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Abstract

We develop a framework for post model selection inference, via marginal screen-
ing, in linear regression. At the core of this framework is a result that charac-
terizes the exact distribution of linear functions of the response y, conditional on
the model being selected (“condition on selection" framework). This allows us
to construct valid confidence intervals and hypothesis tests for regression coef-
ficients that account for the selection procedure. In contrast to recent work in
high-dimensional statistics, our results are exact (non-asymptotic) and require no
eigenvalue-like assumptions on the design matrix X. Furthermore, the computa-
tional cost of marginal regression, constructing confidence intervals and hypoth-
esis testing is negligible compared to the cost of linear regression, thus making
our methods particularly suitable for extremely large datasets. Although we focus
on marginal screening to illustrate the applicability of the condition on selection
framework, this framework is much more broadly applicable. We show how to
apply the proposed framework to several other selection procedures including or-
thogonal matching pursuit and marginal screening+Lasso.

1 Introduction

Consider the model

yi = @) + €, e ~ N(0,0°1), )
where p(z) is an arbitrary function, and z; € RP. Our goal is to perform inference on
(XTX)~1 X7y, which is the best linear predictor of u. In the classical setting of n > p , the
least squares estimator # = (X7 X) X7y is a commonly used estimator for (X7 X)~*X7 p.
Under the linear model assumption . = X 3°, the exact distribution of B is

B~N(B,(XTX)Y). 2)

Using the normal distribution, we can test the hypothesis Hy : B? = 0 and form confidence intervals
for 3 using the z-test.

However in the high-dimensional p > n setting, the least squares estimator is an underdetermined
problem, and the predominant approach is to perform variable selection or model selection [4].
There are many approaches to variable selection including AIC/BIC, greedy algorithms such as
forward stepwise regression, orthogonal matching pursuit, and regularization methods such as the
Lasso. The focus of this paper will be on the model selection procedure known as marginal screen-
ing, which selects the k£ most correlated features x; with the response y.

Marginal screening is the simplest and most commonly used of the variable selection procedures
[9, 21, 16]. Marginal screening requires only O(np) computation and is several orders of magnitude



faster than regularization methods such as the Lasso; it is extremely suitable for extremely large
datasets where the Lasso may be computationally intractable to apply. Furthermore, the selection
properties are comparable to the Lasso [8].

Since marginal screening utilizes the response variable y, the confidence intervals and statistical
tests based on the distribution in (2) are not valid; confidence intervals with nominal 1 — o coverage
may no longer cover at the advertised level:

Pr (B]Q €Ci_a(z)) <1-a.

Several authors have previously noted this problem including recent work in [13, 14, 15, 2]. A major
line of work [13, 14, 15] has described the difficulty of inference post model selection: the distri-
bution of post model selection estimates is complicated and cannot be approximated in a uniform
sense by their asymptotic counterparts.

In this paper, we describe how to form exact confidence intervals for linear regression coefficients
post model selection. We assume the model (1), and operate under the fixed design matrix X
setting. The linear regression coefficients constrained to a subset of variables .S is linear in p,
ejT(Xg:XS)*ng:,u = nTy for some 1. We derive the conditional distribution of ™'y for any
vector 7, so we are able to form confidence intervals for regression coefficients.

In Section 2 we discuss related work on high-dimensional statistical inference, and Section 3 in-
troduces the marginal screening algorithm and shows how z intervals may fail to have the correct
coverage properties. Section 4 and 5 show how to represent the marginal screening selection event
as constraints on y, and construct pivotal quantities for the truncated Gaussian. Section 6 uses these
tools to develop valid confidence intervals, and Section 7 evaluates the methodology on two real
datasets.

Although the focus of this paper is on marginal screening, the “condition on selection" framework,
first proposed for the Lasso in [12], is much more general; we use marginal screening as a simple and
clean illustration of the applicability of this framework. In Section 8, we discuss several extensions
including how to apply the framework to other variable/model selection procedures and to nonlinear
regression problems. Section 8§ covers 1) marginal screening+Lasso, a screen and clean procedure
that first uses marginal screening and cleans with the Lasso, and orthogonal matching pursuit (OMP).

2 Related Work

Most of the theoretical work on high-dimensional linear models focuses on consistency. Such results
establish, under restrictive assumptions on X, the Lasso B is close to the unknown 3° [19] and
selects the correct model [26, 23, 11]. We refer to the reader to [4] for a comprehensive discussion
about the theoretical properties of the Lasso.

There is also recent work on obtaining confidence intervals and significance testing for penalized M-
estimators such as the Lasso. One class of methods uses sample splitting or subsampling to obtain
confidence intervals and p-values [24, 18]. In the post model selection literature, the recent work of
[2] proposed the POSI approach, a correction to the usual t-test confidence intervals by controlling
the familywise error rate for all parameters in any possible submodel. The POSI methodology is
extremely computationally intensive and currently only applicable for p < 30.

A separate line of work establishes the asymptotic normality of a corrected estimator obtained by
“inverting” the KKT conditions [22, 25, 10] The corrected estimator b has the form b = ,8 + )\@Z
where 2 is a subgrad1ent of the penalty at 5 and © is an approximate inverse to the Gram matrix
X7 X. The two main drawbacks to this approach are 1) the confidence intervals are valid only when
the M-estimator is consistent, and thus require restricted eigenvalue conditions on X, 2) obtaining
O is usually much more expensive than obtaining /3, and 3) the method is specific to regularized
estimators, and does not extend to marginal screening, forward stepwise, and other variable selection

methods.

Most closely related to our work is the “condition on selection" framework laid out in [12] for the
Lasso. Our work extends this methodology to other variable selection methods such as marginal
screening, marginal screening followed by the Lasso (marginal screening+Lasso) and orthogonal
matching pursuit. The primary contribution of this work is the observation that many model selection



methods, including marginal screening and Lasso, lead to “selection events" that can be represented
as a set of constraints on the response variable y. By conditioning on the selection event, we can
characterize the exact distribution of n”'y. This paper focuses on marginal screening, since it is
the simplest of variable selection methods, and thus the applicability of the “condition on selection
event" framework is most transparent. However, this framework is not limited to marginal screening
and can be applied to a wide a class of model selection procedures including greedy algorithms such
as orthogonal matching pursuit. We discuss some of these possible extensions in Section 8, but leave
a thorough investigation to future work.

A remarkable aspect of our work is that we only assume X is in general position, and the test is exact,
meaning the distributional results are true even under finite samples. By extension, we do not make
any assumptions on n and p, which is unusual in high-dimensional statistics [4]. Furthermore, the
computational requirements of our test are negligible compared to computing the linear regression
coefficients.

3 Marginal Screening

Let X € R™*P be the design matrix, y € R"™ the response variable, and assume the model
yi = p(w;) + €;,€; ~ N(0,02I). We will assume that X is in general position and has unit norm

columns. The algorithm estimates A via Algorithm 1. The marginal screening algorithm chooses

Algorithm 1 Marginal screening algorithm

1: Input: Design matrix X, response y, and model size k.
: Compute | X Ty|.

: Let S be the index of the k largest entries of | X y|.

: Compute g = (XIXg) ' XLy

AW N

the k variables with highest absolute dot product with y, and then fits a linear model over those k
variables. We will assume k& < min(n, p). For any fixed subset of variables .S, the distribution of

Bs = (XTXg) 1 XTyis
Bs ~ N (XEXs) ' XEp,0*(XEXs) ™) 3)

We will use the notat.ion Bies = (Bg)j, where j is indexing a variable in the set S. The z-test
intervals for a regression coefficient are

Cla, j, S) == (BjES — 021_q2(XE X5)jj, Bjes + 021_a/2(XgXS)jj> 4)

and each interval has 1 — « coverage, meaning Pr (53*‘65 € Cla, j, S)) =1 — o. However if S is
chosen using a model selection procedure that depends on y, the distributional result (3) no longer

holds and the z-test intervals will not cover at the 1 — « level, and Pr (ﬁ;e g€ C(a, 7, S )) <l-oa.

3.1 Failure of z-test confidence intervals

We will illustrate empirically that the z-test intervals do not cover at 1 — o when S is chosen by
marginal screening in Algorithm 1. For this experiment we generated X from a standard normal
with n = 20 and p = 200. The signal vector is 2 sparse with 3{, 39 = SNR, y = X% + ¢, and
e ~ N(0,1). The confidence intervals were constructed for the & = 2 variables selected by the
marginal screening algorithm. The z-test intervals were constructed via (4) with o = .1, and the
adjusted intervals were constructed using Algorithm 2. The results are described in Figure 1.

4 Representing the selection event

Since Equation (3) does not hold for a selected S when the selection procedure depends on y, the
z-test intervals are not valid. Our strategy will be to understand the conditional distribution of y
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Figure 1: Plots of the coverage proportion across a range of SNR (log-scale). We see that the
coverage proportion of the z intervals can be far below the nominal level of 1 — o = .9, even at
SNR =5. The adjusted intervals always have coverage proportion .9. Each point represents 500
independent trials.

and contrasts (linear functions of y) n”y, then construct inference conditional on the selection event
E. We will use E (y) to represent a random variable, and E to represent an element of the range of
E (y). In the case of marginal screening, the selection event E (y) corresponds to the set of selected
variables S and signs s:

E(y) = {y ssign(zly)aTy > ix?y foralli € Sand j € 5’”}
= {y sty > :i:ijy and $;27y > Oforall i € S and j € S’C}
{v: sy <00s.9)} 5)

for some matrix A(S, ) and vector b(S,3)'. We will use the selection event £ and the selected
variables/signs pair (S, §) interchangeably since they are in bijection.

IN

The space R™ is partitioned by the selection events, R" = [[g{y : A(S s)y
b(S,s)}?>. The vector y can be decomposed with respect to the partition as follows y =

25,4 L(A(S, )y < (S, 9)).

Theorem 4.1. The distribution of y conditional on the selection event is a constrained Gaussian,

yH{E(y) = B} £ 2[{A(S,5)z < b}, 2 ~ N (. 0”1).

Proof. The event E is in bijection with a pair (S, s), and y is unconditionally Gaussian. Thus the
conditional y|{A(S, s)y < b(S, s)} is a Gaussian constrained to the set {A(S,s)y < b(5,s)}. O

5 Truncated Gaussian test

This section summarizes the recent tools developed in [12] for testing contrasts®* n”7y of a con-
strained Gaussian y. The results are stated without proof and the proofs can be found in [12]. The
primary result is a one-dimensional pivotal quantity for n z1. This pivot relies on characterizing the
distribution of ”'y as a truncated normal. The key step to deriving this pivot is the following lemma:

Lemma 5.1. The conditioning set can be rewritten in terms of N’y as follows:
{Ay <b} =V (y) <0y <VH(y), V' (y) > 0}

'h can be taken to be 0 for marginal screening, but this extra generality is needed for other model selection
methods.

21t is also possible to use a coarser partition, where each element of the partition only corresponds to a
subset of variables S. See [12] for details.

3A contrast of y is a linear function of the form n™y.




where

A¥n
o= Tt (©)
(A + anT
V™ =V (y) = max bi = (Ay); +am y (7)
j: a; <0 ay
A . T
YV =VT(y) = min b = (Ay); + aym Y. (8)
j: a; >0 ay
VI =V(y) = min b; — (Ay); ©)

j: a;=0
Moreover, (VT,V~, V) are independent of n™y.
Theorem 5.2. Let ®(x) denote the CDF of a N(0,1) random variable, and let Fi“;f’j denote the
CDF of TN (p,0,a,b), i.e.:
. &((z — — ®((a—
Flotl () = (& —p)/o) = ((a—p/o) (10)
a (b —p)/o) = @((a—p)/o)

Then F, ,[,\;;’\:;]Zn(nTy) is a pivotal quantity, conditional on { Ay < b}:
Vv vt .
F7[7Tu,, nT]z;n(nTy) ‘ {Ay < b} ~ Unif(0,1) (a1

where V™ and V' are defined in (7) and (8).
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Figure 2: Histogram and qq plot of Jalanel (nT'y) where y is a constrained Gaussian. The

nTp, nTEn
distribution is very close to Unif(0, 1), which is in agreement with Theorem 5.2.

6 Inference for marginal screening

In this section, we apply the theory summarized in Sections 4 and 5 to marginal screening. In
particular, we will construct confidence intervals for the selected variables.
To summarize the developments so far, recall that our model (1) says that y ~ N(u,02I).

The distribution of interest is y|{E(y) = FE}, and by Theorem 4.1, this is equivalent to
y|[{A(S,s)z < b(S,s)}, where y ~ N(u,0?I). By applying Theorem 5.2, we obtain the pivotal
quantity

el 07 w) | (B () = BY ~ Unif(0,1) 12

0T, o2||nl|3

for any 7, where V™ and V™ are defined in (7) and (8).

In this section, we describe how to form confidence intervals for the components of ﬁg =
(X% Xg)~'XTp. The best linear predictor of y that uses only the selected variables is 8% , and

Bg = (XZXg)~' XLy is an unbiased estimate of 3%. If we choose

n = (XEXg) ' XLe)T, (13)



then an uw= B;e &> so the above framework provides a method for inference about the j™ variable in
the model 5.

6.1 Confidence intervals for selected variables

Next, we discuss how to obtain confidence intervals for ﬂ]*,e & The standard way
to obtain an interval is to invert a pivotal quantity [5]. In other words, since
Pr <a < F[V . Uan ”z(nj y)<1-9|{E= E}) = o one can define a (1 — «) (conditional)
confidence 1nterval for 6; B
L@ V=, v o
{m.ang o3 n; ”2(77J y)gl—g}. (14)

In fact, F' is monotone decreasing in x, so to find its endpoints, one need only solve for the root of a
smooth one-dimensional function. The monotonicity is a consequence of the fact that the truncated
Gaussian distribution is a natural exponential family and hence has monotone likelihood ratio in p
[17].

We now formalize the above observations in the following result, an immediate consequence of
Theorem 5.2.

Corollary 6.1. Let 1); be defined as in (13), and let Lo, = Lo (n;, (S, 5)) and Uy = Uqs(n;, (S, 5))
be the (unique) values satisfying

v-,vt Q Vo,V «
Ep i) =13 SRR V=3 (15

Then [Lo,U,] is a (1 — «) confidence interval for ﬁ* , conditional on E:

(5;.E§ € [La,Ud] | {E = E}) =1-a. (16)
Proof. The confidence region of ﬂ* is the set of 3; such that the test of Hy : ,6’* & accepts at the
1 — a level. The function Fi 02“)';}‘ 2 (nj ) is monotone in x, so solving for L,, and U,, identify the

most extreme values where H| is still accepted. This gives a 1 — a confidence interval. O

Next, we establish the unconditional coverage of the constructed confidence intervals and the false
coverage rate (FCR) control [1].

Corollary 6.2. For each j € S,
Pr( * €L, UJ‘]) ~1-a 17)
Furthermore, the FCR of the intervals {[L Ul ]} is o

Proof. By (16), the conditional coverage of the confidence intervals are 1 — a. The coverage holds
for every element of the partition {E(y) = E}, so

Pr<;e§ ) ZPr(ﬂ*eS (Lo, U] | {E = E})Pr(E E)

:Zl—a Pr(E:E)zl—a.
E
O

Remark 6.3. We would like to emphasize that the previous Corollary shows that the constructed
confidence intervals are unconditionally valid. The conditioning on the selection event E (y)=FE
was only for mathematical convenience to work out the exact pivot. Unlike standard z-test intervals,
the coverage target, ﬂ* , and the interval [L,,,U,] are random. In a typical confidence interval

only the interval is random however in the post-selection inference setting, the selected model is
random, so both the interval and the target are necessarily random [2].

We summarize the algorithm for selecting and constructing confidence intervals below.



Algorithm 2 Confidence intervals for selected variables

1: Input: Design matrix X, response y, model size k.

2: Use Algorithm 1 to select a subset of variables S and signs § = sign(X gy)

3: Let A = A(S,3) and b = b(S, 3) using (5). Let n; = (XD)Te;.

4: Solve for LJ, and U/ using Equation (15) where V= and V* are computed via (7) and (8) using
the A, b, and n; previously defined.

5: Output: Return the intervals [L7,, UJ] for j € S.

7 Experiments

In Figure 1, we have already seen that the confidence intervals constructed using Algorithm 2 have
exactly 1 — a coverage proportion. In this section, we perform two experiments on real data where
the linear model does not hold, the noise is not Gaussian, and the noise variance is unknown.

7.1 Diabetes dataset

The diabetes dataset contains n = 442 diabetes patients measured on p = 10 baseline variables [6].
The baseline variables are age, sex, body mass index, average blood pressure, and six blood serum
measurements, and the response y is a quantitative measure of disease progression measured one

year after the baseline. Since the noise variance o2 is unknown, we estimate it by o2 = ”Z;_yp”
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Figure 3: Plot of 1 — « vs the coverage proportion for diabetes dataset. The nominal curve is the
line y = x. The coverage proportion of the adjusted intervals agree with the nominal coverage level,
but the z-test coverage proportion is strictly below the nominal level. The adjusted intervals perform
well, despite the noise being non-Gaussian, and o2 unknown.

where §j = X3 and § = (X7 X)~*XTy. For each trial we generated new responses ; = X3 + €,
and € is bootstrapped from the residuals r; = y; — ¢;. We used marginal screening to select k = 2
variables, and then fit linear regression on the selected variables. The adjusted confidence intervals
were constructed using Algorithm 2 with the estimated o2. The nominal coverage level is varied
across 1 — a € {.5,.6,.7,.8,.9,.95,.99}. From Figure 3, we observe that the adjusted intervals
always cover at the nominal level, whereas the z-test is always below. The experiment was repeated
2000 times.

7.2 Riboflavin dataset

Our second data example is a high-throughput genomic dataset about riboflavin (vitamin B2) pro-
duction rate [3]. There are p = 4088 variables which measure the log expression level of different
genes, a single real-valued response y which measures the logarithm of the riboflavin production
rate, and n = 71 samples. We first estimate o2 by using cross-validation [20], and apply marginal
screening with £ = 30, as chosen in [3]. We then use Algorithm 2 to identify genes significant at



a = 10%. The genes identified as significant were YCKE_at, YOAB_at, and YURQ_at. After
using Bonferroni to control for FWER, we found YOAB_at remained significant.

8 Extensions

The purpose of this section is to illustrate the broad applicability of the condition on selection frame-
work. For expository purposes, we focused the paper on marginal screening where the framework
is particularly easy to understand. In the rest of this section, we show how to apply the framework
to marginal screening+Lasso, and orthogonal matching pursuit. This is a non-exhaustive list of
selection procedures where the condition on selection framework is applicable, but we hope this in-
complete list emphasizes the ease of constructing tests and confidence intervals post-model selection
via conditioning.

8.1 Marginal screening + Lasso

The marginal screening+Lasso procedure was introduced in [7] as a variable selection method for

the ultra-high dimensional setting of p = O(e"k ). Fan et al. [7] recommend applying the marginal
screening algorithm with £ = n — 1, followed by the Lasso on the selected variables. This is a
two-stage procedure, so to properly account for the selection we must encode the selection event
of marginal screening followed by Lasso. This can be done by representing the two stage selection

as a single event. Let (S,,, §,,) be the variables and signs selected by marginal screening, and the
(5L, %1) be the variables and signs selected by Lasso [12]. In Proposition 2.2 of [12], it is shown
how to encode the Lasso selection event (Sr,2r) as a set of constraints {Ary < bz} *, and in

Section 4 we showed how to encode the marginal screening selection event (S, $,,,) as a set of
constraints {A,,y < b,,}. Thus the selection event of marginal screening+Lasso can be encoded
as {Ary < b, Amy < bp}. Using these constraints, the hypothesis test and confidence intervals
described in Algorithm 2 are valid for marginal screening+Lasso.

8.2 Orthogonal Matching Pursuit

Orthogonal matching pursuit (OMP) is a commonly used variable selection method. At each itera-
tion, OMP selects the variable most correlated with the residual r, and then recomputes the residual
using the residual of least squares using the selected variables. Similar to Section 4, we can represent
the OMP selection event as a set of linear constraints on y.

E(y) = {y: sign(zgim)x;m > :I:z]Tri, forall j # p; and all i € [k]}
= {y: izl (I - Xgi_lxgl Yy > a2t (I — Xgi_lxgi )y and

i—1 —1

simy (I — Xg XL )y>0,forallj# p;,andalli € [k] }
N 1= i—1
The selection event encodes that OMP selected a certain variable and the sign of the correlation of
that variable with the residual, at steps 1 to k. The primary difference between the OMP selection
event and the marginal screening selection event is that the OMP event also describes the order at
which the variables were chosen.

9 Conclusion

Due to the increasing size of datasets, marginal screening has become an important method for
fast variable selection. However, the standard hypothesis tests and confidence intervals used in
linear regression are invalid after using marginal screening to select important variables. We have
described a method to form confidence intervals after marginal screening. The condition on selection
framework is not restricted to marginal screening, and also applies to OMP and marginal screening
+ Lasso. The supplementary material also discusses the framework applied to non-negative least
squares.

*The Lasso selection event is with respect to the Lasso optimization problem after marginal screening.



References

(1]

(2]

(3]

(4]
(3]
(6]

(7]

(8]

(9]

(10]

(11]

[12]

(13]

(14]

[15]

(16]

(17]

(18]

(19]

(20]

[21]

(22]

(23]

(24]

[25]

[26]

Yoav Benjamini and Daniel Yekutieli. False discovery rate—adjusted multiple confidence intervals for
selected parameters. Journal of the American Statistical Association, 100(469):71-81, 2005.

Richard Berk, Lawrence Brown, Andreas Buja, Kai Zhang, and Linda Zhao. Valid post-selection infer-
ence. Annals of Statistics, 41(2):802-837, 2013.

Peter Bithlmann, Markus Kalisch, and Lukas Meier. High-dimensional statistics with a view toward
applications in biology. Statistics, 1, 2014.

Peter Lukas Biithlmann and Sara A van de Geer. Statistics for High-dimensional Data. Springer, 2011.
George Casella and Roger L Berger. Statistical inference, volume 70. Duxbury Press Belmont, CA, 1990.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. The Annals
of statistics, 32(2):407-499, 2004.

Jianqing Fan and Jinchi Lv. Sure independence screening for ultrahigh dimensional feature space. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 70(5):849-911, 2008.

Christopher R Genovese, Jiashun Jin, Larry Wasserman, and Zhigang Yao. A comparison of the lasso
and marginal regression. The Journal of Machine Learning Research, 98888:2107-2143, 2012.

Isabelle Guyon and André Elisseeff. An introduction to variable and feature selection. The Journal of
Machine Learning Research, 3:1157-1182, 2003.

Adel Javanmard and Andrea Montanari. Confidence intervals and hypothesis testing for high-dimensional
regression. arXiv preprint arXiv:1306.3171, 2013.

Jason Lee, Yuekai Sun, and Jonathan E Taylor. On model selection consistency of penalized m-estimators:
a geometric theory. In Advances in Neural Information Processing Systems, pages 342-350, 2013.

Jason D Lee, Dennis L Sun, Yuekai Sun, and Jonathan E Taylor. Exact inference after model selection
via the lasso. arXiv preprint arXiv:1311.6238, 2013.

Hannes Leeb and Benedikt M Pétscher. The finite-sample distribution of post-model-selection estimators
and uniform versus nonuniform approximations. Econometric Theory, 19(1):100-142, 2003.

Hannes Leeb and Benedikt M Potscher. Model selection and inference: Facts and fiction. Econometric
Theory, 21(1):21-59, 2005.

Hannes Leeb and Benedikt M Potscher. Can one estimate the conditional distribution of post-model-
selection estimators? The Annals of Statistics, pages 2554-2591, 2006.

Jeff  Leek. Prediction: the lasso vs just wusing the top 10 predic-
tors. http://simplystatistics.tumblr.com/post/18132467723/
prediction-the-lasso-vs—-Jjust-using-the-top-10.

Erich L. Lehmann and Joseph P. Romano. Testing Statistical Hypotheses. Springer, 3 edition, 2005.

Nicolai Meinshausen, Lukas Meier, and Peter Bithlmann. P-values for high-dimensional regression. Jour-
nal of the American Statistical Association, 104(488), 2009.

Sahand N Negahban, Pradeep Ravikumar, Martin J Wainwright, and Bin Yu. A unified framework
for high-dimensional analysis of m-estimators with decomposable regularizers. Statistical Science,
27(4):538-557, 2012.

Stephen Reid, Robert Tibshirani, and Jerome Friedman. A study of error variance estimation in lasso
regression. arXiv preprint arXiv:1311.5274, 2013.

Virginia Goss Tusher, Robert Tibshirani, and Gilbert Chu. Significance analysis of microarrays applied
to the ionizing radiation response. Proceedings of the National Academy of Sciences, 98(9):5116-5121,
2001.

Sara van de Geer, Peter Bithlmann, and Ya’acov Ritov. On asymptotically optimal confidence regions and
tests for high-dimensional models. arXiv preprint arXiv:1303.0518, 2013.

M.J. Wainwright. Sharp thresholds for high-dimensional and noisy sparsity recovery using ¢; -constrained
quadratic programming (lasso). 55(5):2183-2202, 2009.

Larry Wasserman and Kathryn Roeder. High dimensional variable selection. Annals of statistics,
37(5A):2178, 20009.

Cun-Hui Zhang and S Zhang. Confidence intervals for low-dimensional parameters with high-
dimensional data. arXiv preprint arXiv:1110.2563, 2011.

P. Zhao and B. Yu. On model selection consistency of lasso. 7:2541-2563, 2006.



