently that the additional computational complexity
is negligible, so improving over this baseline is quite challenging.

The design of our algorithm is heavily influenced by considerations for computational efficiency, as
discussed further in Section 2] Several alternative designs are plausible but fail to provide adequate
computation/prediction tradeoffs or even outperform the aforementioned folklore baselines. An
extensive experimental study in Section[3|compares efficient implementations of these baselines with

*This work was performed while MT was visiting Microsoft Research, NYC.

Relative error vs time tradeoff

1.0 H B linear
B quadratic
08 B cubic

g 06l <> apple(0.125)|

g <> apple(0.25)

2 o0.4f 8 < apple(0.5)

ﬁ @ apple(0.75)
0.21 N 4 @ apple(1.0)
0.0f ‘ 3]

02 10° 107 10?

relative time

Figure 1: Computation/prediction tradeoff points using non-adaptive polynomial expansions and
adaptive polynomial expansions (apple). The markers are positioned at the coordinate-wise me-
dian of (relative error, relative time) over 30 datasets, with bars extending to 25th and 75th
percentiles. See Section [3|for definition of relative error and relative time used here.

the proposed mechanism and gives strong evidence of the latter’s dominant computation/prediction
tradeoff ability (see Figure[I]for an illustrative summary).

Although it is notoriously difficult to analyze nonlinear algorithms, it turns out that two aspects
of this algorithm are amenable to analysis. First, we prove a regret bound showing that we can
effectively compete with a growing feature set. Second, we exhibit simple problems where this
algorithm is effective, and discuss a worst-case consistent variant. We point the reader to the full
version [3]] for more details.

Related work. This work considers methods for enabling nonlinear learning directly in a highly-
scalable learning algorithm. Starting with a fast algorithm is desirable because it more naturally
allows one to improve statistical power by spending more computational resources until a compu-
tational budget is exhausted. In contrast, many existing techniques start with a (comparably) slow
method (e.g., kernel SVM [4]], batch PCA [3]], batch least-squares regression [3]]), and speed it up by
sacrificing statistical power, often just to allow the algorithm to run at all on massive data sets.

A standard alternative to explicit polynomial expansions is to employ polynomial kernels with the
kernel trick [6]. While kernel methods generally have computation scaling at least quadratically
with the number of training examples, a number of approximations schemes have been developed to
enable a better tradeoff. The Nystrom method (and related techniques) can be used to approximate
the kernel matrix while permitting faster training [4]. However, these methods still suffer from the
drawback that the model size after n examples is typically O(n). As a result, even single pass online
implementations [7] typically suffer from O(n?) training and O(n) testing time complexity.

Another class of approximation schemes for kernel methods involves random embeddings into a
high (but finite) dimensional Euclidean space such that the standard inner product there approxi-
mates the kernel function [[8+11]. Recently, such schemes have been developed for polynomial ker-
nels [9H11]] with computational scaling roughly linear in the polynomial degree. However, for many
sparse, high-dimensional datasets (such as text data), the embedding of [10] creates dense, high di-
mensional examples, which leads to a substantial increase in computational complexity. Moreover,
neither of the embeddings from [9,|10] exhibits good statistical performance unless combined with
dense linear dimension reduction [11]], which again results in dense vector computations. Such fea-
ture construction schemes are also typically unsupervised, while the method proposed here makes
use of label information.

Among methods proposed for efficiently learning polynomial functions [[12H16]], all but [13] are
batch algorithms. The method of [[13]] uses online optimization together with an adaptive rule for
creating interaction features. A variant of this is discussed in Section [2] and is used in the experi-
mental study in Section |3|as a baseline.

Algorithm 1 Adaptive Polynomial Expansion (apple)

input Initial features S; = {x1,..., x4}, expansion sizes (s), epoch schedule (1), stepsizes (7).

1: Initial weights w; := 0, initial epoch k := 1, parent set P; := ().

2: fort=1,2,...:do

3: Receive stochastic gradient g,.

4: Update weights: w11 := wy — Nt[gy]s,

where [-]s, denotes restriction to monomials in the feature set Sy.

5. ift = 7, then
Let M, C Sj, be the top s;, monomials m(x) € Sy, such that m(z) ¢ Py, ordered from
highest-to-lowest by the weight magnitude in w; 4.
7: Expand feature set: Sy11 := S U{z; -m(x):i € [d],m(x) € My}, and

Piy1:= P, U{m(x) : m(x) € My}.

a

8: k:=k+1.
9: endif
10: end for

2 Adaptive polynomial expansions

This section describes our new learning algorithm, apple.

2.1 Algorithm description

The pseudocode is given in Algorithm|[I] The algorithm proceeds as stochastic gradient descent over
the current feature set to update a weight vector. At specified times 7%, the feature set .S, is expanded
to Si+1 by taking the top monomials in the current feature set, ordered by weight magnitude in the
current weight vector, and creating interaction features between these monomials and x. Care is
exercised to not repeatedly pick the same monomial for creating higher order monomial by tracking
a parent set P, the set of all monomials for which higher degree terms have been expanded. We
provide more intuition for our choice of this feature growing heuristic in Section[2.3]

There are two benefits to this staged process. Computationally, the stages allow us to amortize the
cost of the adding of monomials—which is implemented as an expensive dense operation—over
several other (possibly sparse) operations. Statistically, using stages guarantees that the monomials
added in the previous stage have an opportunity to have their corresponding parameters converge.
We have found it empirically effective to set s;, := average||[g;]s, ||, and to update the feature set
at a constant number of equally-spaced times over the entire course of learning. In this case, the
number of updates (plus one) bounds the maximum degree of any monomial in the final feature set.

2.2 Shifting comparators and a regret bound for regularized objectives

Standard regret bounds compare the cumulative loss of an online learner to the cumulative loss of a
single predictor (comparator) from a fixed comparison class. Shifting regret is a more general notion
of regret, where the learner is compared to a sequence of comparators wy, us, . .., ur.

Existing shifting regret bounds can be used to loosely justify the use of online gradient descent
methods over expanding feature spaces [17]. These bounds are roughly of the form ZtT:l fe(wy) —
fe(ue) S /T3, p [lug — weqq ||, where u, is allowed to use the same features available to w,
and f; is the convex cost function in step t. This suggests a relatively high cost for a substantial
total change in the comparator, and thus in the feature space. Given a budget, one could either do a
liberal expansion a small number of times, or opt for including a small number of carefully chosen
monomials more frequently. We have found that the computational cost of carefully picking a small
number of high quality monomials is often quite high. With computational considerations at the
forefront, we will prefer a more liberal but infrequent expansion. This also effectively exposes the
learning algorithm to a large number of nonlinearities quickly, allowing their parameters to jointly
converge between the stages.

It is natural to ask if better guarantees are possible under some structure on the learning problem.
Here, we consider the stochastic setting (rather than the harsher adversarial setting of [17]), and

further assume that our objective takes the form
f(w) = E[¢((w,zy))] + N|w|?/2, (D)

where the expectation is under the (unknown) data generating distribution D over (x,y) € S x R,
and ¢ is some convex loss function on which suitable restrictions will be placed. Here .S is such
that S; C Sy C ... C S, based on the largest degree monomials we intend to expand. We assume
that in round ¢, we observe a stochastic gradient of the objective f, which is typically done by first
sampling (2, y:) ~ D and then evaluating the gradient of the regularized objective on this sample.

This setting has some interesting structural implications over the general setting of online learning
with shifting comparators. First, the fixed objective f gives us a more direct way of tracking the
change in comparator through f(u:) — f(usy1), which might often be milder than ||u; — wst1]|-
In particular, if u; = argming,es, f(u) in epoch k, for a nested subspace sequence Sy, then we
immediately obtain f(wu;+1) < f(u:). Second, the strong convexity of the regularized objective
enables the possibility of faster O(1/T') rates than prior work [17]]. Indeed, in this setting, we obtain
the following stronger result. We use the shorthand E;[-] to denote the conditional expectation at
time ¢, conditioning over the data from rounds 1,...,¢ — 1.

Theorem 1. Let a distribution over (x,y), twice differentiable convex loss { with £ > 0 and
max{¢',¢"} < 1, and a regularization parameter A > 0 be given. Recall the definition (1) of
the objective f. Let (wy,g,)i>1 be as specified by apple with step size 1, == 1/(A(t + 1)), where
Ei(lgils.,) = [Vf(wi)]s,, and S is the support set corresponding to epoch k; at time t in
apple. Then for any comparator sequence (u;):2, satisfying w; € S(y), for any fixed T > 1,

X+ ()| 1 <<X2 + (X + m>2)
Zthl(t+2) “T+1 2)2 ’

where X > maxy |y || and D > max; max{||w:||, [|u }-

E (f(wT+1)

Quite remarkably, the result exhibits no dependence on the cumulative shifting of the comparators
unlike existing bounds [|17]]. This is the first result of this sort amongst shifting bounds to the best of
our knowledge, and the only one that yields 1/7 rates of convergence even with strong convexity. Of
course, we limit ourselves to the stochastic setting, and prove expected regret guarantees on the final
predictor wr as opposed to a bound on Zle f(w)/T. A curious distinction is our comparator,
which is a weighted average of f(u;) as opposed to the more standard uniform average. Recalling
that f(u41) < f(uy) in our setting, this is a strictly harder benchmark than an unweighted average
and overemphasizes the later comparator terms which are based on larger support sets. Indeed, this
is a nice compromise between competing against wz, which is the hardest yardstick, and w1, which
is what a standard non-shifting analysis compares to. Indeed our improvement can be partially
attributed to the stability of the averaged f values as opposed to just f(ur) (more details in [3])).
Overall, this result demonstrates that in our setting, while there is generally a cost to be paid for
shifting the comparator too much, it can still be effectively controlled in favorable cases. One
problem for future work is to establish these fast 1/7T rates also with high probability.

Note that the regret bound offers no guidance on how or when to select new monomials to add.

2.3 Feature expansion heuristics

Previous work on learning sparse polynomials [|13]] suggests that it is possible to anticipate the utility
of interaction features before even evaluating them. For instance, one of the algorithms from [|13]]
orders monomials m () by an estimate of E[r(x)2m(z)2]/E[m(x)2], where r(x) = Ely|x] — f(x)
is the residual of the current predictor f (for least-squares prediction of the label y). Such an index
is shown to be related to the potential error reduction by polynomials with m () as a factor. We call
this the SSM heuristic (after the authors of [[13]], though it differs from their original algorithm).

Another plausible heuristic, which we use in Algorithm [I} simply orders the monomials in Sy by
their weight magnitude in the current weight vector. We can justify this weight heuristic in the
following simple example. Suppose a target function E[y|x] is just a single monomial in @, say,
m(x) := [];cps i for some M C [d], and that « has a product distribution over {0, 1}¢ with 0 <
E[z;] =: p < 1/2foralli € [d]. Suppose we repeatedly perform 1-sparse regression with the current

feature set S, and pick the top weight magnitude monomial for inclusion in the parent set Pyy1. It
is easy to show that the weight on a degree £ sub-monomial of m () in this regression is p!MI=£ and
the weight is strictly smaller for any term which is not a proper sub-monomial of m(x). Thus we
repeatedly pick the largest available sub-monomial of m(x) and expand it, eventually discovering
m(x). After k stages of the algorithm, we have at most kd features in our regression here, and
hence we find m(ax) with a total of d|M| variables in our regression, as opposed to d!™! which
typical feature selection approaches would need. This intuition can be extended more generally to
scenarios where we do not necessarily do a sparse regression and beyond product distributions, but
we find that even this simplest example illustrates the basic motivations underlying our choice—we
want to parsimoniously expand on top of a base feature set, while still making progress towards a
good polynomial for our data.

2.4 Fall-back risk-consistency

Neither the SSM heuristic nor the weight heuristic is rigorously analyzed (in any generality). Despite
this, the basic algorithm apple can be easily modified to guarantee a form of risk consistency,
regardless of which feature expansion heuristic is used. Consider the following variant of the support
update rule in the algorithm apple. Given the current feature budget s;, we add s — 1 monomials
ordered by weight magnitudes as in Step (7| We also pick a monomial m(x) of the smallest degree
such that m(x) ¢ Py. Intuitively, this ensures that all degree 1 terms are in Py after d stages,
all degree 2 terms are in Py after K = O(d?) stages and so on. In general, it is easily seen that
k = O(d"") ensures that all degree £ — 1 monomials are in P, and hence all degree £ monomials
are in Si. For ease of exposition, let us assume that sy, is set to be a constant s independent of k.
Then the total number of monomials in P, when k& = O(d*~') is O(sd*~!), which means the total
number of features in Sy, is O(sd").

Suppose we were interested in competing with all y-sparse polynomials of degree £. The most direct
approach would be to consider the explicit enumeration of all monomials of degree up to ¢, and then
perform ¢;-regularized regression [18]] or a greedy variable selection method such as OMP [[19] as
means of enforcing sparsity. This ensures consistent estimation with n = O(ylogd’) = O(y/¢logd)
examples. In contrast, we might need n = O(~(¢logd + log s)) examples in the worst case using
this fall back rule, a minor overhead at best. However, in favorable cases, we stand to gain a lot when
the heuristic succeeds in finding good monomials rapidly. Since this is really an empirical question,
we will address it with our empirical evaluation.

3 Experimental study

We now describe of our empirical evaluation of apple.

3.1 Implementation, experimental setup, and performance metrics

In order to assess the effectiveness of our algorithm, it is critical to build on top of an efficient
learning framework that can handle large, high-dimensional datasets. To this end, we implemented
apple in the Vowpal Wabbit (henceforth VW) open source machine learning softwarg’} VW is a
good framework for us, since it also natively supports quadratic and cubic expansions on top of the
base features. These expansions are done dynamically at run-time, rather than being stored and read
from disk in the expanded form for computational considerations. To deal with these dynamically
enumerated features, VW uses hashing to associate features with indices, mapping each feature to a
b-bit index, where b is a parameter. The core learning algorithm is an online algorithm as assumed
in apple, but uses refinements of the basic stochastic gradient descent update (e.g., [[20-23])).

We implemented apple such that the total number of epochs was always 6 (meaning 5 rounds of
adding new features). At the end of each epoch, the non-parent monomials with largest magnitude
weights were marked as parents. Recall that the number of parents is modulated at s* for some
a > 0, with s being the average number of non-zero features per example in the dataset so far. We
will present experimental results with different choices of a, and we found o = 1 to be a reliable

Please see https://github.com/JohnLangford/vowpal_ wabbit| and the associated git
repository, where —stage_poly and related command line options execute apple.

https://github.com/JohnLangford/vowpal_wabbit

w
=]
w
o

g win linear . ""_......-._: ";‘;T\ s ’g)‘ g
S 25| — quadratic =25 :
S === cubic E] B
€ , IS =
a 20 [app|e : 8 20 E
- --= apple-best H - = g H
w e g LLE = [H .
§ o] ssm L R ; H] 15 S JFIET e linear
= wn = - "
k] ssm-best : © : quadratic
3 : S H cubic
51 : 5 10 = 4 i apple
— = .
3 : g H --- apple-best
E E S L ssm
c - E TN c _:' I ssm-best
55 -i0 0. 0.0 05 10 s 01 * 10 100
relative error relative time
() (b)

Figure 2: Dataset CDFs across all 30 datasets: (a) relative test error, (b) relative training time (log
scale). {apple, ssm} refer to the o« = 1 default; {apple, ssm}-best picks best « per dataset.

default. Upon seeing an example, the features are enumerated on-the-fly by recursively expanding
the marked parents, taking products with base monomials. These operations are done in a way to
respect the sparsity (in terms of base features) of examples which many of our datasets exhibit.

Since the benefits of nonlinear learning over linear learning themselves are very dataset dependent,
and furthermore can vary greatly for different heuristics based on the problem at hand, we found it
important to experiment with a large testbed consisting of a diverse collection of medium and large-
scale datasets. To this end, we compiled a collection of 30 publicly available datasets, across a num-
ber of KDDCup challenges, UCI repository and other common resources (detailed in the appendix).
For all the datasets, we tuned the learning rate for each learning algorithm based on the progressive
validation error (which is typically a reliable bound on test error) [24]]. The number of bits in hashing
was set to 18 for all algorithms, apart from cubic polynomials, where using 24 bits for hashing was
found to be important for good statistical performance. For each dataset, we performed a random
split with 80% of the data used for training and the remainder for testing. For all datasets, we used
squared-loss to train, and 0-1/squared-loss for evaluation in classification/regression problems. We
also experimented with ¢; and /5 regularization, but these did not help much. The remaining settings
were left to their VW defaults.

For aggregating performance across 30 diverse datasets, it was important to use error and running
time measures on a scale independent of the dataset. Let ¢, q and c refer to the test errors of linear,
quadratic and cubic baselines respectively (with 1in, quad, and cubic used to denote the baseline
algorithms themselves). For an algorithm alg, we compute the relative (test) error:

err(alg) — min(¢, q, c)

relerr(alg) = ; (2)

max(ﬁ, 9, C) - min(ﬁ, 9, C)
where min (¥, q, c) is the smallest error among the three baselines on the dataset, and max (¥, q, c)
is similarly defined. We also define the relative (training) time as the ratio to running time of 1lin:
rel time(alg) = time(alg)/time(1lin). With these definitions, the aggregated plots of relative
errors and relative times for the various baselines and our methods are shown in Figure 2] For each
method, the plots show a cumulative distribution function (CDF) across datasets: an entry (a, b)
on the left plot indicates that the relative error for b datasets was at most a. The plots include the
baselines 1in, quad, cubic, as well as a variant of apple (called ssm) that replaces the weight
heuristic with the SSM heuristic, as described in Section For apple and ssm, the plot shows
the results with the fixed setting of & = 1, as well as the best setting chosen per dataset from
a € {0.125,0.25,0.5,0.75, 1} (referred to as apple-best and ssm-best).

3.2 Results

In this section, we present some aggregate results. Detailed results with full plots and tables are
presented in the appendix. In the Figure Ja), the relative error for all of 1in, quad and cubic is

< 121| m linear . T 12 :
> . i > H
=] — quadratic o b o = H
© . = L =
S 10 cubic - i S 10 S eeeseeseead
£ wi apple B : g : .
o H] H linear
= 8 apple-best H = g = .
) H Ju) H quadratic
(] = [= .
9 : 3 H === cubic
86 H S 6 H
S H] H i apple
© = el =
B = le-best
5 4 - : S 4 : apple-bes
= H = — H
@ - H 9]
Q z = Qo
€ 2 P T IO G GG € 2 e
3 H =1 .
111 W C | suEF Jeeeeesccsccccccscsssssssssssssssssd :
0 o)
=15 -1.0 —-0.5 0.0 0.5 1.0 1.5 10 100
relative error relative time
(@) (b)

Figure 3: Dataset CDFs across 13 datasets where time(quad) > 2time(1lin): (a) relative test error,
(b) relative training time (log scale).

always to the right of O (due to the definition of rel err). In this plot, a curve enclosing a larger area
indicates, in some sense, that one method uniformly dominates another. Since apple uniformly
dominates ssm statistically (with only slightly longer running times), we restrict the remainder of
our study to comparing apple to the baselines 1in, quad and cubic. We found that on 12 of the
30 datasets, the relative error was negative, meaning that apple beats all the baselines. A relative
error of 0.5 indicates that we cover at least half the gap between min(¢, q, c) and max(¢, g, c). We
find that we are below 0.5 on 27 out of 30 datasets for apple-best, and 26 out of the 30 datasets for
the setting « = 1. This is particularly striking since the error min(¥, q, c) is attained by cubic on
a majority of the datasets (17 out of 30), where the relative error of cubic is 0. Hence, statistically
apple often outperforms even cubic, while typically using a much smaller number of features. To
support this claim, we include in the appendix a plot of the average number of features per example
generated by each method, for all datasets. Overall, we find the statistical performance of apple
from Figure [2]to be quite encouraging across this large collection of diverse datasets.

The running time performance of apple is also extremely good. Figure[2[b) shows that the running
time of apple is within a factor of 10 of 1in for almost all datasets, which is quite impressive
considering that we generate a potentially much larger number of features. The gap between 1in
and apple is particularly small for several large datasets, where the examples are sparse and high-
dimensional. In these cases, all algorithms are typically I/O-bottlenecked, which is the same for all
algorithms due to the dynamic feature expansions used. It is easily seen that the statistically efficient
baseline of cubic is typically computationally infeasible, with the relative time often being as large
as 102 and 10° on the biggest dataset. Overall, the statistical performance of apple is competitive
with and often better than min(¢, g, c), and offers a nice intermediate in computational complexity.

A surprise in Figure [2b) is that quad appears to computationally outperform apple for a relatively
large number of datasets, at least in aggregate. This is due to the extremely efficient implementation
of quad in VW: on 17 of 30 datasets, the running time of quad is less than twice that of 1in. While
we often statistically outperform quad on many of these smaller datasets, we are primarily interested
in the larger datasets where the relative cost of nonlinear expansions (as in quad) is high.

In Figure 3] we restrict attention to the 13 datasets where time(quad)/time(1in) > 2. On these
larger datasets, our statistical performance seems to dominate all the baselines (at least in terms
of the CDFs, more on individual datasets will be said later). In terms of computational time, we
see that we are often much better than quad, and cubic is essentially infeasible on most of these
datasets. This demonstrates our key intuition that such adaptively chosen monomials are key to
effective nonlinear learning in large, high-dimensional datasets.

We also experimented with picky algorithms of the sort mentioned in Section 2.2] We tried the
original algorithm from [13|], which tests a candidate monomial before adding it to the feature set Sy,
rather than just testing candidate parent monomials for inclusion in Pj; and also a picky algorithm
based on our weight heuristic. Both algorithms were extremely computationally expensive, even
when implemented using VW as a base: the explicit testing for inclusion in S}, (on a per-example

- Relative error, ordered by average nonzero features per example 1o? _Relative time, ordered by average nonzero features per example

linear
quadratic
cubic
apple(0.125) 10°
apple(0.25)
apple(0.5)
apple(0.75)
apple(1.0) 10!

b L L, W L

0
rcvl nomao year 20news slice cup98 10 rcvl nomao year 20news slice cup98

(a) (b)

-
-
-
—

!
e
==
-

Figure 4: Comparison of different methods on the top 6 datasets by non-zero features per example:
(a) relative test errors, (b) relative training times.

lin lin + apple | bigram | bigram + apple
Test AUC 0.81664 0.81712 0.81757 0.81796
Training time (in s) 1282 2727 2755 7378

Table 1: Test error and training times for different methods in a large-scale distributed setting. For
{1lin,bigram} + apple, we used o = 0.25.

basis) caused too much overhead. We ruled out other baselines such as polynomial kernels for
similar computational reasons.

To provide more intuition, we also show individual results for the top 6 datasets with the highest
average number of non-zero features per example—a key factor determining the computational cost
of all approaches. In Figure] we show the performance of the 1in, quad, cubic baselines, as well
as apple with 5 different parameter settings in terms of relative error (Figure[(a)) and relative time
(Figure [[(b)). The results are overall quite positive. We see that on 3 of the datasets, we improve
upon all the baselines statistically, and even on other 3 the performance is quite close to the best of
the baselines with the exception of the cup 98 dataset. In terms of running time, we find cubic to be
extremely expensive in all the cases. We are typically faster than quad, and in the few cases where
we take longer, we also obtain a statistical improvement for the slight increase in computational
cost. In conclusion, on larger datasets, the performance of our method is quite desirable.

Finally, we also implemented a parallel version of our algorithm, building on the repeated averaging
approach [2}25]], using the built-in AllReduce communication mechanism of VW, and ran an ex-
periment using an internal advertising dataset consisting of approximately 690M training examples,
with roughly 318 non-zero features per example. The task is the prediction of c1lick/no-click
events. The data was stored in a large Hadoop cluster, split over 100 partitions. We implemented the
lin baseline, using 5 passes of online learning with repeated averaging on this dataset, but could
not run full quad or cubic baselines due to the prohibitive computational cost. As an intermediate,
we generated bigram features, which only doubles the number of non-zero features per example.
We parallelized apple as follows. In the first pass over the data, each one of the 100 nodes locally
selects the promising features over 6 epochs, as in our single-machine setting. We then take the
union of all the parents locally found across all nodes, and freeze that to be the parent set for the rest
of training. The remaining 4 passes are now done with this fixed feature set, repeatedly averaging
local weights. We then ran apple, on top of both 1in as well as bigram as the base features to
obtain maximally expressive features. The test error was measured in terms of the area under ROC
curve (AUC), since this is a highly imbalanced dataset. The error and time results, reported in Ta-
ble [T} show that using nonlinear features does lead to non-trivial improvements in AUC, albeit at
an increased computational cost. Once again, this should be put in perspective with the full quad
baseline, which did not finish in over a day on this dataset.

Acknowledgements: We thank Leon Bottou, Rob Schapire and Dean Foster for helpful discussions.

References

(1]

(2]

(3]

(4]

(5]

(6]
(71

(8]

(9]
(10]

(1]
[12]

[13]

(14]
(15]

[16]

(17]
(18]

(19]

[20]

[21]

(22]

(23]
[24]

[25]

(26]

[27]

I. Mukherjee, K. Canini, R. Frongillo, and Y. Singer. Parallel boosting with momentum. In Proceedings
of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery
in Databases, 2013.

A. Agarwal, O. Chapelle, M. Dudik, and J. Langford. A reliable effective terascale linear learning system.
Journal of Machine Learning Research, 15(Mar):1111-1133, 2014.

A. Agarwal, A. Beygelzimer, D. Hsu, J. Langford, and M. Telgarsky. Scalable nonlinear learning with
adaptive polynomial expansions. 2014. arXiv:1410.0440 [cs.LG].

C. Williams and M. Seeger. Using the Nystrom method to speed up kernel machines. In Advances in
Neural Information Processing Systems 13, 2001.

M. W. Mahoney. Randomized algorithms for matrices and data. Foundations and Trends in Machine
Learning, 3(2):123-224, 2011.

B. Scholkopf and A. Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.

A. Bordes, S. Ertekin, J. Weston, and L. Bottou. Fast kernel classifiers with online and active learning.
Journal of Machine Learning Research, 6:1579-1619, 2005.

A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Advances in Neural
Information Processing Systems 20, 2008.

P. Kar and H. Karnick. Random feature maps for dot product kernels. In AISTATS, 2012.

N. Pham and R. Pagh. Fast and scalable polynomial kernels via explicit feature maps. In Proceedings of
the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2013.

R. Hamid, A. Gittens, Y. Xiao, and D. Decoste. Compact random feature maps. In /ICML, 2014.

A. G. Ivakhnenko. Polynomial theory of complex systems. Systems, Man and Cybernetics, IEEE Trans-
actions on, SMC-1(4):364-378, 1971.

T. D. Sanger, R. S. Sutton, and C. J. Matheus. Iterative construction of sparse polynomial approximations.
In Advances in Neural Information Processing Systems 4, 1992.

A. T. Kalai, A. Samorodnitsky, and S.-H. Teng. Learning and smoothed analysis. In FOCS, 2009.

A. Andoni, R. Panigrahy, G. Valiant, and L. Zhang. Learning sparse polynomial functions. In SODA,
2014.

A. G. Dimakis, A. Klivans, M. Kocaoglu, and K. Shanmugam. A smoothed analysis for learning sparse
polynomials. CoRR, abs/1402.3902, 2014.

M. Zinkevich. Online convex programming and generalized infinitesimal gradient ascent. In /ICML, 2003.

R. Tibshirani. Regression shrinkage and selection via the lasso. J. Royal. Statist. Soc B., 58(1):267-288,
1996.

J. A. Tropp and A. C. Gilbert. Signal recovery from random measurements via orthogonal matching
pursuit. /IEEE Transactions on Information Theory, 53(12):4655-4666, December 2007.

J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning and stochastic
optimization. The Journal of Machine Learning Research, 12:2121-2159, 2011.

H. B. McMahan and M. J. Streeter. Adaptive bound optimization for online convex optimization. In
COLT, pages 244-256, 2010.

N. Karampatziakis and J. Langford. Online importance weight aware updates. In UAI, pages 392-399,
2011.

S. Ross, P. Mineiro, and J. Langford. Normalized online learning. In UAZ, 2013.

A. Blum, A. Kalai, and J. Langford. Beating the hold-out: Bounds for k-fold and progressive cross-
validation. In COLT, 1999.

K. Hall, S. Gilpin, and G. Mann. Mapreduce/bigtable for distributed optimization. In Workshop on
Learning on Cores, Clusters, and Clouds, 2010.

S. Bubeck. Theory of convex optimization for machine learning. 2014. arXiv:1405.4980
[math.OC].

O. Shamir and T. Zhang. Stochastic gradient descent for non-smooth optimization: Convergence results
and optimal averaging schemes. In ICML, 2013.

