Finding a sparse vector in a subspace:
Linear sparsity using alternating directions

Qing Qu, Ju Sun, and John Wright
{qg2105, 354038, jw2966}@columbia.edu
Dept. of Electrical Engineering, Columbia University, New York City, NY, USA, 10027

Abstract

We consider the problem of recovering the sparsest vector in a subspace S € R?
with dim (§) = n. This problem can be considered a homogeneous variant of
the sparse recovery problem, and finds applications in sparse dictionary learning,
sparse PCA, and other problems in signal processing and machine learning. Simple
convex heuristics for this problem provably break down when the fraction of
nonzero entries in the target sparse vector substantially exceeds 1/+/n. In contrast,
we exhibit a relatively simple nonconvex approach based on alternating directions,
which provably succeeds even when the fraction of nonzero entries is £2(1). To
our knowledge, this is the first practical algorithm to achieve this linear scaling.
This result assumes a planted sparse model, in which the target sparse vector is
embedded in an otherwise random subspace. Empirically, our proposed algorithm
also succeeds in more challenging data models arising, e.g., from sparse dictionary
learning.

1 Introduction

Suppose we are given a linear subspace S of a high-dimensional space R”, which contains a sparse
vector xg # 0. Given arbitrary basis of S, can we efficiently recover x;? Equivalently, provided a
matrix A € R(P~™)*P_can we efficiently find a nonzero sparse vector x such that Ax = 0? In the
language of sparse approximation, can we solve

min |x[[, st Ax=0,x#0 ? (D

Variants of this problem have been studied in the context of applications to numerical linear algebra
[15], graphical model learning [27]], nonrigid structure from motion [16], spectral estimation and
Prony’s problem [11]], sparse PCA [29], blind source separation [28]], dictionary learning [24],
graphical model learning [3]], and sparse coding on manifolds [21].

However, in contrast to the standard sparse regression problem (Ax = b, b # 0), for which convex
relaxations perform nearly optimally for broad classes of designs A [14} 18], the computational
properties of problem (I)) are not nearly as well understood. It has been known for several decades
that the basic formulation

mxin IIx[[y, st xe&\{0}, (2)

is NP-hard [15]. However, it is only recently that efficient computational surrogates with nontrivial
recovery guarantees have been discovered. In the context of sparse dictionary learning, Spielman et
al. [24] introduced a relaxation which replaces the nonconvex problem (2) with a sequence of linear
programs:

m}ionHl, st. 2, =1, x€8,1<i<p, 3)

and proved that when S is generated as a span of n random sparse vectors, with high probability
the relaxation recovers these vectors, provided the probability of an entry being nonzero is at most

0 0(1//n).

[l

In a planted sparse model, in which S consists of a single sparse vector X, embedded in a “generic’
subspace, Hand et al. proved that (3)) also correctly recovers x, provided the fraction of nonzeros in
xo scales as 0 € O (1/+/n) [19].

Unfortunately, the results of [24} [19] are essentially sharp: when 6 substantially exceeds 1/+/n,
in both models the relaxation (3) provably breaks down. Moreover, the most natural semidefinite
programming relaxation of (TJ),

min |[X]|;, st (ATA,X) =0, trace[X] =1, X = 0. 4)

also breaks down at exactly the same threshold of § ~ 1/ \/ﬁﬂ

One might naturally conjecture that this 1/4/n threshold is simply an intrinsic price we must pay for
having an efficient algorithm, even in these random models. Some evidence towards this conjecture
might be borrowed from the surface similarity of (2)-(@) and sparse PCA [29]]. In sparse PCA, there is
a substantial gap between what can be achieved with efficient algorithms and the information theoretic
optimum [10]. Is this also the case for recovering a sparse vector in a subspace? Is § € O (1/y/n)
simply the best we can do with efficient, guaranteed algorithms?

Remarkably, this is not the case. Recently, Barak et al. introduced a new rounding technique for
sum-of-squares relaxations, and showed that the sparse vector xg in the planted sparse model can be
recovered when p > () (n2) and 6 > Q(1) [8]]. It is perhaps surprising that this is possible at all with
a polynomial time algorithm. Unfortunately, the runtime of this approach is a high-degree polynomial
in p, and so for machine learning problems in which p is either a feature dimension or sample size,
this algorithm is of theoretical interest only. However, it raises an interesting algorithmic question: Is
there a practical algorithm that provably recovers a sparse vector with 8 >> 1/+/n nonzeros from a
generic subspace S?

In this paper, we address this problem, under the following hypotheses: we assume the planted
sparse model, in which a target sparse vector X is embedded in an otherwise random n-dimensional
subspace of RP. We allow x to have up to 8yp nonzero entries, where 6 is a constant. We provide
arelatively simple algorithm which, with very high probability, exactly recovers xg, provided that
p=>Q(n log? n).

Our algorithm is based on alternating directions, with two special twists. First, we introduce a
special data driven initialization, which seems to be important for achieving § = £(1). Second, our
theoretical results require a second, linear programming based rounding phase, which is similar to
[24]. Our core algorithm has very simple iterations, of linear complexity in the size of the data, and
hence should be scalable to moderate-to-large scale problems.

In addition to enjoying theoretical guarantees in a regime (6 = (1)) that is out of the reach
of previous practical algorithms, it performs well in simulations — succeeding empirically with
p > Q(nlogn). It also performs well empirically on more challenging data models, such as the
dictionary learning model, in which the subspace of interest contains not one, but n target sparse
vectors. Breaking the O(1/+/n) sparsity barrier with a practical algorithm is an important open
problem in the nascent literature on algorithmic guarantees for dictionary learning [15, 4} 2} [1l]. We are
optimistic that the techniques introduced here will be applicable in this direction.

2 Problem Formulation and Global Optimality

We study the problem of recovering a sparse vector xg 7# 0 (up to scale), which is an element of a
known subspace S C R? of dimension n, provided an arbitrary orthonormal basis Y € RP*™ for S.
Our starting point is the nonconvex formulation (2)). Both the objective and constraint are nonconvex,
and hence not easy to optimize over. We relax (2) by replacing the £° norm with the ¢! norm. For the
constraint x # 0, which is necessary to avoid a trivial solution, we force x to live on the unit sphere
[[xll, = 1, giving

m)zn Ix[l,, st xe&, |[x|,=1 5)

!"This breakdown behavior is again in sharp contrast to the standard sparse approximation problem (with
b # 0), in which it is possible to handle very large fractions of nonzeros (say, § = €(1/logn), or even
6 = Q(1)) using a very simple £* relaxation [14 18]

This formulation is still nonconvex, and so we should not expect to obtain an efficient algorithm
that can solve it globally for general inputs S. Nevertheless, the geometry of the sphere is benign
enough that for well-structured inputs it actually will be possible to give algorithms that find the
global optimum of this problem.

The formulation (3 can be contrasted with (3)), in which we optimize the £* norm subject to the
constraint ||x|| . = 1. Because ||| is polyhedral, that formulation immediately yields a sequence
of linear programs. This is very convenient for computation and analysis, but suffers from the
aforementioned breakdown behavior around ||x||, ~ p/v/n.

In contrast, the sphere ||x||, = 1 is a more complicated geometric constraint, but will allow much
larger numbers of nonzeros in xg. For example, if we consider the global optimizer of a variant of

in |Y L =1 6
Ininy [Yal[,, st [af,=1, (6)

under the planted sparse model (detailed below), e; is the unique to (6) with very high probability:

Theorem 2.1 (¢! /¢? recovery, planted sparse model). There exists a constant 0y € (1/4/n,1/2)
such that if the subspace S follows the planted sparse model

S:Span(x()vgl?"'ugnfl) C RP’ (7)

with g; ~iiq N(0,1/p), and xg ~;; 4 ﬁBer(@), with Xg, 81, . - - , &n—1 Mmutually independent and

1/y/n < 0 < g, then e are the only global minimizers to (6) if Y = [X0,81,- - -, &n—1), provided
p > Q(nlogn).

Hence, if we could find the global optimizer of (), we would be able to recover xy whose number of
nonzero entries is quite large — even linear in the dimension p (6 = 2(1)). On the other hand, it is
not obvious that this should be possible: @ is nonconvex. In the next section, we will describe a
simple heuristic algorithm for (a near approximation of) the ¢! /¢ problem (6), which guarantees
to find a stationary point. More surprisingly, we will then prove that for a class of random problem
instances, this algorithm, plus an auxiliary rounding technique, actually recovers the global optimum
— the target sparse vector xg. The proof requires a detailed probabilistic analysis, which is sketched in
Section [4.2]

Before continuing, it is worth noting that the formulation (3)) is in no way novel - see, e.g., the work
of [28]] in blind source separation for precedent. However, the novelty originates from our algorithms
and subsequent analysis.

3 Algorithm based on Alternating Direction Method (ADM)

To develop an algorithm for solving (@), we work with the orthonormal basis Y € RP*™ for S. For
numerical purposes, and also for coping with noise in practical application, it is useful to consider a
slight relaxation of (6), in which we introduce an auxiliary variable x ~ Yq:

1
min o [Ya — x5+ Alx],, st lall, =1, (®)

Here, A > 0 is a penalty parameter. It is not difficult to see that this problem is equivalent to
minimizing the Huber m-estimator over Y q. This relaxation makes it possible to apply alternating
direction method to this problem, which, starting from some initial point q(o), alternates between
optimizing with respect to x and optimizing with respect to q:

1 2
x*+) = argmin 3 HYq(k) - XH + A|x]l; .)
x 2

1 2
a** = argmin [Ya— x| s al, = 1. (10)
q 2

Both (9) and have simple closed form solutions:

Y T x(k+1)
(k+1) _ (k) (k+1) _
X S/\[Yq }7 q |’Y—|—X(k+1)‘ 27 (11)

Algorithm 1 Nonconvex ADM

Input: A matrix Y € RP*™ with Y TY =1, initialization q(o), threshold A > 0.
Qutput: The recovered sparse vector Xy = Yq(k)

1: Setk =0,

2: while not converged do

v x = 5,[Yq),
Tx(lc+1)

4: q(k+1) = H;(Tx(k-u) .’

2
50 Setk=k+1.
6: end while

where S [z] = sign(z) max {|z]| — A, 0} is the soft-thresholding operator. The proposed ADM
algorithm is summarized in Algorithm T}

For general input Y and initialization q(%), Algorithmis guaranteed to produce a stationary point
of problem (8). This is a consequence of recent general analyses of alternating direction methods
for nonsmooth and nonconvex problems — see [0, [7]. However, if our goal is to recover the sparsest
vector Xg, some additional tricks are needed.

Initialization. Because the problem (6] is nonconvex, an arbitrary or random initialization is
unlikely to produce a global minimizer’| Therefore, good initializations are critical for the proposed
ADM algorithm to succeed. For this purpose, we suggest to use every normalized row of Y as
initializations for g, and solve a sequence of p nonconvex programs (6)) by the ADM algorithm.

To get an intuition of why our initialization works, recall the planted sparse model: & =
span(xo, &1, ..-,8n-1)- Write Z = [Xo | g1 | - - - | 8n—1] € RP*™. Suppose we take a row z; of Z,
in which x¢(i) is nonzero, then x¢ (i) = © (1//0p). Meanwhile, the entries of g1 (4), ... gn—1(7)
are all V(0,1/p), and so have size about 1/,/p. Hence, when 6 is not too large, x() will be
somewhat bigger than most of the other entries in z;. Put another way, z; is biased towards the first
standard basis vector e;.

Now, under our probabilistic assumptions, Z is very well conditioned: Z'7 ~ I Using, e.g.,
Gram-Schmidt, we can find a basis Y for S of the form

Y = ZR, 12)

where R is upper triangular, and R is itself well-conditioned: R ~ I. Since the i-th row of Z is
biased in the direction of e; and R is well-conditioned, the ¢-th row y; is also biased in the direction
of €.

We know that the global optimizer q, should satisfy Yq, = xo. Since Ze; = X, we have
qx = R le; ~ e;. Here, the approximation comes from R ~ I. Hence, for this particular choice
of Y, described in (12)), the i-th row is biased in the direction of the global optimizer. This is what
makes the rows of Y a particularly effective choice for initialization.

What if we are handed some other basis Y = Y:U, where U is an orthogonal matrix? Suppose
Q. is a global optimizer to (6) with input matrix Y, then it is easy to check that, with input matrix
Y, U'q, is also a global optimizer to (), which implies that our initialization is invariant to any
rotation of the basis. Hence, even if we are handed an arbitrary basis for S, the i-th row is still biased
in the direction of the global optimizer.

Rounding. Let q denote the output of Algorithm[I} We will prove that with our particular initializa-
tion and an appropriate choice of A, the solution of our ADM algorithm falls within a certain radius
of the globally optimal solution g, to (6). To recover q,, or equivalently to recover the sparse vector
X9 = Yq,, we solve the linear program

m&nHYqu st. (r,q)=1, (13)

“More precisely, in our models, random initialization does work, but only when the subspace dimension 7 is
extremely low compared to the ambient dimension p.
3This is the common heuristic that “tall random matrices are well conditioned” [25].

with r = q. We will prove that if r is close enough to q,, then this relaxation exactly recovers q.,
and hence xg.

4 Analysis

4.1 Main Results

In this section, we describe our main theoretical result, which shows that with high probability, the
algorithm described in the previous section succeeds.

Theorem 4.1. Suppose that S satisfies the planted sparse model, and let Y be an arbitrary basis for
S. Lety:...yp € R" denote the (transposes of) the rows of Y. Apply Algorithmwith A=1/y/p,

using initializations @ = y1, ... ,Yp» t0 produce outputs qy, ..., qp. Solve the linear program
(I3) withr = Qu, ..., Qp, to produce qi, . .., qQp. Set i* € argmin, | Yq;||,. Then
Yq; = %o, (14)

for some v # 0, with overwhelming probability, provided

‘ -

p > Cn*log®n, and

IN
S
INA
>

o

15)

5

Here, C and 0y > 0 are universal constants.

We can see that the result in Theorem 4.1 is suboptimal compared to the global optimality condition
and Barak et al.’s result in the sense of the sampling complexity that we require p > Cn* log® n.
While for the global optimality condition, we only need p > Cn to guarantee a global optimal
solution exists with high probability. For Barak et al.’s result, we need p > Cn?. Nonetheless,
compared to Barak et al., we believe this is the first practical and efficient method that is guaranteed
to achieve 6§ ~ O(1) rate. The lower bound on 6 in Theorem 4.1 is mostly for convenience in the
proof; in fact, the LP rounding stage of our algorithm already succeeds with high probability when

6e€0(1/yn).
4.2 A Sketch of Analysis

The proof of our main result requires rather detailed technical analysis of the iteration-by-iteration
properties of Algorithm(I] In this subsection, we briefly sketch the main ideas. For detailed proofs,
please see the technical supplement to this paper.

As noted in Section 3, the ADM algorithm is invariant to change of basis. So, we can assume without
loss of generality that we are working with the particular basis Y = ZR defined in that section. In
order to further streamline the presentation, we are going to sketch the proof under the assumption
that

Y =[xo|g1| |8l (16)

rather than the orthogonalized version Y. This may seem plausible, but when p is large Y is already
nearly orthogonal, and hence Y is very close to Y. In fact, in our proof, we simply carry through the
argument for Y, and then note that Y and Y are close enough that all steps of the proof still hold
with Y replaced by Y. With that noted, let y!, ..., y? € R™ denote the transposes of the rows of Y,
and note that these are independent random vectors. From (TI)), we can see one step of the ADM
algorithm takes the form:

- T
(k+1) _ 5 i Y'S(y) o]
[E5r yisiin T a®]

This is a very favorable form for analysis: if q is viewed as fixed, the term in the numerator is a sum
of p independent random vectors. To this end, we define a vector valued random process Q(q) on
q €S, via

q (17)

Q(q) = %Zyi&[(yi)Tq]. (18)
i=1

We study the behavior of the iteration through the random process Q(q). We wish to show
that w.h.p. in our choice of Y, q(*) converges to (te1), so that the algorithm successfully retrieves
the sparse vector xg = Ye;. Thus, we hope that in general, Q(q) is more concentrated on the first

q1

coordinate than q. Let us partition the vector q as q = } ,withq; € Rand q € R*!, and
2

correspondingly partition Q(q) = [8;&3],where

1< nT 1L i T
Qi(q) = » ZfEmS,\ [(y) Q] and Qz(q) = » Zg S {(y) Q} . (19)
i=1 1=1
The inner product of Q(q)/ ||Q(q)||, and e is strictly larger than the inner product of q and e; if

and only if
Qi) _ Q@

lg: | llazll
In the appendix, we show that with high probability, this inequality holds uniformly over a significant
portion of the sphere, so the algorithm moves in the correct direction. To complete the proof of
Theorem we combine the following observations:

(20)

1. Algorithm [T] converges.

2. Rounding succeeds when |r;| > 21/6. With high probability, the linear programming based
rounding (T3) will produce +x, up to scale, whenever it is provided with an input r whose first
coordinate has magnitude at least 2v/6.

3. No jumps away from the caps. With high probability, for all q such that |¢|; > C,/6,
|Q1(a)]

> 2V/0. (21)
V1@1 (@2 + [Qa(a) 3

4. Uniform progress away from the equator. With high probability, for every q such that —— <

2v/0n
lg1| < C,\/8, the bound
@@ [1Q(a@lly |)
|q1] lall, np

holds. This implies that if at any iteration & of the algorithm, |q§k)| >
eventually obtain a point q*"), &’ > k, for which |q§k/)| > C*\/gﬂ

1
2v/0n’

the algorithm will

5. Location of stationary points. Steps 1, 3 and 4 above imply that if Algorithm 1 ever obtains a

L_ it will converge to a point § with §; > C,+/6, provided —— < 21/

. . k
point q*) with \qg)\ > o 2v0n

(.e., 0 >

1
1w

1
2v0n"

Taken together, these claims imply that from at least one of the initializers (), the ADM algorithm
will produce an output g which is accurate enough for LP rounding to exactly return xg, up to scale.
As x is the sparsest nonzero vector in the subspace S with overwhelming probability, it will be
selected as Yq;~, and hence produced by the algorithm.

6. Good initializers. With high probability, at least one of the initializers q(°) satisfies |q§0)| >

5 Experimental Results

In this section, we show the performance of the proposed ADM algorithm on both synthetic and real
datasets. On the synthetic dataset, we show the phase transition of our algorithm on both the planted
sparse vector and dictionary learning models; for the real dataset, we demonstrate how seeking sparse
vectors can help discover interesting patterns.

“In fact, the rate of progress guaranteed in (22) can be used to bound the complexity of the algorithm; we do
not dwell on this here.

5.1 Phase Transition on Synthetic Data

For the planted sparse model, for each pair of (k,p), we generate the n dimensional subspace
S € RP by a k sparse vector xy with nonzero entries equal to 1 and a random Gaussian matrix
G ¢ RP*("=1) with Gy; S (0,1/p), so that the basis Y of the subspace S can be constructed
by Y = GS ([x0, G]) U, where GS (-) denotes the Gram-Schmidt orthonormalization operator and
U € R™*"™ is an arbitrary orthogonal matrix. We fix the relationship between n and p as p = 5nlogn,
and set the regularization parameter in (8) as A\ = 1/,/p. We use all the normalized rows of Y as
initializations of q for the proposed ADM algorithm, and run every program for 5000 iterations. We

assume the proposed method to be success whenever H ﬁ — YqH < e for at least one of the p
2 2

programs, for some error tolerance € = 102, For each pair of (k, p), we repeat the simulation for 5
times.

(a) Phase Transition: Planted Sparse Model

500 1000 1500 2000 0 200 400 600 500 1000 1200 1400 1600 1800
Ambient Dimension p Ambient Dimension p

Figure 1: Phase transition for the planted sparse model (left) and dictionary learning (right) using the ADM
algorithm, with fixed relationship between p and n: p = 5n log n. White indicates success and black indicates
failure.

Second, we consider the same dictionary learning model as in [24]]. Specifically, the observation is
assumed to be Y = AgXowhere Ay is a square, invertible matrix, and X a n X p sparse matrix.
Since Ag is invertible, the row space of Y is the same as that of Xo. For each pair of (k,n), we

generate Xy = [xg,- - ,xn]T, where each vector x; € RP is k-sparse with every nonzero entry
following i.i.d. Gaussian distribution, and construct the observation by Y = GS (X(—)r) U™ We
repeat the same experiment as for the planted sparse model presented above. The only difference is
that we assume the proposed method to be success as long as one sparse row of X, is recovered by
those p programs.

Fig. [I] shows the phase transition between the sparsity level £ = 6p and p for both models. It seems
clear for both problems our algorithm can work well into (beyond) the linear regime in sparsity level.
Hence for the planted sparse model, to close the gap between our algorithm and practice is one future
direction. Also, how to extend our analysis for dictionary learning is another interesting direction.

5.2 Exploratory Experiments on Faces

It is well known in computer vision convex objects only subject to illumination changes produce
image collection that can be well approximated by low-dimensional space in raw-pixel space [9]].
We will play with face subspaces here. First, we extract face images of one person (65 images)
under different illumination conditions. Then we apply robust principal component analysis [12]
to the data and get a low dimensional subspace of dimension 10, i.e., the basis Y € R32256x10 ye
apply the ADM algorithm to find the sparsest element in such a subspace, by randomly selecting
10% rows as initializations for q. We judge the sparsity in a £ /¢2 sense, that is, the sparsest vector
%o = Yq" should produce the smallest | Yq[|; / [Yq]|, among all results. Once some sparse vectors
are found, we project the subspace onto orthogonal complement of the sparse vectors already found,
and continue the seeking process in the projected subspace. Fig. [2]shows the first four sparse vectors
we get from the data. We can see they correspond well to different extreme illumination conditions.

Second, we manually select ten different persons’ faces under the normal lighting condition. Again,
the dimension of the subspace is 10 and Y € R32256%10_ e repeat the same experiment as stated
above. Fig. |3|shows four sparse vectors we get from the data. Interestingly, the sparse vectors roughly

Figure 2: Four sparse vectors extracted by the ADM algorithm for one person in the Yale B database under
different illuminations.

correspond to differences of face images concentrated around facial parts that different people tend to

differ from each other.
. .

Figure 3: Four sparse vectors extracted by the ADM algorithm for 10 persons in the Yale B database under
normal illuminations.

In sum, our algorithm seems to find useful sparse vectors for potential applications, like peculiar
discovery in first setting, and locating differences in second setting. Netherless, the main goal of this
experiment is to invite readers to think about similar pattern discovery problems that might be cast as
searching for a sparse vector in a subspace. The experiment also demonstrates in a concrete way the
practicality of our algorithm, both in handling data sets of realistic size and in producing attractive
results even outside of the (idealized) planted sparse model that we adopt for analysis.

6 Discussion

The random models we assume for the subspace can be easily extended to other random models,
particularly for dictionary learning. Moreover we believe the algorithm paradigm works far beyond
the idealized models, as our preliminary experiments on face data have clearly shown. For the
particular planted sparse model, the performance gap in terms of (p, n,) between the empirical
simulation and our result is likely due to analysis itself. Advanced techniques to bound the empirical
process, such as decoupling [17] techniques, can be deployed in place of our crude union bound
to cover all iterates. Our algorithmic paradigm as a whole sits well in the recent surge of research
endeavors in provable and practical nonconvex approaches towards many problems of interest, often
in large-scale setting [[13} 22} 120, [23| [26]]. We believe this line of research will become increasingly
important in theory and practice. On the application side, the potential of seeking sparse/structured
element in a subspace seems largely unexplored, despite the cases we mentioned at the start. We
hope this work can invite more application ideas.

References

[1] AGARWAL, A., ANANDKUMAR, A., JAIN, P., NETRAPALLI, P., AND TANDON, R. Learning sparsely
used overcomplete dictionaries via alternating minimization. arXiv preprint arXiv:1310.7991 (2013).

[2] AGARWAL, A., ANANDKUMAR, A., AND NETRAPALLI, P. Exact recovery of sparsely used overcomplete
dictionaries. arXiv preprint arXiv:1309.1952 (2013).

[3] ANANDKUMAR, A., HSU, D., JANZAMIN, M., AND KAKADE, S. M. When are overcomplete topic
models identifiable? uniqueness of tensor tucker decompositions with structured sparsity. In Advances in
Neural Information Processing Systems (2013), pp. 1986-1994.

(4]

[5

—

[6

—_

[7

—

(8]

(9]

[10]

(11]

[12]

[13]

(14]

[15]

(16]

(171

(18]

(19]

(20]

(21]

[22]

(23]

(24]

[25]

[26]

(27]

(28]

[29]

ARORA, S., BHASKARA, A., GE, R., AND MA, T. More algorithms for provable dictionary learning.
arXiv preprint arXiv:1401.0579 (2014).

ARORA, S., GE, R., AND MOITRA, A. New algorithms for learning incoherent and overcomplete
dictionaries. arXiv preprint arXiv:1308.6273 (2013).

ATTOUCH, H., BOLTE, J., REDONT, P., AND SOUBEYRAN, A. Proximal alternating minimization and
projection methods for nonconvex problems: An approach based on the kurdyka-lojasiewicz inequality.
Mathematics of Operations Research 35, 2 (2010), 438—457.

ATTOUCH, H., BOLTE, J., AND SVAITER, B. F. Convergence of descent methods for semi-algebraic and
tame problems: proximal algorithms, forward—backward splitting, and regularized gauss—seidel methods.
Mathematical Programming 137, 1-2 (2013), 91-129.

BARAK, B., KELNER, J., AND STEURER, D. Rounding sum-of-squares relaxations. arXiv preprint
arXiv:1312.6652 (2013).

BASRI, R., AND JACOBS, D. W. Lambertian reflectance and linear subspaces. Pattern Analysis and
Machine Intelligence, IEEE Transactions on 25, 2 (2003), 218-233.

BERTHET, Q., AND RIGOLLET, P. Complexity theoretic lower bounds for sparse principal component
detection. In Conference on Learning Theory (2013), pp. 1046-1066.

BEYLKIN, G., AND MONZON, L. On approximation of functions by exponential sums. Applied and
Computational Harmonic Analysis 19, 1 (2005), 17-48.

CANDES, E., L1, X., MA, Y., AND WRIGHT, J. Robust principal component analysis? Journal of the
ACM 58,3 (May 2011).

CANDES, E. J., LI, X., AND SOLTANOLKOTABI, M. Phase retrieval via wirtinger flow: Theory and
algorithms. arXiv preprint arXiv:1407.1065 (2014).

CANDES, E. J., AND TAO, T. Decoding by linear programming. Information Theory, IEEE Transactions
on 51,12 (2005), 4203-4215.

COLEMAN, T. F., AND POTHEN, A. The null space problem i. complexity. SIAM Journal on Algebraic
Discrete Methods 7, 4 (1986), 527-537.

DAL Y., L1, H., AND HE, M. A simple prior-free method for non-rigid structure-from-motion factorization.
In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on (2012), IEEE, pp. 2018—
2025.

DE LA PENA, V., AND GINE, E. Decoupling: from dependence to independence. Springer, 1999.

DONOHO, D. L. For most large underdetermined systems of linear equations the minimal £*-norm solution
is also the sparsest solution. Communications on pure and applied mathematics 59, 6 (2006), 797-829.

HAND, P., AND DEMANET, L. Recovering the sparsest element in a subspace. arXiv preprint
arXiv:1310.1654 (2013).

HARDT, M. On the provable convergence of alternating minimization for matrix completion. arXiv
preprint arXiv:1312.0925 (2013).

Ho, J., XIE, Y., AND VEMURI, B. On a nonlinear generalization of sparse coding and dictionary learning.
In Proceedings of The 30th International Conference on Machine Learning (2013), pp. 1480-1488.

JAIN, P., NETRAPALLI, P., AND SANGHAVI, S. Low-rank matrix completion using alternating minimiza-
tion. In Proceedings of the 45th annual ACM symposium on Symposium on theory of computing (2013),
ACM, pp. 665-674.

NETRAPALLI, P., JAIN, P., AND SANGHAVI, S. Phase retrieval using alternating minimization. In
Advances in Neural Information Processing Systems (2013), pp. 2796-2804.

SPIELMAN, D. A., WANG, H., AND WRIGHT, J. Exact recovery of sparsely-used dictionaries. In
Proceedings of the 25th Annual Conference on Learning Theory (2012).

VERSHYNIN, R. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027 (2010).

Y1, X., CARAMANIS, C., AND SANGHAVI, S. Alternating minimization for mixed linear regression.
arXiv preprint arXiv:1310.3745 (2013).

ZHAO, Y.-B., AND FUKUSHIMA, M. Rank-one solutions for homogeneous linear matrix equations over
the positive semidefinite cone. Applied Mathematics and Computation 219, 10 (2013), 5569-5583.

ZIBULEVSKY, M., AND PEARLMUTTER, B. A. Blind source separation by sparse decomposition in a
signal dictionary. Neural computation 13,4 (2001), 863—-882.

Zou, H., HASTIE, T., AND TIBSHIRANI, R. Sparse principal component analysis. Journal of computa-
tional and graphical statistics 15, 2 (2006), 265-286.

