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Abstract

We study agnostic active learning, where the goal is to learn a classifier in a pre-
specified hypothesis class interactively with as few label queries as possible, while
making no assumptions on the true function generating the labels. The main al-
gorithm for this problem is disagreement-based active learning, which has a high
label requirement. Thus a major challenge is to find an algorithm which achieves
better label complexity, is consistent in an agnostic setting, and applies to general
classification problems.

In this paper, we provide such an algorithm. Our solution is based on two novel
contributions; first, a reduction from consistent active learning to confidence-rated
prediction with guaranteed error, and second, a novel confidence-rated predictor.

1 Introduction

In this paper, we study active learning of classifiers in an agnostic setting, where no assumptions
are made on the true function that generates the labels. The learner has access to a large pool of
unlabelled examples, and can interactively request labels for a small subset of these; the goal is to
learn an accurate classifier in a pre-specified class with as few label queries as possible. Specifically,
we are given a hypothesis class H and a target €, and our aim is to find a binary classifier in H
whose error is at most e more than that of the best classifier in H, while minimizing the number of
requested labels.

There has been a large body of previous work on active learning; see the surveys by [10, 28] for
overviews. The main challenge in active learning is ensuring consistency in the agnostic setting
while still maintaining low label complexity. In particular, a very natural approach to active learning
is to view it as a generalization of binary search [17, 9, 27]. While this strategy has been extended
to several different noise models [23, 27, 26], it is generally inconsistent in the agnostic case [11].

The primary algorithm for agnostic active learning is called disagreement-based active learning.
The main idea is as follows. A set V}, of possible risk minimizers is maintained with time, and the
label of an example x is queried if there exist two hypotheses hq and ho in Vi such that hy (z) #
ha(x). This algorithm is consistent in the agnostic setting [7, 2, 12, 18, 5, 19, 6, 24]; however, due
to the conservative label query policy, its label requirement is high. A line of work due to [3, 4, 1]
have provided algorithms that achieve better label complexity for linear classification on the uniform
distribution over the unit sphere as well as log-concave distributions; however, their algorithms are
limited to these specific cases, and it is unclear how to apply them more generally.

Thus, a major challenge in the agnostic active learning literature has been to find a general active
learning strategy that applies to any hypothesis class and data distribution, is consistent in the agnos-
tic case, and has a better label requirement than disagreement based active learning. This has been
mentioned as an open problem by several works, such as [2, 10, 4].



In this paper, we provide such an algorithm. Our solution is based on two key contributions, which
may be of independent interest. The first is a general connection between confidence-rated pre-
dictors and active learning. A confidence-rated predictor is one that is allowed to abstain from
prediction on occasion, and as a result, can guarantee a target prediction error. Given a confidence-
rated predictor with guaranteed error, we show how to to construct an active label query algorithm
consistent in the agnostic setting. Our second key contribution is a novel confidence-rated predictor
with guaranteed error that applies to any general classification problem. We show that our predictor
is optimal in the realizable case, in the sense that it has the lowest abstention rate out of all predictors
guaranteeing a certain error. Moreover, we show how to extend our predictor to the agnostic setting.

Combining the label query algorithm with our novel confidence-rated predictor, we get a general
active learning algorithm consistent in the agnostic setting. We provide a characterization of the label
complexity of our algorithm, and show that this is better than the bounds known for disagreement-
based active learning in general. Finally, we show that for linear classification with respect to the
uniform distribution and log-concave distributions, our bounds reduce to those of [3, 4].

2 Algorithm

2.1 The Setting

We study active learning for binary classification. Examples belong to an instance space X, and
their labels lie in a label space )V = {—1, 1}; labelled examples are drawn from an underlying data
distribution D on X’ X ). We use Dy to denote the marginal on D on X, and Dy |x to denote the
conditional distribution on Y'|X = x induced by D. Our algorithm has access to examples through
two oracles — an example oracle / which returns an unlabelled example € X drawn from Dy and
a labelling oracle O which returns the label y of an input x € X drawn from Dy x.

Given a hypothesis class H of VC dimension d, the error of any h € H with respect to a
data distribution IT over X' x Y is defined as errri(h) = P )on(h(z) # y). We define:
h*(II) = argmin,,c,errrr(h), v*(II) = errp(h*(II)). For a set S, we abuse notation and use S
to also denote the uniform distribution over the elements of S. We define Pri(-) := P, )~ri(-),
En(-) == Eqy)~n(").

Given access to examples from a data distribution D through an example oracle ¢/ and a labeling
oracle O, we aim to provide a classifier h € H such that with probability > 1 — 4, eer(E) <
v*(D) + ¢, for some target values of e and J; this is achieved in an adaptive manner by making
as few queries to the labelling oracle O as possible. When v*(D) = 0, we are said to be in the
realizable case; in the more general agnostic case, we make no assumptions on the labels, and thus
v*(D) can be positive.

Previous approaches to agnostic active learning have frequently used the notion of disagreements.
The disagreement between two hypotheses h; and ho with respect to a data distribution IT is
the fraction of examples according to II to which h; and h, assign different labels; formally:
prr(h1, ha2) = P yy~ri(hi(z) # ha(z)). Observe that a data distribution IT induces a pseudo-
metric pr; on the elements of #; this is called the disagreement metric. For any r and any h € H,
define By (h, r) to be the disagreement ball of radius r around h with respect to the data distribution
IL. Formally: Bri(h,r) = {h' € H : pru(h, ') <r}.

For notational simplicity, we assume that the hypothesis space is “dense” with repsect to the data
distribution D, in the sense that Vr > 0, Sup,e g, (D), PD (R, h* (D)) = 7. Our analysis will
still apply without the denseness assumption, but will be significantly more messy. Finally, given a
set of hypotheses V' C H, the disagreement region of V is the set of all examples x such that there
exist two hypotheses hq, ho € V for which h(x) # ha(z).

This paper establishes a connection between active learning and confidence-rated predictors with
guaranteed error. A confidence-rated predictor is a prediction algorithm that is occasionally al-
lowed to abstain from classification. We will consider such predictors in the transductive setting.
Given a set V' of candidate hypotheses, an error guarantee 7, and a set U of unlabelled examples,
a confidence-rated predictor P either assigns a label or abstains from prediction on each unlabelled



x € U. The labels are assigned with the guarantee that the expected disagreement! between the
label assigned by P and any i € V is < 7. Specifically,

forallh € V, P, y(h(z)# P(z),P(z) #0) <n ()

This ensures that if some h* € V is the true risk minimizer, then, the labels predicted by P on U do
not differ very much from those predicted by h*. The performance of a confidence-rated predictor
which has a guarantee such as in Equation (1) is measured by its coverage, or the probability of
non-abstention P,y (P(x) # 0); higher coverage implies better performance.

2.2 Main Algorithm

Our active learning algorithm proceeds in epochs, where the goal of epoch k is to achieve excess
generalization error ¢;, = ¢2F0~*+1 by querying a fresh batch of labels. The algorithm maintains a
candidate set V}, that is guaranteed to contain the true risk minimizer.

The critical decision at each epoch is how to select a subset of unlabelled examples whose labels
should be queried. We make this decision using a confidence-rated predictor P. At epoch k, we run
P with candidate hypothesis set V' = V}, and error guarantee 17 = ¢, /64. Whenever P abstains, we
query the label of the example. The number of labels m, queried is adjusted so that it is enough to
achieve excess generalization error € 1.

An outline is described in Algorithm 1; we next discuss each individual component in detail.

Algorithm 1 Active Learning Algorithm: Outline

1: Inputs: Example oracle U, Labelling oracle O, hypothesis class 7 of VC dimension d,
confidence-rated predictor P, target excess error € and target confidence .

2: Set kg = [log 1/€]. Initialize candidate set V; = H.

3: fork=1,2,..kp do

4: Set e, = 62k07k+1, O = m.

5: Call U to generate a fresh unlabelled sample Uy = {zk1,...,2kn,} Of size ny =
192(22)?(dIn 192(%2)% +1In 2%9).

6: Run confidence-rated predictor P with inpuy V' = Vi, U = U and error guarantee
1 = €, /64 to get abstention probabilities vk 1, .. ., Vk.n, on the examples in Uy. These

probabilities induce a distribution I', on Uy, Let ¢, = Py, (P(z) =0) = n% S Yk
7: if in the Realizable Case then
8: Let my = 15224)"‘ (dln 15‘22% + In $8). Draw my, i.i.d examples from I';, and query

O for labels of these examples to get a labelled data set S;. Update Vi1 using Sk:
Vir1 :={h € Vi : h(z) =y, forall (z,y) € Sk}

9: else
10: In the non-realizable case, use Algorithm 2 with inputs hypothesis set V},, distribution
Iy, target excess error 82’; , target confidence %, and the labeling oracle O to get a new

hypothesis set Vi, 1.
11: return an arbitrary / € Vieo+1-

Candidate Sets. At epoch k, we maintain a set V}, of candidate hypotheses guaranteed to contain
the true risk minimizer h* (D) (w.h.p). In the realizable case, we use a version space as our candidate
set. The version space with respect to a set .S of labelled examples is the set of all h € # such that
h(z;) = y; for all (z;,y;) € S.

Lemma 1. Suppose we run Algorithm 1 in the realizable case with inputs example oracle U, la-
belling oracle O, hypothesis class H, confidence-rated predictor P, target excess error € and target
confidence 6. Then, with probability 1, h*(D) € Vi, forallk =1,2,... ko + 1.

In the non-realizable case, the version space is usually empty; we use instead a (1 — «)-confidence
set for the true risk minimizer. Given a set S of n labelled examples, let C'(S) C H be a function of

'where the expectation is with respect to the random choices made by P



S; C(S) is said to be a (1 — a)-confidence set for the true risk minimizer if for all data distributions
Aover X x ),

Bsanlh*(A) € O(S)] > 1 —a,
Recall that 2*(A) = argmin,,,erra (h). In the non-realizable case, our candidate sets are (1 — «)-
confidence sets for h* (D), for o« = J. The precise setting of V}, is explained in Algorithm 2.

Lemma 2. Suppose we run Algorithm 1 in the non-realizable case with inputs example oracle U,
labelling oracle O, hypothesis class ‘H, confidence-rated predictor P, target excess error € and
target confidence §. Then with probability 1 — §, h*(D) € Vi, forallk =1,2,... ko + 1.

Label Query. We next discuss our label query procedure — which examples should we query labels
for, and how many labels should we query at each epoch?

Which Labels to Query? Our goal is to query the labels of the most informative examples. To
choose these examples while still maintaining consistency, we use a confidence-rated predictor P
with guaranteed error. The inputs to the predictor are our candidate hypothesis set V;, which contains
(w.h.p) the true risk minimizer, a fresh set U}, of unlabelled examples, and an error guarantee n =
€x/64. For notation simplicity, assume the elements in U}, are distinct. The output is a sequence of
abstention probabilities {yx 1,Vk,2, - - -, Vk,n, I fOr each example in Uy. It induces a distribution I',
over Uy, from which we independently draw examples for label queries.

How Many Labels to Query? The goal of epoch k is to achieve excess generalization error €.
To achieve this, passive learning requires O(d/¢;,) labelled examples? in the realizable case, and
O(d(v*(D) + €x)/€2) examples in the agnostic case. A key observation in this paper is that in
order to achieve excess generalization error €; on D, it suffices to achieve a much larger excess
generalization error O(ex /) on the data distribution induced by I'y, and Dy-|x, where ¢, is the
fraction of examples on which the confidence-rated predictor abstains.

In the realizable case, we achieve this by sampling m; = 15?;(;% (dIn 1522“ +1In ﬁ—f) i.i.d examples
from 'y, and querying their labels to get a labelled dataset Si. Observe that as ¢ is the abstention
probability of P with guaranteed error < €;/64, it is generally smaller than the measure of the
disagreement region of the version space; this key fact results in improved label complexity over
disagreement-based active learning. This sampling procedure has the following property:

Lemma 3. Suppose we run Algorithm 1 in the realizable case with inputs example oracle U, la-
belling oracle O, hypothesis class H, confidence-rated predictor P, target excess error € and target
confidence 5. Then with probability 1 — 6, for all k = 1,2,..., kg + 1, and for all h € Vj,

errp(h) < €. In particular, the h returned at the end of the algorithm satisfies errp(h) < e.

The agnostic case has an added complication — in practice, the value of v* is not known ahead of
time. Inspired by [24], we use a doubling procedure(stated in Algorithm 2) which adaptively finds
the number my, of labelled examples to be queried and queries them. The following two lemmas
illustrate its properties — that it is consistent, and that it does not use too many label queries.

Lemma 4. Suppose we run Algorithm 2 with inputs hypothesis set V., example distribution A,
labelling oracle O, target excess error € and target confidence 6. Let A be the joint distribution on

X x Y induced by A and Dy|X. Then there exists an event E, ]P’(E) >1- 5, such that on E, (1)
Algorithm 2 halts and (2) the set V;, has the following properties:

(2.1) Iffor h € H, errx (h) — errx (h*(A)) < /2, then h € V.

(2.2) On the other hand, if h € V;, then errx (h) — errz (h*(A)) < €

When event £ happens, we say Algorithm 2 succeeds.
Lemma 5. Suppose we run Algorithm 2 with inputs hypothesis set V', example distribution A,
labelling oracle O, target excess error € and target confidence §. There exists some absolute constant

c1 > 0, such that on the event that Algorithm 2 succeeds, nj, < c1((dIn % + In %)%) Thus
the total number of labels queried is Zzozl n; < 2nj, <2¢((dlnt +1In %)%)

20(-) hides logarithmic factors



A naive approach (see Algorithm 4 in the Appendix) which uses an additive VC bound gives a
sample complexity of O((dIn(1/€) + In(1/6))é=2); Algorithm 2 gives a better sample complexity.

The following lemma is a consequence of our label query procedure in the non-realizable case.

Lemma 6. Suppose we run Algorithm 1 in the non-realizable case with inputs example oracle U,
labelling oracle O, hypothesis class ‘H, confidence-rated predictor P, target excess error € and
target confidence 0. Then with probability 1 — 9, for all k = 1,2, ... ko + 1, and for all h € Vy,

errp(h) < errp(h*(D)) + €. In particular, the h returned at the end of the algorithm satisfies

errp(h) < errp(h*(D)) + e

Algorithm 2 An Adaptive Algorithm for Label Query Given Target Excess Error
1: Inputs: Hypothesis set V' of VC dimension d, Example distribution A, Labeling oracle O,
target excess error €, target confidence 5.
2: for j=1,2,...do
3: Draw n; = 27 i.i.d examples from A; query their labels from O to get a labelled dataset
S;. Denote 0, :=6/(j(j + 1)).
4: Train an ERM classifier ilj € V over 5.
5: Define the set V; as follows:

. ¢ . - _
Vi= {h €V vers, (h) < errs, (hy) + 5 +o(ny,85) + \/U(njafsj)ﬂsj (h, hj)}
Where o(n,§) := 26(2d1In 2<% +In 2).
6: ifSupher (a(nj,gj) + \/O'(nj,gj)psj (h,ilj)) < % then
7 jo = j, break
8: return V.

2.3 Confidence-Rated Predictor

Our active learning algorithm uses a confidence-rated predictor with guaranteed error to make its
label query decisions. In this section, we provide a novel confidence-rated predictor with guaranteed
error. This predictor has optimal coverage in the realizable case, and may be of independent interest.
The predictor P receives as input a set V' C H of hypotheses (which is likely to contain the true
risk minimizer), an error guarantee 7, and a set of U of unlabelled examples. We consider a soft
prediction algorithm; so, for each example in U, the predictor P outputs three probabilities that add
up to 1 — the probability of predicting 1, —1 and 0. This output is subject to the constraint that the
expected disagreement® between the 41 labels assigned by P and those assigned by any i € V is
at most 7, and the goal is to maximize the coverage, or the expected fraction of non-abstentions.

Our key insight is that this problem can be written as a linear program, which is described in Algo-
rithm 3. There are three variables, &;, (; and ~;, for each unlabelled z; € U; there are the probabil-
ities with which we predict 1, —1 and 0 on z; respectively. Constraint (2) ensures that the expected
disagreement between the label predicted and any h € V' is no more than 7, while the LP objective
maximizes the coverage under these constraints. Observe that the LP is always feasible. Although
the LP has infinitely many constraints, the number of constraints in Equation (2) distinguishable by
Uy is at most (em/d)?, where d is the VC dimension of the hypothesis class .

The performance of a confidence-rated predictor is measured by its error and coverage. The error of
a confidence-rated predictor is the probability with which it predicts the wrong label on an example,
while the coverage is its probability of non-abstention. We can show the following guarantee on the
performance of the predictor in Algorithm 3.

Theorem 1. In the realizable case, if the hypothesis set V is the version space with respect to
a training set, then P,y (P(x) # h*(z),P(x) # 0) < n. In the non-realizable case, if the
hypothesis set V is an (1 — «)-confidence set for the true risk minimizer h*, then, wp > 1 — q,
Ponv (P(z) #y, P(x) # 0) < Ponv (W™ () # y) + 1.

3where the expectation is taken over the random choices made by P




Algorithm 3 Confidence-rated Predictor

1: Inputs: hypothesis set V, unlabelled data U = {z1, ..., 2, }, error bound 7.
2: Solve the linear program:

min Z'yi
i=1
subjectto: Vi, &4+ (G +v =1
VREV, Y G+ Y, &L<nm 2)

ith(z;)=1 ith(z;)=—1
Viv ngl»’% 2 0

3. For each z; € U, output probabilities for predicting 1, —1 and 0: &;, (;, and ;.

In the realizable case, we can also show that our confidence rated predictor has optimal coverage.
Observe that we cannot directly show optimality in the non-realizable case, as the performance
depends on the exact choice of the (1 — «)-confidence set.

Theorem 2. In the realizable case, suppose that the hypothesis set V is the version space with
respect to a training set. If P’ is any confidence rated predictor with error guarantee 1), and if P is
the predictor in Algorithm 3, then, the coverage of P is at least much as the coverage of P’'.

3 Performance Guarantees

An essential property of any active learning algorithm is consistency — that it converges to the true
risk minimizer given enough labelled examples. We observe that our algorithm is consistent pro-
vided we use any confidence-rated predictor P with guaranteed error as a subroutine. The consis-
tency of our algorithm is a consequence of Lemmas 3 and 6 and is shown in Theorem 3.

Theorem 3 (Consistency). Suppose we run Algorithm 1 with inputs example oracle U, labelling

oracle O, hypothesis class H, confidence-rated predictor P, target excess error € and target
confidence 6. Then with probability 1 — 0, the classifier h returned by Algorithm 1 satisfies

errp(h) —errp(h*(D)) < e

We now establish a label complexity bound for our algorithm; however, this label complexity bound
applies only if we use the predictor described in Algorithm 3 as a subroutine.

For any hypothesis set V, data distribution D, and 7, define ®(V,7) to be the minimum absten-
tion probability of a confidence-rated predictor which guarantees that the disagreement between its
predicted labels and any A € V under Dy is at most 7).

Formally, ®p(V,n) = min{Epvy(z) : Ep[I(h(z) = +1)((z) + I(h(z) = —1)¢(x)] <
nforallh € V,y(z) + &(z) + ((x) = 1,7(x),&{(z),{(x) > 0} Define ¢(r,n) =
®p(Bp(h*,r),n). The label complexity of our active learning algorithm can be stated as follows.

Theorem 4 (Label Complexity). Suppose we run Algorithm 1 with inputs example oracle U, la-
belling oracle O, hypothesis class H, confidence-rated predictor P of Algorithm 3, target excess
error € and target confidence 6. Then there exist constants cs,cq > 0 such that with probability
1-4:
(1) In the realizable case, the total number of labels queried by Algorithm 1 is at most:
[og ¢1
< €L, €1 /256 log(l/e)] —k+1 €, €1 /256
o Z(dln¢(k K/ )+ln([ g(1/e)] ))¢(k k/256)
k=1

€L €L

(2) In the agnostic case, the total number of labels queried by Algorithm 1 is at most:

[log %] * * *
‘o Z (dIn d(2v* (D) + €k, €k /256) n [log(1/e)] — k + 1))(;5(21/ (D) + €k, €k /256) (1+V (D)
k=1

€k €k €k

)



Comparison. The label complexity of disagreement-based active learning is characterized in
terms of the disagreement coefficient. Given a radius r, the disagreement coefficent 0(r) is defined

as: P(DIS(Bp(h*,r")))

9 =
(r) sup N ,
where for any V' C H, DIS(V) is the disagreement region of V. As P(DIS(Bp(h*,7))) =

o(r’,0)

r

¢(r,0) [13], in our notation, 6(r) = sup,.>,.

In the realizable case, the best known bound for label complexity of disagreement-based active
learning is O(6(e) - In(1/€) - (dInd(e) + Inln(1/¢))) [20]*. Our label complexity bound may be
simplified to:

~ 1 256 256 1
O ln p—— Sup M . d ln Sup M + ln ln —_ s
€ k<[log(1/e)] €k k< log(1/e)] €k €
which is essentially the bound of [20] with 6(¢) replaced by SUpPy<fiog(1/6)] (b(é%’;/%o)
forcing a lower error guarantee requires more abstention, ¢(r,n) is a decreasing function of 7; as a

result,
256
sup ¢(6k ) ek/ ) <
k<[log(1/€)] €k

. As en-

0(e),

and our label complexity bound is better.

In the agnostic case, [12] provides a label complexity bound of O(#(2v* (D) +e)- (d”* (5123)2 In(1/€)+

dIn*(1/€))) for disagreement-based active-learning. In contrast, by Proposition 1 our label com-
plexity is at most:

O < sup ¢(2I/* (D) + €k, €k/256) . (dlj* (€2D)2 ln(l/e) + d1n2(1/€)>>

k<Tlog(1/€)] 2v*(D) + e,
Again, this is essentially the bound of [12] with 8(2v*(D) + €) replaced by the smaller quantity

92V (D) + s /256)
k<Tlog(1/e)] 2v*(D) + e

[20] has provided a more refined analysis of disagreement-based active learning that gives a label
~ * 2
complexity of O(6(v*(D) + €)(““LL + In 1)(dInf(v*(D) + €) + Inln 1)); observe that their

dependence is still on 8(v*(D) + E) We leave a more refined label complexity analysis of our

algorithm for future work.

An important sub-case of learning from noisy data is learning under the Tsybakov noise condi-
tions [30]. We defer the discussion into the Appendix.

3.1 Case Study: Linear Classification under the Log-concave Distribution

We now consider learning linear classifiers with respect to log-concave data distribution on R%. In
this case, for any , the disagreement coefficient §(r) < O(v/dIn(1/r)) [4]; however, for any i > 0,

M < O(In(r/n)) (see Lemma 14 in the Appendix), which is much smaller so long as 7/ is not
too small. This leads to the following label complexity bounds.

Corollary 1. Suppose Dy is isotropic and log-concave on R, and H is the set of homogeneous lin-
ear classifiers on R%. Then Algorithm I with inputs example oracle U, labelling oracle O, hypothesis
class ‘H, confidence-rated predictor P of Algorithm 3, target excess error € and target confidence §
satisfies the following properties. With probability 1 — §:

(1) In the realizable case, there exists some absolute constant cg > 0 such that the total number of
labels queried is at most csIn 2 (d+Inln1 4+ In 1).

*Here the O(-) notation hides factors logarithmic in 1/8



(2) In the agnostic case, there exists some absolute constant cg > 0 such that the total number of la-
* 2 * * *

bels queried is at most 09(”(67?) +Ini)ln €+"6(D) (dIn €+”E(D) +In$)+Iniln LE(D) Inln L.

(3) If (Co, k)-Tsybakov Noise condition holds for D with respect to H, then there exists some

constant c1g > 0 (that depends on Cy, k) such that the total number of labels queried is at most

croe=21In 1(dinl+1n}).

In the realizable case, our bound matches [4]. For disagreement-based algorithms, the bound is
O(d? In* 1(Ind + Inln 1)), which is worse by a factor of O(v/dIn(1/e)). [4] does not address the
fully agnostic case directly; however, if v*(D) is known a-priori, then their algorithm can achieve
roughly the same label complexity as ours.

For the Tsybakov Noise Condition with x > 1, [3, 4] provides a label complexity bound for
O(ex—21n? 1(d 4+ Inln 1)) with an algorithm that has a-priori knowledge of Cj and x. We get
a slightly better bound. On the other hand, a disagreement based algorithm [20] gives a label
complexity of O(d? In® 2ex~2(Ind + Inln 1)). Again our bound is better by factor of Q(v/d)
over disagreement-based algorithms. For k = 1, we can tighten our label complexity to get a
O(ln(d+Inlni+1Inl)) bound, which again matches [4], and is better than the ones provided by

disagreement-based algorithm — O(d? In? 1(lnd + Inln 1)) [20].
4 Related Work

Active learning has seen a lot of progress over the past two decades, motivated by vast amounts of
unlabelled data and the high cost of annotation [28, 10, 20]. According to [10], the two main threads
of research are exploitation of cluster structure [31, 11], and efficient search in hypothesis space,
which is the setting of our work. We are given a hypothesis class #, and the goal is to find an h € H
that achieves a target excess generalization error, while minimizing the number of label queries.

Three main approaches have been studied in this setting. The first and most natural one is generalized
binary search [17, 8, 9, 27], which was analyzed in the realizable case by [9] and in various limited
noise settings by [23, 27, 26]. While this approach has the advantage of low label complexity, it is
generally inconsistent in the fully agnostic setting [11]. The second approach, disagreement-based
active learning, is consistent in the agnostic PAC model. [7] provides the first disagreement-based
algorithm for the realizable case. [2] provides an agnostic disagreement-based algorithm, which
is analyzed in [18] using the notion of disagreement coefficient. [12] reduces disagreement-based
active learning to passive learning; [5] and [6] further extend this work to provide practical and effi-
cient implementations. [19, 24] give algorithms that are adaptive to the Tsybakov Noise condition.
The third line of work [3, 4, 1], achieves a better label complexity than disagreement-based active
learning for linear classifiers on the uniform distribution over unit sphere and logconcave distribu-
tions. However, a limitation is that their algorithm applies only to these specific settings, and it is
not apparent how to apply it generally.

Research on confidence-rated prediction has been mostly focused on empirical work, with relatively
less theoretical development. Theoretical work on this topic includes KWIK learning [25], confor-
mal prediction [29] and the weighted majority algorithm of [16]. The closest to our work is the recent
learning-theoretic treatment by [13, 14]. [13] addresses confidence-rated prediction with guaranteed
error in the realizable case, and provides a predictor that abstains in the disagreement region of the
version space. This predictor achieves zero error, and coverage equal to the measure of the agree-
ment region. [14] shows how to extend this algorithm to the non-realizable case and obtain zero
error with respect to the best hypothesis in H. Note that the predictors in [13, 14] generally achieve
less coverage than ours for the same error guarantee; in fact, if we plug them into our Algorithm 1,
then we recover the label complexity bounds of disagreement-based algorithms [12, 19, 24].

A formal connection between disagreement-based active learning in realizable case and perfect
confidence-rated prediction (with a zero error guarantee) was established by [15]. Our work can
be seen as a step towards bridging these two areas, by demonstrating that active learning can be
further reduced to imperfect confidence-rated prediction, with potentially higher label savings.
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