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Abstract

In Learning with Label Proportions (LLP), the objective is to learn a supervised
classifier when, instead of labels, only label proportions for bags of observations
are known. This setting has broad practical relevance, in particular for privacy
preserving data processing. We first show that the mean operator, a statistic which
aggregates all labels, is minimally sufficient for the minimization of many proper
scoring losses with linear (or kernelized) classifiers without using labels. We pro-
vide a fast learning algorithm that estimates the mean operator via a manifold
regularizer with guaranteed approximation bounds. Then, we present an itera-
tive learning algorithm that uses this as initialization. We ground this algorithm
in Rademacher-style generalization bounds that fit the LLP setting, introducing
a generalization of Rademacher complexity and a Label Proportion Complexity
measure. This latter algorithm optimizes tractable bounds for the corresponding
bag-empirical risk. Experiments are provided on fourteen domains, whose size
ranges up to ≈300K observations. They display that our algorithms are scalable
and tend to consistently outperform the state of the art in LLP. Moreover, in many
cases, our algorithms compete with or are just percents of AUC away from the
Oracle that learns knowing all labels. On the largest domains, half a dozen pro-
portions can suffice, i.e. roughly 40K times less than the total number of labels.

1 Introduction

Machine learning has recently experienced a proliferation of problem settings that, to some extent,
enrich the classical dichotomy between supervised and unsupervised learning. Cases as multiple
instance labels, noisy labels, partial labels as well as semi-supervised learning have been studied
motivated by applications where fully supervised learning is no longer realistic. In the present work,
we are interested in learning a binary classifier from information provided at the level of groups of
instances, called bags. The type of information we assume available is the label proportions per
bag, indicating the fraction of positive binary labels of its instances. Inspired by [1], we refer to this
framework as Learning with Label Proportions (LLP). Settings that perform a bag-wise aggregation
of labels include Multiple Instance Learning (MIL) [2]. In MIL, the aggregation is logical rather
than statistical: each bag is provided with a binary label expressing an OR condition on all the labels
contained in the bag. More general setting also exist [3] [4] [5].
Many practical scenarios fit the LLP abstraction. (a) Only aggregated labels can be obtained due to
the physical limits of measurement tools [6] [7] [8] [9]. (b) The problem is semi- or unsupervised
but domain experts have knowledge about the unlabelled samples in form of expectation, as pseudo-
measurement [5]. (c) Labels existed once but they are now given in an aggregated fashion for
privacy-preserving reasons, as in medical databases [10], fraud detection [11], house price market,
election results, census data, etc. . (d) This setting also arises in computer vision [12] [13] [14].

Related work. Two papers independently introduce the problem, [12] and [9]. In the first the authors
propose a hierarchical probabilistic model which generates labels consistent with the proportions,
and make inference through MCMC sampling. Similarly, the second and its follower [6] offer a
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variety of standard machine learning methods designed to generate self-consistent labels. [15] gives
a Bayesian interpretation of LLP where the key distribution is estimated through an RBM. Other
ideas rely on structural learning of Bayesian networks with missing data [7], and on K-MEANS clus-
tering to solve preliminary label assignment in order to resort to fully supervised methods [13] [8].
Recent SVM implementations [11] [16] outperform most of the other known methods. Theoretical
works on LLP belong to two main categories. The first contains uniform convergence results, for the
estimators of label proportions [1], or the estimator of the mean operator [17]. The second contains
approximation results for the classifier [17]. Our work builds upon their Mean Map algorithm, that
relies on the trick that the logistic loss may be split in two, a convex part depending only on the
observations, and a linear part involving a sufficient statistic for the label, the mean operator. Being
able to estimate the mean operator means being able to fit a classifier without using labels. In [17],
this estimation relies on a restrictive homogeneity assumption that the class-conditional estimation
of features does not depend on the bags. Experiments display the limits of this assumption [11][16].

Contributions. In this paper we consider linear classifiers, but our results hold for kernelized for-
mulations following [17]. We first show that the trick about the logistic loss can be generalized,
and the mean operator is actually minimally sufficient for a wide set of “symmetric” proper scoring
losses with no class-dependent misclassification cost, that encompass the logistic, square and Mat-
sushita losses [18]. We then provide an algorithm, LMM, which estimates the mean operator via a
Laplacian-based manifold regularizer without calling to the homogeneity assumption. We show that
under a weak distinguishability assumption between bags, our estimation of the mean operator is
all the better as the observations norm increase. This, as we show, cannot hold for the Mean Map
estimator. Then, we provide a data-dependent approximation bound for our classifier with respect
to the optimal classifier, that is shown to be better than previous bounds [17]. We also show that
the manifold regularizer’s solution is tightly related to the linear separability of the bags. We then
provide an iterative algorithm, AMM, that takes as input the solution of LMM and optimizes it fur-
ther over the set of consistent labelings. We ground the algorithm in a uniform convergence result
involving a generalization of Rademacher complexities for the LLP setting. The bound involves
a bag-empirical surrogate risk for which we show that AMM optimizes tractable bounds. All our
theoretical results hold for any symmetric proper scoring loss. Experiments are provided on four-
teen domains, ranging from hundreds to hundreds of thousands of examples, comparing AMM and
LMM to their contenders: Mean Map, InvCal [11] and ∝SVM [16]. They display that AMM and
LMM outperform their contenders, and sometimes even compete with the fully supervised learner
while requiring few proportions only. Tests on the largest domains display the scalability of both
algorithms. Such experimental evidence seriously questions the safety of privacy-preserving sum-
marization of data, whenever accurate aggregates and informative individual features are available.
Section (2) presents our algorithms and related theoretical results. Section (3) presents experiments.
Section (4) concludes. A Supplementary Material [19] includes proofs and additional experiments.

2 LLP and the mean operator: theoretical results and algorithms

Learning setting Hereafter, boldfaces like p denote vectors, whose coordinates are denoted pl for
l = 1, 2, .... For any m ∈ N∗, let [m]

.
= {1, 2, ...,m}. Let Σm

.
= {σ ∈ {−1, 1}m} and X ⊆ Rd.

Examples are couples (observation, label) ∈ X × Σ1, sampled i.i.d. according to some unknown
but fixed distribution D. Let S .

= {(xi, yi), i ∈ [m]} ∼ Dm denote a size-m sample. In Learning
with Label Proportions (LLP), we do not observe directly S but S|y , which denotes S with labels
removed; we are given its partition in n > 0 bags, S|y = ∪jSj , j ∈ [n], along with their respective
label proportions π̂j

.
= P̂[y = +1|Sj ] and bag proportions p̂j

.
= mj/m with mj = card(Sj). (This

generalizes to a cover of S, by copying examples among bags.) The “bag assignment function” that
partitions S is unknown but fixed. In real world domains, it would rather be known, e.g. state, gender,
age band. A classifier is a function h : X → R, from a set of classifiers H. HL denotes the set of
linear classifiers, noted hθ(x)

.
= θ>x with θ ∈ X. A (surrogate) loss is a function F : R → R+.

We let F (S, h)
.
= (1/m)

∑
i F (yih(xi)) denote the empirical surrogate risk on S corresponding to

loss F . For the sake of clarity, indexes i, j and k respectively refer to examples, bags and features.

The mean operator and its minimal sufficiency We define the (empirical) mean operator as:

µS
.
=

1

m

∑
i

yixi . (1)
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Algorithm 1 Laplacian Mean Map (LMM)

Input Sj , π̂j , j ∈ [n]; γ > 0 (7); w (7); V (8); permissible φ (2); λ > 0;
Step 1 : let B̃

± ← arg minX∈R2n×d `(L,X) using (7) (Lemma 2)
Step 2 : let µ̃S ←

∑
j p̂j(π̂j b̃

+
j − (1− π̂j)b̃−j )

Step 3 : let θ̃∗ ← arg minθ Fφ(S|y,θ, µ̃S) + λ‖θ‖22 (3)
Return θ̃∗

Table 1: Correspondence between permissible functions φ and the corresponding loss Fφ.

loss name Fφ(x) −φ(x)

logistic loss log(1 + exp(−x)) −x log x− (1− x) log(1− x)
square loss (1− x)2 x(1− x)

Matsushita loss −x+
√

1 + x2
√
x(1− x)

The estimation of the mean operator µS appears to be a learning bottleneck in the LLP setting
[17]. The fact that the mean operator is sufficient to learn a classifier without the label information
motivates the notion of minimal sufficient statistic for features in this context. Let F be a set of
loss functions, H be a set of classifiers, I be a subset of features. Some quantity t(S) is said to be
a minimal sufficient statistic for I with respect to F and H iff: for any F ∈ F, any h ∈ H and
any two samples S and S′, the quantity F (S, h) − F (S′, h) does not depend on I iff t(S) = t(S′).
This definition can be motivated from the one in statistics by building losses from log likelihoods.
The following Lemma motivates further the mean operator in the LLP setting, as it is the minimal
sufficient statistic for a broad set of proper scoring losses that encompass the logistic and square
losses [18]. The proper scoring losses we consider, hereafter called “symmetric” (SPSL), are twice
differentiable, non-negative and such that misclassification cost is not label-dependent.

Lemma 1 µS is a minimal sufficient statistic for the label variable, with respect to SPSL and HL.

([19], Subsection 2.1) This property, very useful for LLP, may also be exploited in other weakly
supervised tasks [2]. Up to constant scalings that play no role in its minimization, the empirical
surrogate risk corresponding to any SPSL, Fφ(S, h), can be written with loss:

Fφ(x)
.
=

φ(0) + φ?(−x)

φ(0)− φ(1/2)

.
= aφ +

φ?(−x)

bφ
, (2)

and φ is a permissible function [20, 18], i.e. dom(φ) ⊇ [0, 1], φ is strictly convex, differentiable and
symmetric with respect to 1/2. φ? is the convex conjugate of φ. Table 1 shows examples of Fφ. It
follows from Lemma 1 and its proof, that any Fφ(Sθ), can be written for any θ ≡ hθ ∈ HL as:

Fφ(S,θ) =
bφ
2m

(∑
i

∑
σ

Fφ(σθ>xi)

)
− 1

2
θ>µS

.
= Fφ(S|y,θ,µS) , (3)

where σ ∈ Σ1.

The Laplacian Mean Map (LMM) algorithm The sum in eq. (3) is convex and differentiable
in θ. Hence, once we have an accurate estimator of µS, we can then easily fit θ to minimize
Fφ(S|y,θ,µS). This two-steps strategy is implemented in LMM in algorithm 1. µS can be retrieved
from 2n bag-wise, label-wise unknown averages bσj :

µS = (1/2)

n∑
j=1

p̂j
∑
σ∈Σ1

(2π̂j + σ(1− σ))bσj , (4)

with bσj
.
= ES[x|σ, j] denoting these 2n unknowns (for j ∈ [n], σ ∈ Σ1), and let bj

.
=

(1/mj)
∑
xi∈Sj

xi. The 2n bσj s are solution of a set of n identities that are (in matrix form):

B − Π>B± = 0 , (5)
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where B
.
= [b1|b2|...|bn]> ∈ Rn×d, Π

.
= [DIAG(π̂)|DIAG(1 − π̂)]> ∈ R2n×n and B± ∈ R2n×d is

the matrix of unknowns:

B±
.
=

[
b+1

1 |b+1
2 |...|b+1

n︸ ︷︷ ︸
(B+

)>

∣∣∣ b-1
1 |b-1

2 |...|b-1
n︸ ︷︷ ︸

(B–
)>

]>
. (6)

System (5) is underdetermined, unless one makes the homogeneity assumption that yields the Mean
Map estimator [17]. Rather than making such a restrictive assumption, we regularize the cost that
brings (5) with a manifold regularizer [21], and search for B̃

±
= arg minX∈R2n×d `(L,X), with:

`(L,X)
.
= tr

(
(B> − X>Π)Dw(B − Π>X)

)
+ γtr

(
X>LX

)
, (7)

and γ > 0. Dw
.
= DIAG(w) is a user-fixed bias matrix with w ∈ Rn+,∗ (and w 6= p̂ in general) and:

L
.
= εI +

[
La | 0
0 | La

]
∈ R2n×2n , (8)

where La
.
= D − V ∈ Rn×n is the Laplacian of the bag similarities. V is a symmetric similarity

matrix with non negative coordinates, and the diagonal matrix D satisfies djj
.
=
∑
j′ vjj′ ,∀j ∈ [n].

The size of the Laplacian is O(n2), which is very small compared to O(m2) if there are not many
bags. One can interpret the Laplacian regularization as smoothing the estimates of bσj w.r.t the
similarity of the respective bags.

Lemma 2 The solution B̃
± to minX∈R2n×d `(L,X) is B̃

±
=
(
ΠDwΠ> + γL

)−1
ΠDwB.

([19], Subsection 2.2). This Lemma explains the role of penalty εI in (8) as ΠDwΠ> and L have
respectively n- and (≥ 1)-dim null spaces, so the inversion may not be possible. Even when this does
not happen exactly, this may incur numerical instabilities in computing the inverse. For domains
where this risk exists, picking a small ε > 0 solves the problem. Let b̃σj denote the row-wise
decomposition of B̃

± following (6), from which we compute µ̃S following (4) when we use these
2n estimates in lieu of the true bσj . We compare µj

.
= π̂jb

+
j −(1− π̂j)b−j ,∀j ∈ [n] to our estimates

µ̃j
.
= π̂j b̃

+
j − (1− π̂j)b̃−j ,∀j ∈ [n], granted that µS =

∑
j p̂jµj and µ̃S =

∑
j p̂jµ̃j .

Theorem 3 Suppose that γ satisfies γ
√

2 ≤ ((ε(2n)−1) + maxj 6=j′ vjj′)/minj wj . Let M
.
=

[µ1|µ2|...|µn]> ∈ Rn×d, M̃
.
= [µ̃1|µ̃2|...|µ̃n]> ∈ Rn×d and ς(V, B±)

.
= ((ε(2n)−1) +

maxj 6=j′ vjj′)
2‖B±‖F . The following holds:

‖M − M̃‖F ≤
√
n

(√
2 min

j
w2
j

)−1

× ς(V, B±) . (9)

([19], Subsection 2.3) The multiplicative factor to ς in (9) is roughly O(n5/2) when there is no large
discrepancy in the bias matrix Dw, so the upperbound is driven by ς(., .) when there are not many
bags. We have studied its variations when the “distinguishability” between bags increases. This
setting is interesting because in this case we may kill two birds in one shot, with the estimation of
M and the subsequent learning problem potentially easier, in particular for linear separators. We
consider two examples for vjj′ , the first being (half) the normalized association [22]:

vncjj′
.
=

1

2

(
ASSOC(Sj , Sj)

ASSOC(Sj , Sj ∪ Sj′)
+

ASSOC(Sj′ , Sj′)

ASSOC(Sj′ , Sj ∪ Sj′)

)
= NASSOC(Sj , Sj′) , (10)

vG,sjj′
.
= exp(−‖bj − bj′‖2/s) , s > 0 . (11)

Here, ASSOC(Sj , Sj′)
.
=
∑
x∈Sj ,x′∈Sj′

‖x− x′‖22 [22]. To put these two similarity measures in
the context of Theorem 3, consider the setting where we can make assumption (D1) that there
exists a small constant κ > 0 such that ‖bj − bj′‖22 ≥ κmaxσ,j ‖bσj ‖22,∀j, j′ ∈ [n]. This is a
weak distinguishability property as if no such κ exists, then the centers of distinct bags may just
be confounded. Consider also the additional assumption, (D2), that there exists κ′ > 0 such that
maxj d

2
j ≤ κ′,∀j ∈ [n], where dj

.
= maxxi,x′i∈Sj

‖xi −xi′‖2 is a bag’s diameter. In the following
Lemma, the little-oh notation is with respect to the “largest” unknown in eq. (4), i.e. maxσ,j ‖bσj ‖2.
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Algorithm 2 Alternating Mean Map (AMMOPT)

Input LMM parameters + optimization strategy OPT ∈ {min,max} + convergence predicate PR

Step 1 : let θ̃0 ← LMM(LMM parameters) and t← 0
Step 2 : repeat

Step 2.1 : let σt ← arg OPTσ∈Σπ̂
Fφ(S|y,θt,µS(σ))

Step 2.2 : let θ̃t+1 ← arg minθ Fφ(S|y,θ,µS(σt)) + λ‖θ‖22
Step 2.3 : let t← t+ 1
until predicate PR is true

Return θ̃∗
.
= arg mint Fφ(S|y, θ̃t+1,µS(σt))

Lemma 4 There exists ε∗ > 0 such that ∀ε ≤ ε∗, the following holds: (i) ς(Vnc, B±) = o(1) under
assumptions (D1 + D2); (ii) ς(VG,s, B±) = o(1) under assumption (D1), ∀s > 0.

([19], Subsection 2.4) Hence, provided a weak (D1) or stronger (D1+D2) distinguishability assump-
tion holds, the divergence between M and M̃ gets smaller with the increase of the norm of the
unknowns bσj . The proof of the Lemma suggests that the convergence may be faster for VG,s. The
following Lemma shows that both similarities also partially encode the hardness of solving the clas-
sification problem with linear separators, so that the manifold regularizer “limits” the distortion of
the b̃±. s between two bags that tend not to be linearly separable.

Lemma 5 Take vjj′ ∈ {vG,.jj′ , v
nc
jj′}. There exists 0 < κl < κn < 1 such that (i) if vjj′ > κn then

Sj , Sj′ are not linearly separable, and if vjj′ < κl then Sj , Sj′ are linearly separable.

([19], Subsection 2.5) This Lemma is an advocacy to fit s in a data-dependent way in vG,sjj′ . The
question may be raised as to whether finite samples approximation results like Theorem 3 can be
proven for the Mean Map estimator [17]. [19], Subsection 2.6 answers by the negative.

In the Laplacian Mean Map algorithm (LMM, Algorithm 1), Steps 1 and 2 have now been described.
Step 3 is a differentiable convex minimization problem for θ that does not use the labels, so it does
not present any technical difficulty. An interesting question is how much our classifier θ̃∗ in Step 3
diverges from the one that would be computed with the true expression for µS, θ∗. It is not hard to
show that Lemma 17 in Altun and Smola [23], and Corollary 9 in Quadrianto et al. [17] hold for
LMM so that ‖θ̃∗ − θ∗‖22 ≤ (2λ)−1‖µ̃S − µS‖22. The following Theorem shows a data-dependent
approximation bound that can be significantly better, when it holds that θ>∗ xi, θ̃

>
∗ xi ∈ φ′([0, 1]),∀i

(φ′ is the first derivative). We call this setting proper scoring compliance (PSC) [18]. PSC always
holds for the logistic and Matsushita losses for which φ′([0, 1]) = R. For other losses like the square
loss for which φ′([0, 1]) = [−1, 1], shrinking the observations in a ball of sufficiently small radius
is sufficient to ensure this.

Theorem 6 Let fk ∈ Rm denote the vector encoding the kth feature variable in S : fki = xik
(k ∈ [d]). Let F̃ denote the feature matrix with column-wise normalized feature vectors: f̃k

.
=

(d/
∑
k′ ‖fk′‖22)(d−1)/(2d)fk. Under PSC, we have ‖θ̃∗ − θ∗‖22 ≤ (2λ+ q)−1‖µ̃S − µS‖22, with:

q
.
=

det F̃
>

F̃

m
× 2e−1

bφφ′′ (φ′−1(q′/λ))
(> 0) , (12)

for some q′ ∈ I .
= [±(x∗ + max{‖µS‖2, ‖µ̃S‖2})]. Here, x∗

.
= maxi ‖xi‖2 and φ′′ .= (φ′)′.

([19], Subsection 2.7) To see how large q can be, consider the simple case where all eigenvalues of
F̃
>

F̃, λk(F̃
>

F̃) ∈ [λ◦ ± δ] for small δ. In this case, q is proportional to the average feature “norm”:

det F̃
>

F̃

m
=

tr
(

F>F
)

md
+ o(δ) =

∑
i ‖xi‖22
md

+ o(δ) .
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The Alternating Mean Map (AMM) algorithm Let us denote Σπ̂
.
= {σ ∈ Σm :

∑
i:xi∈Sj

σi =

(2π̂j − 1)mj ,∀j ∈ [n]} the set of labelings that are consistent with the observed proportions π̂, and
µS(σ)

.
= (1/m)

∑
i σixi the biased mean operator computed from some σ ∈ Σπ̂ . Notice that the

true mean operator µS = µS(σ) for at least one σ ∈ Σπ̂ . The Alternating Mean Map algorithm,
(AMM, Algorithm 2), starts with the output of LMM and then optimizes it further over the set of
consistent labelings. At each iteration, it first picks a consistent labeling in Σπ̂ that is the best (OPT

= min) or the worst (OPT = max) for the current classifier (Step 2.1) and then fits a classifier θ̃ on the
given set of labels (Step 2.2). The algorithm then iterates until a convergence predicate is met, which
tests whether the difference between two values for Fφ(., ., .) is too small (AMMmin), or the number
of iterations exceeds a user-specified limit (AMMmax). The classifier returned θ̃∗ is the best in the
sequence. In the case of AMMmin, it is the last of the sequence as risk Fφ(S|y, ., .) cannot increase.
Again, Step 2.2 is a convex minimization with no technical difficulty. Step 2.1 is combinatorial. It
can be solved in time almost linear in m [19] (Subsection 2.8).

Lemma 7 The running time of Step 2.1 in AMM is Õ(m), where the tilde notation hides log-terms.

Bag-Rademacher generalization bounds for LLP We relate the “min” and “max” strategies of
AMM by uniform convergence bounds involving the true surrogate risk, i.e. integrating the unknown
distribution D and the true labels (which we may never know). Previous uniform convergence
bounds for LLP focus on coarser grained problems, like the estimation of label proportions [1].
We rely on a LLP generalization of Rademacher complexity [24, 25]. Let F : R → R+ be a
loss function and H a set of classifiers. The bag empirical Rademacher complexity of sample S,
Rbm, is defined as Rbm

.
= Eσ∼Σm

suph∈H{Eσ′∼Σπ̂
ES[σ(x)F (σ′(x)h(x))]. The usual empirical

Rademacher complexity equals Rbm for card(Σπ̂) = 1. The Label Proportion Complexity of H is:

L2m
.
= ED2mEI/2

1 ,I
/2
2

sup
h∈H

ES[σ1(x)(π̂s|2(x)− π̂`|1(x))h(x)] . (13)

Here, each of I/2
l , l = 1, 2 is a random (uniformly) subset of [2m] of cardinal m. Let S(I/2

l ) be the
size-m subset of S that corresponds to the indexes. Take l = 1, 2 and any xi ∈ S. If i 6∈ I/2

l then
π̂s|l(xi) = π̂`|l(xi) is xi’s bag’s label proportion measured on S\S(I/2

l ). Else, π̂s|2(xi) is its bag’s
label proportion measured on S(I/2

2 ) and π̂`|1(xi) is its label (i.e. a bag’s label proportion that would
contain only xi). Finally, σ1(x)

.
= 2 × 1x∈S(I/2

1 ) − 1 ∈ Σ1. L2m tends to be all the smaller as
classifiers in H have small magnitude on bags whose label proportion is close to 1/2.

Theorem 8 Suppose ∃h∗ ≥ 0 s.t. |h(x)| ≤ h∗,∀x,∀h. Then, for any loss Fφ, any training sample
of size m and any 0 < δ ≤ 1, with probability > 1− δ, the following bound holds over all h ∈ H:

ED[Fφ(yh(x))] ≤ EΣπ̂
ES[Fφ(σ(x)h(x))] + 2Rbm + L2m + 4

(
2h∗
bφ

+ 1

)√
1

2m
log

2

δ
.(14)

Furthermore, under PSC (Theorem 6), we have for any Fφ:

Rbm ≤ 2bφEΣm
sup
h∈H
{ES[σ(x)(π̂(x)− (1/2))h(x)]} . (15)

([19], Subsection 2.9) Despite similar shapes (13) (15), Rbm and L2m behave differently: when bags
are pure (π̂j ∈ {0, 1},∀j), L2m = 0. When bags are impure (π̂j = 1/2,∀j), Rbm = 0. As bags get
impure, the bag-empirical surrogate risk, EΣπ̂

ES[Fφ(σ(x)h(x))], also tends to increase. AMMmin

and AMMmax respectively minimize a lowerbound and an upperbound of this risk.

3 Experiments

Algorithms We compare LMM, AMM (Fφ = logistic loss) to the original MM [17], InvCal [11], conv-
∝SVM and alter-∝SVM [16] (linear kernels). To make experiments extensive, we test several ini-
tializations for AMM that are not displayed in Algorithm 2 (Step 1): (i) the edge mean map estimator,
µ̃EMM
S

.
= 1/m2(

∑
i yi)(

∑
i xi) (AMMEMM), (ii) the constant estimator µ̃1

S

.
= 1 (AMM1), and finally

AMM10ran which runs 10 random initial models (‖θ0‖2 ≤ 1), and selects the one with smallest risk;

6



1.0

1.1

1.2

1.3

2 4 6
divergence

A
U

C
 r

e
l.
 t

o
 M

M

MM      

LMMG   

LMMG,s

LMMnc  

(a)

0.6

0.7

0.8

0.9

1.0

0.6 0.8 1.0
entropy

A
U

C
 r

e
l.
 t

o
 O

ra
c
le

MM      

LMMG   

LMMG,s

LMMnc  

(b)

0.6

0.7

0.8

0.9

1.0

0.6 0.8 1.0
entropy

A
U

C
 r

e
l.
 t

o
 O

ra
c
le

AMMMM   

AMMG      

AMMG,s   

AMMnc     

AMM10ran

(c)

Bigger

domains

Small

domains0.2

0.4

0.6

0.8

1.0

10^−5 10^−3 10^−1
#bag/#instances

A
U

C
 r

e
l.
 t

o
 O

ra
c
le

AMMG

(d)

Figure 1: Relative AUC (wrt MM) as homogeneity assumption is violated (a). Relative AUC (wrt
Oracle) vs entropy on heart for LMM(b), AMMmin(c). Relative AUC vs n/m for AMMmin

G,s (d).

Table 2: Small domains results. #win/#lose for row vs column. Bold faces means p-val < .001 for
Wilcoxon signed-rank tests. Top-left subtable is for one-shot methods, bottom-right iterative ones,
bottom-left compare the two. Italic is state-of-the-art. Grey cells highlight the best of all (AMMmin

G ).

algorithm MM LMM InvCal AMMmin AMMmax conv-
G G,s nc MM G G,s 10ran MM G G,s 10ran ∝SVM

L
M

M G 36/4
G,s 38/3 30/6
nc 28/12 3/37 2/37
InvCal 4/46 3/47 4/46 4/46
MM 33/16 26/24 25/25 32/18 46/4 ↙ e.g. AMMmin

G,s wins on AMMmin
G 7 times, loses 15, with 28 tiesG 38/11 35/14 30/20 37/13 47/3 31/7

G,s 35/14 33/17 30/20 35/15 47/3 24/11 7/15

A
M

M
m

in

10ran 27/22 24/26 22/28 26/24 44/6 20/30 16/34 19/31

A
M

M
m

ax MM 25/25 23/27 22/28 25/25 45/5 15/35 13/37 13/37 8/42
G 27/23 22/28 21/28 26/24 45/5 17/33 14/36 14/36 10/40 13/14
G,s 25/25 21/29 22/28 24/26 45/5 15/35 13/37 13/37 12/38 15/22 16/22
10ran 23/27 21/29 19/31 24/26 50/0 19/31 15/35 17/33 7/43 19/30 20/29 17/32

SV
M conv-∝ 21/29 2/48 2/48 2/48 2/48 4/46 3/47 3/47 4/46 3/47 3/47 4/46 0/50

alter-∝ 0/50 0/50 0/50 0/50 20/30 0/50 0/50 0/50 3/47 3/47 2/48 1/49 0/50 27/23

this is the same procedure of alter-∝SVM. Matrix V (eqs. (10), (11)) used is indicated in subscript:
LMM/AMMG, LMM/AMMG,s, LMM/AMMnc respectively denote vG,s with s = 1, vG,s with s learned
on cross validation (CV; validation ranges indicated in [19]) and vnc. For space reasons, results
not displayed in the paper can be found in [19], Section 3 (including runtime comparisons, and de-
tailed results by domain). We split the algorithms in two groups, one-shot and iterative. The latter,
including AMM, (conv/alter)-∝SVM, iteratively optimize a cost over labelings (always consistent
with label proportions for AMM, not always for (conv/alter)-∝SVM). The former (LMM, InvCal) do
not and are thus much faster. Tests are done on a 4-core 3.2GHz CPUs Mac with 32GB of RAM.
AMM/LMM/MM are implemented in R. Code for InvCal and ∝SVM is [16].
Simulated domains, MM and the homogeneity assumption The testing metric is the AUC. Prior
to testing on our domains, we generate 16 domains that gradually move away the bσj away from each
other (wrt j), thus violating increasingly the homogeneity assumption [17]. The degree of violation
is measured as ‖B± − B±‖F , where B± is the homogeneity assumption matrix, that replaces all bσj
by bσ for σ ∈ {−1, 1}, see eq. (5). Figure 1 (a) displays the ratios of the AUC of LMM to the
AUC of MM. It shows that LMM is all the better with respect to MM as the homogeneity assumption
is violated. Furthermore, learning s in LMM improves the results. Experiments on the simulated
domain of [16] on which MM obtains zero accuracy also display that our algorithms perform better
(1 iteration only of AMMmax brings 100% AUC).
Small and large domains experiments We convert 10 small domains [19] (m ≤ 1000) and 4 bigger
ones (m > 8000) from UCI[26] into the LLP framework. We cast to one-against-all classification
when the problem is multiclass. On large domains, the bag assignment function is inspired by [1]:
we craft bags according to a selected feature value, and then we remove that feature from the data.
This conforms to the idea that bag assignment is structured and non random in real-world problems.
Most of our small domains, however, do not have a lot of features, so instead of clustering on one
feature and then discard it, we run K-MEANS on the whole data to make the bags, for K = n ∈ 2[5].
Small domains results We performe 5-folds nested CV comparisons on the 10 domains = 50 AUC
values for each algorithm. Table 2 synthesises the results [19], splitting one-shot and iterative algo-
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Table 3: AUCs on big domains (name: #instances×#features). I=cap-shape, II=habitat,
III=cap-colour, IV=race, V=education, VI=country, VII=poutcome, VIII=job (number of bags);

for each feature, the best result over one-shot, and over iterative algorithms is bold faced.

algorithm mushroom: 8124× 108 adult: 48842× 89 marketing: 45211× 41 census: 299285× 381
I(6) II(7) III(10) IV(5) V(16) VI(42) V(4) VII(4) VIII(12) IV(5) VIII(9) VI(42)

EMM 55.61 59.80 76.68 43.91 47.50 66.61 63.49 54.50 44.31 56.05 56.25 57.87
MM 51.99 98.79 5.02 80.93 76.65 74.01 54.64 50.71 49.70 75.21 90.37 75.52
LMMG 73.92 98.57 14.70 81.79 78.40 78.78 54.66 51.00 51.93 75.80 71.75 76.31
LMMG,s 94.91 98.24 89.43 84.89 78.94 80.12 49.27 51.00 65.81 84.88 60.71 69.74

A
M

M
m

in

AMMEMM 85.12 99.45 69.43 49.97 56.98 70.19 61.39 55.73 43.10 87.86 87.71 40.80
AMMMM 89.81 99.01 15.74 83.73 77.39 80.67 52.85 75.27 58.19 89.68 84.91 68.36
AMMG 89.18 99.45 50.44 83.41 82.55 81.96 51.61 75.16 57.52 87.61 88.28 76.99
AMMG,s 89.24 99.57 3.28 81.18 78.53 81.96 52.03 75.16 53.98 89.93 83.54 52.13
AMM1 95.90 98.49 97.31 81.32 75.80 80.05 65.13 64.96 66.62 89.09 88.94 56.72

A
M

M
m

ax

AMMEMM 93.04 3.32 26.67 54.46 69.63 56.62 51.48 55.63 57.48 71.20 77.14 66.71
AMMMM 59.45 55.16 99.70 82.57 71.63 81.39 48.46 51.34 56.90 50.75 66.76 58.67
AMMG 95.50 65.32 99.30 82.75 72.16 81.39 50.58 47.27 34.29 48.32 67.54 77.46
AMMG,s 95.84 65.32 84.26 82.69 70.95 81.39 66.88 47.27 34.29 80.33 74.45 52.70
AMM1 95.01 73.48 1.29 75.22 67.52 77.67 66.70 61.16 71.94 57.97 81.07 53.42
Oracle 99.82 99.81 99.8 90.55 90.55 90.50 79.52 75.55 79.43 94.31 94.37 94.45

rithms. LMMG,s outperforms all one-shot algorithms. LMMG and LMMG,s are competitive with many
iterative algorithms, but lose against their AMM counterpart, which proves that additional optimiza-
tion over labels is beneficial. AMMG and AMMG,s are confirmed as the best variant of AMM, the
first being the best in this case. Surprisingly, all mean map algorithms, even one-shots, are clearly
superior to∝SVMs. Further results [19] reveal that∝SVM performances are dampened by learning
classifiers with the “inverted polarity” — i.e. flipping the sign of the classifier improves its perfor-
mances. Figure 1 (b, c) presents the AUC relative to the Oracle (which learns the classifier knowing
all labels and minimizing the logistic loss), as a function of the Gini entropy of bag assignment,
gini(S)

.
= 4Ej [π̂j(1 − π̂j)]. For an entropy close to 1, we were expecting a drop in performances.

The unexpected [19] is that on some domains, large entropies (≥ .8) do not prevent AMMmin to
compete with the Oracle. No such pattern clearly emerges for ∝SVM and AMMmax [19].
Big domains results We adopt a 1/5 hold-out method. Scalability results [19] display that every
method using vnc and ∝SVM are not scalable to big domains; in particular, the estimated time for a
single run of alter-∝SVM is >100 hours on the adult domain. Table 3 presents the results on the big
domains, distinguishing the feature used for bag assignment. Big domains confirm the efficiency of
LMM+AMM. No approach clearly outperforms the rest, although LMMG,s is often the best one-shot.
Synthesis Figure 1 (d) gives the AUCs of AMMmin

G over the Oracle for all domains [19], as a function
of the “degree of supervision”, n/m (=1 if the problem is fully supervised). Noticeably, on 90% of
the runs, AMMmin

G gets an AUC representing at least 70% of the Oracle’s. Results on big domains
can be remarkable: on the census domain with bag assignment on race, 5 proportions are sufficient
for an AUC 5 points below the Oracle’s — which learns with 200K labels.

4 Conclusion

In this paper, we have shown that efficient learning in the LLP setting is possible, for general loss
functions, via the mean operator and without resorting to the homogeneity assumption. Through its
estimation, the sufficiency allows one to resort to standard learning procedures for binary classifica-
tion, practically implementing a reduction between machine learning problems [27]; hence the mean
operator estimation may be a viable shortcut to tackle other weakly supervised settings [2] [3] [4]
[5]. Approximation results and generalization bounds are provided. Experiments display results that
are superior to the state of the art, with algorithms that scale to big domains at affordable computa-
tional costs. Performances sometimes compete with the Oracle’s — that learns knowing all labels
—, even on big domains. Such experimental finding poses severe implications on the reliability of
privacy-preserving aggregation techniques with simple group statistics like proportions.
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