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Abstract

The idea that animals might use information-driven planning to explore an un-
known environment and build an internal model of it has been proposed for quite
some time. Recent work has demonstrated that agents using this principle can ef-
ficiently learn models of probabilistic environments with discrete, bounded state
spaces. However, animals and robots are commonly confronted with unbounded
environments. To address this more challenging situation, we study information-
based learning strategies of agents in unbounded state spaces using non-parametric
Bayesian models. Specifically, we demonstrate that the Chinese Restaurant Pro-
cess (CRP) model is able to solve this problem and that an Empirical Bayes ver-
sion is able to efficiently explore bounded and unbounded worlds by relying on
little prior information.

1 Introduction

Learning in animals involves the active gathering of sensor data, presumably selecting those sensor
inputs that are most useful for learning a model of the world. Thus, a theoretical framework for
the learning in agents, where learning itself is the primary objective, would be essential for making
testable predictions for neuroscience and psychology [9} [7], and it would also impact applications
such as optimal experimental design and building autonomous robots [3]].

It has been proposed that information theory-based objective functions, such as those based on the
comparison of learned probability distributions, could guide exploratory behavior in animals and ar-
tificial agents [[13, [18]]. Although reinforcement learning theory has largely advanced in describing
action planning in fully or partially observable worlds with a fixed reward function, e.g., [17], the
study of planning with internally defined and gradually decreasing reward functions has been rather
slow. A few recent studies [20} [11} [12] developed remarkably efficient action policies for learning
an internal model of an unknown fully observable world that are driven by maximizing an objec-
tive of predicted information gain. Although using somewhat different definitions of information
gain, the key insights of these studies are that optimization has to be non-greedy, with a longer time
horizon, and that gain in information also translates to efficient reward gathering. However, these
models are still quite limited and cannot be applied to agents in more realistic environments. They
only work in observable, discrete and bounded state spaces. Here, we relax one of these restric-
tions and present a model for unbounded, observable discrete state spaces. Using methods from
non-parametric Bayesian statistics, specifically the Chinese Restaurant Process (CRP), the resulting
agent can efficiently learn the structure of an unknown, unbounded state space. To our knowledge
this is the first use of CRPs to address this problem, however, CRPs have been introduced earlier to
reinforcement learning for other purposes, such as state clustering [2].



2 Model

2.1 Mathematical framework for embodied active learning

In this study we follow [[12]] and use Controlled Markov Chains (CMC) to describe how an agent
can interact with its environment in closed, embodied, action-perception loops. A CMC is a Markov
Chain with an additional control variable to allow for switching between different transition distri-
butions in each state, e.g. [6]]. Put differently, it is a Markov Decision Process (MDP) without the
reward function. A CMC is described by a 3-tuple (., &7, ©) where .# denotes a finite set of states,
&7 is a finite set of actions the agent can take, and © is a 3-dimensional CMC kernel describing the
transition probabilities between states for each action
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Like in [[12]] we consider the exploration task of the agent to be the formation of an accurate estimate,
or internal model ©, of the true CMC kernel, O, that describes its world.

2.2 Modeling the transition in unbounded state spaces

Let ¢ be the current number of observations of states S and K; be the number of different states
discovered so far. The observed counts are denoted by C; := {#1, ..., #xk, }.

Species sampling models have been proposed as generalizations of the Dirichlet process [[14], which
are interesting for non-parametric Bayesian inference in unbounded state spaces. A species sampling
sequence (SSS) describes the distribution of the next observation Sy 1. It is defined by
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with 65 a degenerate probability measure, see [10] for details. In order to define a valid SSS,
the sequence (p1, ps, ...) must sum to one and be an Exchangeable Partition Probability Function
(EPPF). The exchangeability condition requires that the probabilities depend only on the counts C',
not on the order of how the agent sampled the transitions.

Here we consider one of most common EPPF models in the literature, the Chinese Restaurant Pro-
cess (CRP) or Polya urn process [[1]. According to the CRP model, the probability of observing a
state is
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where (3) describes revisiting a state and () describes the undiscovered probability mass (UPM),
i.e., the probability of discovering a new state, which is then labeled K ;. In the following, the set
of undiscovered states will be denoted by . Using this formalism, the agent must define a separate
CRP for each state action pair s, a. The internal model is then described by

~

@sas’ :ps/|s,a(ct)7 (5)
updated according to . The ¢ index in O,y is suppressed for the sake of notational ease.

Our simplest agent uses a CRP (3] B) with fixed 6. Further, we will investigate an Empirical Bayes
CRP, referred to as EB-CRP, in which the parameter 6 is learned and adjusted from observations
online using a maximum likelihood estimate (MLE). This is similar to the approach of [22] but we
follow a more straightforward path and derive a MLE of 6 using the EPPF of the CRP and employing
an approximation of the harmonic series.

The likelihood of observing a given number of state counts is described by the EPPF of the CRP [8]
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Maximizing the log likelihood
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where (8) uses a closed form approximation of the harmonic series in (7) with Euler’s Mascheroni
constant . In our EB-CRP agent, the parameter 6 is updated after each observation according to

®).

2.3 Information-theoretic assessment of learning

Assessing or guiding the progress of the agent in the exploration process can be done by comparing
probability distributions. For example, the learning progress should increase the similarity between
the internal model, ©, of the agent and the true model, ©. A popular measure for comparing dis-
tributions of the same dimensions is the KL Divergence, Dy ,. However, in our case, with the size
of the underlying state space unknown and states being discovered successively in ©, models of
different sizes have to be compared.

To address this, we apply the following padding procedure to the smaller model with fewer discov-
ered states and transitions (Figure . If the smaller model, (:), has n undiscovered state transitions
from a known origin state, one splits the UPM uniformly into n equal probabilities (Figure[Th). The
resulting padded model is given by
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where |-%g_, | is the number of known states reachable from state s by taking action a in ©. Further,

if there are undiscovered origin states in (:), one adds such states and a uniform transition kernel to
potential target states (Figure [Tp).
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Figure 1: Illustration of the padding procedure for adding unknown states and state transitions
in a smaller, less informed model, @ of an unbounded environment in order to compare it with a
larger, better informed model, ©. (a) If transitions to target states are missing, we uniformly split the
UPM into equal transition probabilities to the missing target states, which are in fact the unknown
elements of the set ¢. (b) If a state is not discovered yet, we paste this state in with a uniform
transition distribution to all target states reachable in the larger model, ©.

With this type of padding procedure we can define a distance between two unequally sized models,
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and use it to extend previous information measures for assessing and guiding explorative learning
[12] to unbounded state spaces. First, we define Missing Information,
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a quantity an external observer can use for assessing the deficiency of the internal model of the agent
with respect to the true model. Second, we define Information Gain,

I (s,a,8') = I1(0]|©) — I1(0]|©%7"), (12)

a quantity measuring the improvement between two models, in this case, between the current internal

model of the agent, ©, and an improved one, ©%2~ which represents an updated model after
observing a new state transition from s to s’ under action a.

2.4 Predicted information gain

Predicted information gain (PIG) as used in [12] is the expected information gain for a given state
action pair. To extend the previous formula in [12]] to compute this expectation in the non-parametric
setting, we again make use of the padding procedure described in the last section
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Here, D p handles the case where the agent, during its planning, hypothetically discovers a new
target state, 1 € 1), from the state action pair, s, a. There is one small difference in calculating the
D g 1, p from the previous section, which is that in equation @P 6., 1s replaced by y(:)z,aaw,. Thus
the RHS of (13) can be computed internally by the agent for action planning as it does not contain
the true model, ©.

2.5 Value Iteration

When states of low information gain separate the agent from states of high information gain in the
environment, greedy maximization of PIG performs poorly. Thus, like in [12], we employ value
iteration using the Bellman equations [4]]. We begin at a distant time point (7 = 0) assigning initial
values to PIG. Then, we propogate backward in time calculating the expected reward.

Qo(s,a) := PIG(s,a) (14)
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With the discount factor, A, set to 0.95, one can define how actions are chosen by all our PIG agents

aprq = argmax Q_1o(s, a) o))

3 Experimental Results

Here we describe simulation experiments with our two models, CRP-PIG and EB-CRP-PIG, and
compare them with published approaches. The models are tested in environments defined in the
literature and also in an unbounded world.

First the agents were tested in a bounded maze environment taken from [12]] (Figure 2). The state
space in the maze consists of the || = 36 rooms. There are |.<7 | = 4 actions that correspond to noisy
translations in the four cardinal directions, drawn from a Dirichlet distribution. To make the task of
learning harder, 30 transporters are distributed amongst the walls which lead to an absorbing state
(state 29 marked by concentric rings in Figure[2). Absorbing states, such as at the bottom of gravity
wells, are common in real world environments and pose serious challenges for many exploration
algorithms [12].

We compare the learning strategies proposed here, CRP-PIG and EB-CRP-PIG, with the following
strategies:



Random action: A negative control, representing the minimally directed action policy that
any directed action policy should beat.

Least Taken Action (LTA): A well known explorative strategy that simply takes the action it
has taken least often in the current state [[16].

Counter-Based Exploration (CB): Another explorative strategy from the literature that at-
tempts to induce a uniform sampling across states [21]].

DP-PIG: The strategy of [12] which applies the same objective function as described here,
but is given the size of the state space and is therefore at an advantage. This agent uses a
Dirichlet process (DP) with « set to 0.20, which was found empirically to be optimal for the
maze environment.

Unembodied: An agent which can choose any action from any state at each time step (hence
unembodied) and can therefore attain the highest PIG possible at every sampling step. This
strategy represents a positive control.

6 | Figure 2: Bounded Maze environment. Two transition
distributions, O,., are depicted, one for (s=13, a=‘left’)
12 | and one for (s=9, a=‘up’). Dark versus light gray ar-

rows represent high versus low probabilities. For (s=13,
| 9 | a="‘left’), the agent moves with highest probability left
o into a transporter (blue line), leading it to the absorbing
state 29 (blue concentric rings). With smaller probabili-
30 | ties the agent moves up, down or is reflected back to its
current state by the wall to the right. The second transi-
s | tion distribution is displayed similarly.

Figure [3] depicts the missing information (TT)) in the bounded maze for the various learning strate-
gies over 3000 sampling steps averaged over 200 runs. All PIG-based embodied strategies exhibit
a faster decrease of missing information with sampling, however, still significantly slower than the
unembodied control. In this finite environment the DP-PIG agent with the correct Dirichlet prior
(experimentally optimized c-parameter) has an advantage over the CRP based agents and reduced
the missing information more quickly. However, the new strategies for unbounded state space still
outperform the competitor agents from the literature by far. Interestingly, EB-CRP-PIG with con-
tinuously adjusted 6 can reduce missing information significantly faster than CRP-PIG with fixed,
experimentally optimized 6§ = 0.25.
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Figure 3: Missing Information vs. Time for EB-CRP-PIG and several other strategies in the bounded
maze environment.

To directly assess how efficient learning translates to the ability to harvest reward, we consider the 5-
state “Chain” problem [19], shown in Figured] a popular benchmark problem. In this environment,
agents have two actions available, a and b, which cause transitions between the five states. At each
time step the agent “slips” and performs the opposite action with probability pg;, = 0.2. The agent
receives a reward of 2 for taking action b in any state and a reward of O for taking action a in



Figure 4: Chain Environment.

every state but the last, in which it receives a reward of 10. The optimal policy is to always choose
action a to reach the highest reward at the end of the chain, it is used as a positive control for this
experiment. We follow the protocol in previous publications and report the cumulative reward in
1000 steps, averaged over 500 runs. Our agent EB-CRP-PIG-R executes the EB-CRP-PIG strategy
for S steps, then computes the best reward policy given its internal model and executes it for the
remaining 1000-S steps. We found S=120 to be roughly optimal for our agent and display the
results of the experiment in Table [T} taking the results of the competitor algorithms directly from
the corresponding papers. The competitor algorithms define their own balance between exploitation
and exploration, leading to different results.

Method Reward
RAM-RMAX [5] | 2810
BOSS [2] 3003
exploit [15] 3078

Bayesian DP [19] | 3158 4 31
EB-CRP-PIG-R 3182 £25
Optimal 3658 + 14

Table 1: Cumulative reward for 1000 steps in the chain environment.

The EB-CRP-PIG-R agent is able to perform the best and significantly outperforms many of the
other strategies. This result is remarkable because the EB-CRP-PIG-R agent has no prior knowledge
of the state space size, unlike all the competitor models. We also note that our algorithm is extremely
efficient computationally, it must approximate the optimal policy only once and then simply execute
it. In comparison, the exploit strategy [15] must compute the approximation at each time step.
Further, we interpret our competitive edge over BOSS to reflect a more efficient exploration strategy.
Specifically, BOSS uses LTA for exploration and Figure [3] indicates that the learning performance
of LTA is far worse than the performance of the PIG-based models.
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Figure 5: Missing Information vs. Time for EB-CRP-PIG and CRP-PIG in the unbounded maze
environment.

Finally, we consider an unbounded maze environment with || being infinite and with multiple
absorbing states. Figure [5] shows the decrease of missing information (IT] for the two CRP based
strategies. Interestingly, like in the bounded maze the Empirical Bayes version reduces the missing
information more rapidly than a CRP which has a fixed, but experimentally optimized, parameter
value. What is important about this result is that EB-CRP-PIG is not only better but it requires no
prior parameter tuning since 6 is adjusted intrinsicially. Figure []shows how an EB-CRP-PIG and
an LTA agent explore the environment over 6000 steps. The missing information for each state is
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Figure 6: Unbounded Maze environment. Exploration is depicted for two different agents (a) EB-
CRP-PIG and (b) LTA, after 2000, 4000, and 6000 exploration steps respectively. Initially all states
are white (not depicted), which represent unexplored states. Transporters (blue lines) move the agent
to the closest gravity well (small blue concentric rings). The current position of the agent is indicated
by the purple arrow.

color coded, light yellow representing high missing information, and red representing low missing
information, less than 1 bit. Note that the EB-CRP-PIG agent explores a much bigger area than the
LTA agent.

The two agents are also tested in a reward task in the unbounded environment for assessing whether
the exploration of EB-CRP-PIG leads to efficient reward acquisition. Specifically, we assign a re-
ward to each state equal to the Euclidian distances from the starting state. Like for the Chain problem
before, we create two agents EB-CRP-PIG-R and LTA-R which each run for 1000 total steps, explor-
ing for S=750 steps (defined previously) and then calculating their best reward policy and executing
it for the remaining 250 steps. The agents are repositioned to the start state after S steps and the
best reward policy is calculated. The simulation results are shown in Table[2] Clearly, the increased
coverage of the EB-CRP-PIG agent also results in higher reward acquisition.

Method | Reward
EB-CRP-PIG-R | 1053
LTA-R 812

Table 2: Cumulative reward after 1000 steps in the unbounded maze environment.



4 Discussion

To be able to learn environments whose number of states is unknown or even unbounded is crucial
for applications in biology, as well as in robotics. Here we presented a principled information-based
strategy for an agent to learn a model of an unknown, unbounded environment. Specifically, the
proposed model uses the Chinese Restaurant Process (CRP) and a version of predicted information
gain (PIG) [12]], adjusted for being able to accommodate comparisons of models with different
numbers of states.

We evaluated our model in three different environments in order to assess its performance. In the
bounded maze environment the new algorithm performed quite similarly to DP-PIG despite being at
a disadvantage in terms of prior knowledge. This result suggests that agents exploring environments
of unknown size can still develop accurate models of it quite rapidly. Since the new model is based
on the CRP, calculating the posterior and sampling from it is easily tractable.

The experiments in a simple bounded reward task, the Chain environment, were equally encourag-
ing. Although the agent was unaware of the size of its environment, it was able to learn the states
and their transition probabilities quickly and retrieved a cumulative reward that was competitive with
published results. Some of the competitor strategies (exploit [[15]) required to recompute the best
reward policy for each step. In contrast, EB-CRP-PIG computed the best policy only once, yet, was
able to outperform the exploit [15] strategy.

In the unbounded maze environment, EB-CRP-PIG was able to outperform CRP-PIG even though
it required no prior parameter tuning. In addition, it covered much more ground during exploration
than LTA, one of the few existing competitor models able to function in unbounded environments.
Specifically, the EB-CRP-PIG model evenly explored a large number of environmental states. In
contrast, LTA, exhaustively explored a much smaller area limited by two nearby absorbing states.

Two caveats need to be mentioned. First, although the computational complexity of the CRP is low,
the complexity of the value iteration algorithm scales linearly with the number of states discovered.
Thus, tractability of value iteration is an issue in EB-CRP-PIG. A possible remedy to this problem
would be to only calculate value iteration for states that are reachable from the current state in the
calculated time horizon. Second, the described padding procedure implicitly sets a balance between
seeking to discover new state transitions versus sampling from known ones. For different goals or
environments this balance may not be optimal, a future investigation of alternatives for comparing
models of different sizes would be very interesting.

All told, the proposed novel models overcome a major limitation of information-based learning
methods, the assumption of a bounded state space of known size. Since the new models are based
on the CRP, sampling is quite tractable. Interestingly, by applying Empirical Bayes for continuously
updating the parameter of the CRP, we are able to build agents that can explore bounded or un-
bounded environments with very little prior information. For describing learning in animals, models
that easily adapt to diverse environments could be crucial. Of course, other restrictictions in these
models still need to be addressed, in particular, the limitation to discrete and fully observable state
spaces. For example, the need to act in continuous state spaces is obviously crucial for animals and
robots. Further, recent literature [[7] supports that information-based learning in partially observable
state spaces, like POMDPs [17], will be important to address applications in neuroscience.
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