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Abstract

We propose a Generalized Dantzig Selector (GDS) for linear models, in which any
norm encoding the parameter structure can be leveraged for estimation. We inves-
tigate both computational and statistical aspects of the GDS. Based on conjugate
proximal operator, a flexible inexact ADMM framework is designed for solving
GDS. Thereafter, non-asymptotic high-probability bounds are established on the
estimation error, which rely on Gaussian widths of the unit norm ball and the error
set. Further, we consider a non-trivial example of the GDS using k-support norm.
We derive an efficient method to compute the proximal operator for k-support
norm since existing methods are inapplicable in this setting. For statistical analy-
sis, we provide upper bounds for the Gaussian widths needed in the GDS analysis,
yielding the first statistical recovery guarantee for estimation with the k-support
norm. The experimental results confirm our theoretical analysis.

1 Introduction

The Dantzig Selector (DS) [3, 5] provides an alternative to regularized regression approaches such as
Lasso [19, 22] for sparse estimation. While DS does not consider a regularized maximum likelihood
approach, [3] has established clear similarities between the estimates from DS and Lasso. While
norm regularized regression approaches have been generalized to more general norms [14, 2], the
literature on DS has primarily focused on the sparse L; norm case, with a few notable exceptions
which have considered extensions to sparse group-structured norms [11].

In this paper, we consider linear models of the form y = X60* 4+ w, where y € R" is a set of
observations, X € R™*P is a design matrix with i.i.d. standard Gaussian entries, and w € R"
is i.i.d. standard Gaussian noise. For any given norm R(-), the parameter 8* is assumed to be
structured in terms of having a low value of R(6*). For this setting, we propose the following
Generalized Dantzig Selector (GDS) for parameter estimation:

6 = argmin R(0) st R*(XT(y —X0)) <\, , (1)
OcRP

where R*(-) is the dual norm of R(-), and A, is a suitable constant. If R(-) is the Ly norm, (1)

reduces to standard DS [5]. A key novel aspect of GDS is that the constraint is in terms of the dual

norm R*(-) of the original structure inducing norm R(-). It is instructive to contrast GDS with

the recently proposed atomic norm based estimation framework [6] which, unlike GDS, considers

constraints based on the Ly norm of the error ||y — X8||s.

In this paper, we consider both computational and statistical aspects of the GDS. For the L;-norm
Dantzig selector, [5] proposed a primal-dual interior point method since the optimization is a linear
program. DASSO and its generalization proposed in [10, 9] focused on homotopy methods, which
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provide a piecewise linear solution path through a sequential simplex-like algorithm. However, none
of the algorithms above can be immediately extended to our general formulation. In recent work,
the Alternating Direction Method of Multipliers (ADMM) has been applied to the L;-norm Dantzig
selection problem [12, 21], and the linearized version in [21] proved to be efficient. Motivated
by such results for DS, we propose a general inexact ADMM [20] framework for GDS where the
primal update steps, interestingly, turn out respectively to be proximal updates involving R(€) and
its convex conjugate, the indicator of R*(x) < \,. As aresult, by Moreau decomposition, it suffices
to develop efficient proximal update for either R(8) or its conjugate. On the statistical side, we
establish non-asymptotic high-probability bounds on the estimation error ||@ — 6*||2. Interestingly,
the bound depends on the Gaussian width of the unit norm ball of R(-) as well as the Gaussian width
of intersection of error cone and unit sphere [6, 16].

As a non-trivial example of the GDS framework, we consider estimation using the recently proposed
k-support norm [1, 13]. We show that proximal operators for k-support norm can be efficiently
computed in O(plogp + log klog(p — k)), and hence the estimation can be done efficiently. Note
that existing work [1, 13] on k-support norm has focused on the proximal operator for the square of
the k-support norm, which is not directly applicable in our setting. On the statistical side, we provide
upper bounds for the Gaussian widths of the unit norm ball and the error cone as needed in the GDS
framework, yielding the first statistical recovery guarantee for estimation with the k-support norm.

The rest of the paper is organized as follows: We establish general optimization and statistical
recovery results for GDS for any norm in Section 2. In Section 3, we present efficient algorithms
and estimation error bounds for the k-support norm. We present experimental results in Section 4
and conclude in Section 5. All technical analysis and proofs can be found in [7].

2 General Optimization and Statistical Recovery Guarantees

The problem in (1) is a convex program, and a suitable choice of A, ensures that the feasible set
is not empty. We start the section with an inexact ADMM framework for solving problems of the
form (1), and then present bounds on the estimation error establishing statistical consistency of GDS.

2.1 General Optimization Framework using Inexact ADMM

For convenience, we temporarily drop the subscript p of \,. We let A = X7X, b = X'y, and
define the set Cy = {v : R*(v) < A}. The optimization problem is equivalent to

rgin R(O) st.b—AO=v,veCl,. 2)

Due to the nonsmoothness of both R and R*, solving (2) can be quite challenging and a generally
applicable algorithm is Alternating Direction Method of Multipliers (ADMM) [4]. The augmented
Lagrangian function for (2) is given as

cR(a,v,z):R(e)+<z,Ae+v—b>+g||Aa+v—b||g, 3)

where z is the Lagrange multiplier and p controls the penalty introduced by the quadratic term. The
iterative updates of the variables (6, v, z) in standard ADMM are given by

0" « argmin L (0,v",z") , )
0
vPTl « argmin Lz (05T, v, 2") ©)
vely
2" 2F 4 p(AGFTL 4 VR b)) . (6)

Note that update (4) amounts to a norm regularized least squares problem for @, which can be
computationally expensive. Thus we use an inexact update for € instead, which can alleviate the
computational cost and lead to a quite simple algorithm. Inspired by [21, 20], we consider a simpler
subproblem for the 8-update which minimizes

£ (0,vF, 2) = R(0) + (2", A +vF —b) + g(HAO’“ +vE— b+

2(0 — 0, AT(AG* +vF — b)) + gHO - 9k||§) )



Algorithm 1 ADMM for Generalized Dantzig Selector

Input: A =X"X,b=X"y,p, u
QOutput: Optimal 0 of (1)
: Initialize (0, v, z)
: while not converged do
0"*+! « proxax (0% — 2AT(AG" +vF — b+ Z))
P '

k

1
2
3
4: vkl proxy, (b— AGF+ — =)
5
6

P
. zFt1l  Zk 4 p(AekJrl + v+l b)
: end while

where 1 is a user-defined parameter. Z%(O,vk,zk) can be viewed as an approximation of
L% (0,v", z") with the quadratic term linearized at @*. Then the update (4) is replaced by

0"t « argmin E%(O,vk,zk)
0
8)
2R(0) 1 2 UNE (
— argmin {L +5[o- (0" - ZaT@e + v —b+ 2 } .
) Pl 2 1% p iz
Similarly the update of v in (5) can be recast as
k+1 : k+1 k 1 k+1 z" 2
VP ¢ argmin Lz (07, v,z ):argmm—Hv—(b—AO __)Hg' ©)
vely vee, 2 p

In fact, the updates of both 8 and v are to compute certain proximal operators [15]. In general, the
proximal operator prox;, () of a closed proper convex function i : R” — R U {400} is defined as

1
prox,(x) = argmin {—Hw — x5 + h(w)} .
were L2

Hence it is easy to see that (8) and (9) correspond to prox 2= (-) and proxy e (+), respectively, where
I
I, (+) is the indicator function of set Cy given by

{0 if x€Cy
Ie, (X) - { +00 if otherwise

In Algorithm 1, we provide our general ADMM for the GDS. For the ADMM to work, we need two
subroutines that can efficiently compute the proximal operators for the functions in Line 3 and 4
respectively. The simplicity of the proposed approach stems from the fact that we in fact need only
one subroutine, for any one of the functions, since the functions are conjugates of each other.

Proposition 1 Given 3 > 0 and anormR(-), the two functions, f(x) = fR(x) and g(x) = I¢,(x)
are convex conjugate to each other, thus giving the following identity,

X = prox(x) + prox,(x) . (10)

Proof: The Proposition 1 simply follows from the definition of convex conjugate and dual norm,
and (10) is just Moreau decomposition provided in [15]. ]

The decomposition enables conversion of the two types of proximal operator to each other at neg-
ligible cost (i.e., vector subtraction). Thus we have the flexibility in Algorithm 1 to focus on the
proximal operator that is efficiently computable, and the other can be simply obtained through (10).

Remark on convergence: Note that Algorithm 1 is a special case of inexact Bregman ADMM pro-
posed in [20], which matches the case of linearizing quadratic penalty term by using B, (0,0,) =
£]/@ — 65|3 as Bregman divergence. In order to converge, the algorithm requires & to be larger than
the spectral radius of AT A, and the convergence rate is O(1/T) according to Theorem 2 in [20].



2.2 Statistical Recovery for Generalized Dantzig Selector

Our goal is to provide non-asymptotic bounds on 16 — o H2 between the true parameter 8* and

the minimizer 6 of (1). Let the error vector be defined as A = 6 — 0*. For any set 2 C RP, we
would measure the size of this set using its Gaussian width [17, 6], which is defined as w () =
Eg [sup,c(g,2)] , where g is a vector of i.i.d. standard Gaussian entries. We also consider the

error cone T (0*), generated by the set of possible error vectors A and containing A, defined as
Tr(0") :=cone{A € RP : R(0"+ A) <R(6")} . (11)

Note that this set contains a restricted set of directions and does not in general span the entire space
of RP. With these definitions, we obtain our main result.

Theorem 1 Suppose that both design matrix X and noise w consists of i.i.d. Gaussian entries with
zero mean variance 1 and X has normalized columns, i.e. |XW|o =1, j = 1,...,p. If we solve
the problem (1) with

Ap > cE[RY(XTw)] , (12)

where ¢ > 1 is a constant, then, with probability at least (1 — 11 exp(—mn2n)), we have
R(0)Ap
(bn — w(Tr(0%)NSP1)) 7

where w(Tr (0%) NSP~1) is the Gaussian width of the intersection of the error cone T (0*) and the
unit spherical shell SP~1, and ¢,, is the expected length of a length n i.i.d. standard Gaussian vector
with \/7 <lp < +/n, and n1,n2 > 0 are constants.

16 — 6%[|> < (13)

Remark: The choice of A, is also intimately connected to the notion of Gaussian width. Note that
for X with unit length columns, XTw = zis an i.i.d. standard Gaussian vector. Therefore the right
hand side of (12) can be written as

E[R*(X"w)] =E

sup <u,z)] =w({u: R(u) <1}), (14)

u: R(u)<1
which is the Gaussian width of the unit ball of the norm R(-).

Example: L;-norm Dantzig Selector When R(-) is chosen to be L; norm, the dual norm is the
Lo, norm, and (1) is reduced to the standard DS, given by

é:al;gmin”@”l st [ XT(y — X0)||oo < . (15)
€Rp

We know that proxg.|, () is given by the elementwise soft-thresholding operation

[prOXBH~H1(X)]i = sign(x;) - max(0, |x;| — B) . (16)
Based on Proposition 1, the ADMM updates in Algorithm 1 can be instantiated as

2 ) k
0k+1(—proxM(gk_;AT(AOk_’_vk_u_i_Z?))’

2

k
Z_),

k
Vil (u— AGFTT — %) — ProxX, .|, (u—AGM! — 5

Zk-i—l . Zk 4 p(Aek-i-l + Vk’—i—l _ u) ,

where the update of v leverages the decomposition (10). Similar updates were used in [21] for
L1-norm Dantzig selector.

For statistical recovery, we assume that 8* is s-sparse, i.e., contains s non-zero entries, and that
[|6*]|2 = 1, so that ||@*||; < s. It was shown in [6] that the Gaussian width of the set (77, (0*) N
SP=1) is upper bounded as w(7Tz, (8*)NSP~1)? < 2slog (2) 4 2s. Also note that E [R*(XTw)| =



E[||XTw||s] < logp, since XT'w is a vector of i.i.d. standard Gaussian entries [5]. Therefore, if
we solve (15) with A, = 2logp, then

. 32(|60%||1 L 1
66, < VA ls g [sloep ()
(ﬁn —y/2slog (2) + %s) n

with high probability, which agrees with known results for DS [3, 5].

3 Dantzig Selection with £-support norm

We first introduce some notations. Given any 6 € RP, let |@| denote its absolute-valued counterpart
and @+ denote the permutation of @ with its elements arranged in decreasing order. In previous
work [1, 13], the k-support norm has been defined as

1617 =min{ Y frlla : supp(vr) ST, > wr=6, (18)
Ieg®) Ieg®)

where G(*) denotes the set of subsets of {1,...,p} of cardinality at most k. The unit ball of this
norm is the set Cy, = conv {0 € RP : ||@||p < k,||0]|2 < 1} . The dual norm of the k-support norm
is given by

: ;
101" = max {|l6cll> : G eg®} = <ZIOI%> : (19)
i=1

Note that k£ = 1 gives the L; norm and its dual norm is L., norm. The k-support norm was
proposed in order to overcome some of the empirical shortcomings of the elastic net [23] and the
(group)-sparse regularizers. It was shown in [1] to behave similarly as the elastic net in the sense
that the unit norm ball of the k-support norm is within a constant factor of v/2 of the unit elastic net
ball. Although multiple papers have reported good empirical performance of the k-support norm on
selecting correlated features, where L regularization fails, there exists no statistical analysis of the
k-support norm. Besides, current computational methods consider square of k-support norm in their
formulation, which might fail to work out in certain cases.

In the rest of this section, we focus on GDS with R(8) = [|6||;” given as

6 = argmin |07 st [XT(y —XO)F <A, . (20)
OcERP

For the indicator function I¢, (-) of the dual norm, we present a fast algorithm for computing its
proximal operator by exploiting the structure of its solution, which can be directly plugged in Al-
gorithm 1 to solve (20). Further, we prove statistical recovery bounds for k-support norm Dantzig
selection, which hold even for a high-dimensional scenario, where n < p.

3.1 Computation of Proximal Operator

In order to solve (20), either prox, . =»(-) or proxy e (-) for || - [I;7 " should be efficiently com-

putable. Existing methods [1, 13] are inapplicable to our scenario since they compute the proximal
operator for squared k-support norm, from which prox; e (+) cannot be directly obtained. In Theo-

rem 2, we show that proxy ey (+) can be efficiently computed, and thus Algorithm 1 is applicable.

Theorem 2 Given A > 0 and x € RP?, if”X”zp* < A then w* = proxy, (x) =x IfoHZ,p* >\

define Agp = 30 .1 |x Y By =30 (Ix[})? inwhich 0 < s < kand k < r < p, and construct

the nonlinear equation of f3,

2

L+5 N1 482+ B, =0. @1

2
(k_s)Asr T—S+(k—8),8



Let B, be given by

B = nonnegative root of (21) if s > 0 and the root exists 22)
1 0 otherwise
Then the proximal operator w* = prox; e (x) is given by
il f1<i<s
[22—B,« e X _
|W*|¢ _ Th—s* if s*<i1<r andﬂs*r* =0 (23)
v A px . * . % )
r*fs*Jr(Ibcfys*)ﬂS*,,* lf st<i<r and 65*7’* >0
x|¥ if r* <i<p
where the indices s* and r* with computed |w*|* satisfy the following two inequalities:
W e > w7 (24)
Ix|hyy < [WFE < [x[ (25)

There might be multiple pairs of (s, r) satisfying the inequalities (24)-(25), and we choose the pair
with the smallest |||x|* — |w|*||2. Finally, w* is obtained by sign-changing and reordering |w*|* to
conform to X.

Remark: The nonlinear equation (21) is quartic, for which we can use general formula to get all the
roots [18]. In addition, if it exists, the nonnegative root is unique, as shown in the proof [7].

Theorem 2 indicates that computing proxy, () requires sorting of entries in |x| and a two-
dimensional search of s* and r*. Hence the total time complexity is O(plogp + k(p — k)). How-
ever, a more careful observation can particularly reduce the search complexity from O(k(p — k)) to
O(log k log(p — k)), which is motivated by Theorem 3.

Theorem 3 In search of (s*, r*) defined in Theorem 2, there can be only one 7 for a given candidate
S of s*, such that the inequality (25) is satisfied. Moreover if such v exists, then for any r < T, the
associated |v~v|i violates the first part of (25), and for r > T, v~v|i violates the second part of (25).
On the other hand, based on the 7, we have following assertion of s*,

> 5 IfT does not exist
§ If T exists and corresponding |v~v|t satisfies (24) . (26)
§ If T exists but corresponding |v~v|t violates (24)

Based on Theorem 3, the accelerated search procedure for finding (s*, r*) is to execute a two-
dimensional binary search, and Algorithm 2 gives the details. Therefore the total time complexity
becomes O(plogp + log klog(p — k)). Compared with previous proximal operators for squared
k-support norm, this complexity is better than that in [1], and roughly the same as the one in [13].

3.2 Statistical Recovery Guarantees for k-support norm

The analysis of the generalized Dantzig Selector for k-support norm consists of addressing two key
challenges. First, note that Theorem 1 requires an appropriate choice of \,. Second, one needs
to compute the Gaussian width of the subset of the error set T (8*) N SP~L. For the k-support
norm, we can get upper bounds to both of these quantities. We start by defining some notation. Let
G* C G be the set of groups intersecting with the support of 8*, and let S be the union of groups
in G*, such that s = |.S|. Then, we have the following bounds which are used for choosing \,, and
bounding the Gaussian width.

Theorem 4 For the k-support norm Generalized Dantzig Selection problem (20), we obtain

E [R*(X"w)] <k ( 2log () + 1)2 @7)

W(Tr(0°) NSP~1)? < <\/2klog (k- m +2) + \/E>2 : m ts. (28)



Algorithm 2 Algorithm for computing proxy, (-) of || - I3 ’

Input: x, k, A
Output: w* = proxy, (x)

1 if ||x[|37" < A then

2. whi=x

3: else

4 1:=0,u:=k—1,and sort |x| to get |x|*

5:  while! <wudo

6: §:= | (I 4+ w)/2], and binary search for 7 that satisfies (25) and compute W based on (23)
7 if 7 does not exist then

8: [:==5+1

9: else if 7 exists and (24) is satisfied then
10: wfi=w,l:=5+1
11: else if 7 exists but (24) is not satisfied then
12: u:=5—1

13: end if

14:  end while

15: end if

Our analysis technique for these bounds follows [16]. Similar results were obtained in [8] in the
context of calculating norms of Gaussian vectors, and our bounds are of the same order as those

2
of [8]. Choosing )\, = 2k (,/QIOg (ek—p) + 1) , and under the assumptions of Theorem 1, we
obtain the following result on the error bound for the minimizer of (20).

Corollary 1 Suppose that we obtain i.i.d. Gaussian measurements X, and the noise w is i.i.d.
N(0,1). If we solve (20) with \, chosen as above. Then, with high probability, we obtain

VETOTTY (\/2k10g () + VE) o [V (®) + VEE .
G a(TR@) NS D) i W

Remark The error bound provides a natural interpretation for the two special cases of the k-support
norm, viz. k = 1 and k = p. First, for £ = 1 the k-support norm is exactly the same as the L; norm,

16 — 67> <

and the error bound obtained will be O = lj’f P ) the same as known results of DS, and shown in

Section 2.2. Second, for & = p, the k-support norm is equal to the Lo norm, and the error cone (11)
is then simply a half space (there is no structural constraint) and the error bound scales as O(\ / %)

4 Experimental Results

On the optimization side, we focus on the efficiency of different proximal operators related to k-
support norm. On the statistical side, we concentrate on the behavior and performance of GDS with
k-support norm. All experiments are implemented in MATLAB.

4.1 Efficiency of Proximal Operator

We tested four proximal operators related to k-support norm, which are normal prox; ey (+) in The-
orem 2 and the accelerated one in Theorem 3, pI'OXﬁ(”,”;p)z(') in [1], and prox%”,”%_)(-) in [13].
The dimension p of vector varied from 1000 to 10000, and the ratio p/k = {200, 100, 50,20}. As
illustrated in Figure 1, the speedup of accelerated proxy ey (+) is considerable compared with the
normal one and prox . =)z (+). Tt is also slightly better than the ProXy |2 ).

4.2 Statistical Recovery on Synthetic Data

Data generation We fixed p = 600, and 6* = (10,...,10,10,...,10,10,...,10,0,0,...,0)
—— —— — — — —
10 10 10 570

throughout the experiment, in which nonzero entries were divided equally into three groups. The
design matrix X were generated from a normal distribution such that the entries in the same group



p/k=200 p/k=100 p/k=50 p/k=20

0 : 0 0
g - 2 g -
8- , 8- 52
-3 -3 -3
5000 0000 5000 0000 5000 000 5000 10000
p p p p

Figure 1: Efficiency of proximal operators. Diamond: prox, () in Theorem 2, Square: prox#(u,“}?p)z ()
in [1], Downward-pointing triangle: prox x 12 (+) in [13], Upward-pointing triangle: accelerated prox; ey )
AN

in Theorem 3. For each (p, k), 200 vectors are randomly generated for testing. Time is measured in seconds.
have the same mean sampled from A (0, 1). X was normalized afterwards. The response vector y
was given by y = X60* 4+ 0.01 x A/(0,1). The number of samples n is specified later.

ROC curves with different k& We fixed n = 400 to obtain the ROC plot for k£ = {1,10,50} as
shown in Figure 2(a). A, ranged from 1072 to 10%. Small k gets better ROC curve.

TPR

£y error : ||0 — 072
£y error : || — 675

(a) ROC curves (b) Lo error vs. n (c) Lo error vs. k

Figure 2: (a) The true positive rate reaches 1 quite early for £ = 1,10. When k£ = 50, the ROC gets worse
due to the strong smoothing effect introduced by large k. (b) For each k, the Lo error is large when the sample
is inadequate. As n increases, the error decreases dramatically for £ = 1,10 and becomes stable afterwards,
while the decrease is not that significant for £ = 50 and the error remains relatively large. (c) Both mean and
standard deviation of Lo error are decreasing as k increases until it exceeds the number of nonzero entries in
6", and then the error goes up for larger k.

L error vs. n. We investigated how the Ly error || — 6% ||, of Dantzig selector changes as the
number of samples increases, where k = {1, 10,50} and n = {30, 60,90, ...,300}. k£ = 1, 10 give
small errors when n is sufficiently large.

Ly error vs. k We also looked at the Lo error with different k. We again fixed n = 400 and
varied k from 1 to 39. For each k, we repeated the experiment 100 times, and obtained the mean and
standard deviation plot in Figure 2(c). The result shows that the k-support-norm GDS with suitable
k outperforms the L;-norm DS (i.e. £ = 1) when correlated variables present in data.

5 Conclusions

In this paper, we introduced the GDS, which generalizes the standard L;-norm Dantzig selector to
estimation with any norm, such that structural information encoded in the norm can be efficiently
exploited. A flexible framework based on inexact ADMM is proposed for solving the GDS, which
only requires one of conjugate proximal operators to be efficiently solved. Further, we provide a
unified statistical analysis framework for the GDS, which utilizes Gaussian widths of certain re-
stricted sets for proving consistency. In the non-trivial example of k-support norm, we showed that
the proximal operators used in the inexact ADMM can be computed more efficiently compared to
previously proposed variants. Our statistical analysis for the k-support norm provides the first result
of consistency of this structured norm. Further, experimental results provided sound support to the
theoretical development in the paper.
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