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Abstract

A new Bayesian formulation is developed for nonlinear support vector machines
(SVMs), based on a Gaussian process and with the SVM hinge loss expressed as
a scaled mixture of normals. We then integrate the Bayesian SVM into a factor
model, in which feature learning and nonlinear classifier design are performed
jointly; almost all previous work on such discriminative feature learning has as-
sumed a linear classifier. Inference is performed with expectation conditional
maximization (ECM) and Markov Chain Monte Carlo (MCMC). An extensive
set of experiments demonstrate the utility of using a nonlinear Bayesian SVM
within discriminative feature learning and factor modeling, from the standpoints
of accuracy and interpretability.

1 Introduction

There has been significant interest recently in developing discriminative feature-learning models, in
which the labels are utilized within a max-margin classifier. For example, such models have been
employed in the context of topic modeling [1], where features are the proportion of topics associated
with a given document. Such topic models may be viewed as a stochastic matrix factorization of
a matrix of counts. The max-margin idea has also been extended to factorization of more general
matrices, in the context of collaborative prediction [2, 3]. These studies have demonstrated that the
use of the max-margin idea, which is closely related to support vector machines (SVMs) [4], often
yields better results than designing discriminative feature-learning models via a probit or logit link.
This is particularly true for high-dimensional data (e.g., a corpus characterized by a large dictionary
of words), as in that case the features extracted from the high-dimensional data may significantly
outweigh the importance of the small number of labels in the likelihood. Margin-based classifiers
appear to be attractive in mitigating this challenge [1].

Joint matrix factorization, feature learning and classifier design are well aligned with hierarchical
models. The Bayesian formalism is well suited to such models, and much of the aforementioned
research has been constituted in a Bayesian setting. An important aspect of this prior work utilizes
the recent recognition that the SVM loss function may be expressed as a location-scale mixture of
normals [5]. This is attractive for joint feature learning and classifier design, which is leveraged in
this paper. However, the Bayesian SVM setup developed in [5] assumed a linear classifier decision
function, which is limiting for sophisticated data, for which a nonlinear classifier is more effective.

The first contribution of this paper concerns the extension of the work in [5] for consideration of a
kernel-based, nonlinear SVM, and to place this within a Bayesian scaled-mixture-of-normals con-
struction, via a Gaussian process (GP) prior. The second contribution is a generalized formulation of
this mixture model, for both the linear and nonlinear SVM, which is important within the context of
Markov Chain Monte Carlo (MCMC) inference, yielding improved mixing. This new construction
generalizes the form of the SVM loss function.
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The manner we employ a GP in this paper is distinct from previous work [6, 7, 8], in that we ex-
plicitly impose a max-margin-based SVM cost function. In the previous GP-based classifier design,
all data contributed to the learned classification function, while here a relatively small set of support
vectors play a dominant role. This identification of support vectors is of interest when the number of
training samples is large (simplifying subsequent prediction). The key reason to invoke a Bayesian
form of the SVM [5], instead of applying the widely studied optimization-based SVM [4], is that the
former may be readily integrated into sophisticated hierarchical models. As an example of that, we
here consider discriminative factor modeling, in which the factor scores are employed within a non-
linear SVM. We demonstrate the advantage of this in our experiments, with nonlinear discriminative
factor modeling for high-dimensional gene-expression data.

We present MCMC and expectation conditional maximization inference for the model. Conditional
conjugacy of the hierarchical model yields simple and efficient computations. Hence, while the non-
linear SVM is significantly more flexible than its linear counterpart, computations are only modestly
more complicated. Details on the computational approaches, insights on the characteristics of the
model, and demonstration on real data constitute a third contribution of this paper.

2 Mixture Representation for SVMs

Previous model for linear SVM Assume N observations {xn, yn}Nn=1, where xn ∈ R
d is a

feature vector and yn ∈ {−1, 1} is its label. The support vector machine (SVM) seeks to find a
classification function f(x) by solving a regularized learning problem

argminf(x)

{

γ
∑N
n=1 max(1− ynf(xn), 0) +R(f(x))

}

, (1)

where max(1 − ynf(xn), 0) is the hinge loss, R(f(x)) is a regularization term that controls the
complexity of f(x), and γ is a tuning parameter controlling the tradeoff between error penalization
and the complexity of the classification function. The decision boundary is defined as {x : f(x) =
0} and sign(f(x)) is the decision rule, classifying x as either −1 or 1 [4].

Recently, [5] showed that for the linear classifier f(x) = β⊤x, minimizing (1) is equivalent to
estimating the mode of the pseudo-posterior of β

p(β|X,y, γ) ∝ ∏N
n=1 L(yn|xn,β, γ)p(β|·) , (2)

where y = [y1 . . . yN ]⊤, X = [x1 . . . xN ], L(yn|xn,β, γ) is the pseudo-likelihood function,
and p(β|·) is the prior distribution for the vector of coefficients β. Choosing β to maximize the
log of (2) corresponds to (1), where the prior is associated with R(f(x)). In [5] it was shown
that L(yn|xn,β, γ) admits a location-scale mixture of normals representation by introducing latent
variables λn, such that

L(yn|xn,β, γ) = e−2γmax(1−ynβ
⊤
xn,0) =

∫ ∞

0

√
γ√

2πλn
exp

(

− (1 + λn − ynβ
⊤xn)

2

2γ−1λn

)

dλn . (3)

Expression (2) is termed a pseudo-posterior because its likelihood term is unnormalized with respect
to yn. Note that an improper flat prior is imposed on λn.

The original formulation of [5] has the tuning parameter γ as part of the prior distribution of β,
while here in (3) it is included instead in the likelihood. This is done because (i) it puts λn and
the regularization term γ together, and (ii) it allows more freedom in the choice of the prior for β.
Additionally, it has an interesting interpretation, in that the SVM loss function behaves like a global-
local shrinkage distribution [9]. Specifically, γ−1 corresponds to a “global” scaling of the variance,
and λn represents the “local” scaling for component n. The {λn} define the relative variances for
each of the N data, and γ−1 provides a global scaling.

One of the benefits of a Bayesian formulation for SVMs is that we can flexibly specify the behavior
of β while being able to adaptively regularize it by specifying a prior p(γ) as well. For instance, [5]
gave three examples of prior distributions for β: Gaussian, Laplace, and spike-slab.

We can extend the results of [5] to a slightly more general loss function, by imposing a proper prior
for the latent variables λn. In particular, by specifying λn ∼ Exp(γ0) and letting un = 1−ynβ⊤xn,

L(yn|xn,β, γ) =
∫ ∞

0

γ0
√
γ√

2πλ
e−

γ
2

(un+λn)2

λn e−γ0λndλn =
γ0

c
e−γ(c|un|+un) , (4)
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where c =
√

1 + 2γ0γ−1 > 1. The proof relies (see Supplementary Material) on the identity,
∫∞

0
a(2πλ)−1/2 exp{− 1

2 (a
2λ + b2λ−1)}dλ = e−|ab| [10]. From (4) we see that as γ0 → 0 we

recover (3) by noting that 2max(un, 0) = |un| + un. In general we may use the prior λn ∼
Ga(aλ, γ0), with aλ = 1 for the exponential distribution. In the next section we discuss other
choices for aλ. This means that the proposed likelihood is no longer equivalent to the hinge loss but
to a more general loss, termed below a skewed Laplace distribution.

Skewed Laplace distribution We can write the likelihood function in (4) in terms of un as

L(un|γ, γ0) =
∫ ∞

0

N (un| − λn, γ
−1λn)Exp(λn|γ0)dλn =

γ0

c

{

e−γ(c+1)un , if un ≥ 0

e−γ(c−1)|un| , if un < 0
, (5)

which corresponds to a Laplace distribution, with negative skewness, denoted as sLa(un|γ, γ0).
Unlike the density derived from the hinge loss (γ0 → 0), this density is properly normalized, thus
it corresponds to a valid probability density function. For the special case γ0 = 0, the integral
diverges, hence the normalization constant does not exist, which stems from exp(−2γmax(un, 0))
being constant for −∞ < un < 0.

From (5) we see that sLa(un|γ, γ0) can be represented either as mixture of normals or mixture
of exponentials. Other properties of the distribution, such as its moments, can be obtained using
the results for general asymmetric Laplace distributions in [11]. Examining (5) we can gain some
intuition about the behavior of the likelihood function for the classification problem: (i) When
ynβ

⊤xn = 1, λn = 0 and xn lies on the margin boundary. (ii) When ynβ
⊤xn > 1, xn is

correctly classified, outside the margin and |1 − ynβ
⊤xn| is exponential with rate γ(c − 1). (iii)

xn is correctly classified but lies inside the margin when 0 < ynβ
⊤xn < 1, and xn is misclassified

when ynβ
⊤xn < 0. In both cases, 1 − ynβ

⊤xn is exponential with rate γ(c + 1). (iv) Finally, if
ynβ

⊤xn = 0, xn lies on the decision boundary.

Since c+1 > c− 1 for every c > 1, the distribution for case (ii) decays slower than the distribution
for case (iii). Alternatively, in terms of the loss function, observations satisfying (iii) get more
penalized than those satisfying (ii). In the limiting case, γ0 → 0 we have c → 1, and case (ii) is
not penalized at all, recovering the behavior of the hinge loss. In the SVM literature, an observation
xn is called a support vector if it satisfies cases (i) or (iii). In the latter case, λn is the distance
from ynβ

⊤xn to the margin boundary [4]. The key thing that the Exp(λ0) prior imposes on λn,
relative to the flat prior on λn ∈ [0,∞), is that it constrains that λn not be too large (discouraging
ynβ

⊤xn ≫ 1 for correct classifications, which is even more relevant for nonlinear SVMs); we
discuss this further below.

Extension to nonlinear SVM We now assume that the decision function f(x) is drawn from
a zero-mean Gaussian process GP(0, k(x, ·,θ)), with kernel parameters θ. Evaluated at the N
points at which we have data, f ∼ N (0,K), where K is a N × N covariance matrix with entries
kij = k(xi,xj ,θ) for i, j ∈ {1, . . . , N} [7]; f = [f1 . . . fN ]⊤ ∈ R

N corresponds to the continuous

f(x) evaluated at {xn}Nn=1. Together with (5), for un = 1−ynfn, where fn = f(xn), the full prior
specification for the nonlinear SVM is

f ∼ N (0,K) , λn ∼ Exp(γ0) , γ ∼ Ga(a0, b0) . (6)

It is straightforward to prove the equality in (5) holds for fn in place of β⊤xn, as in (6).

For nonlinear SVMs as above, being able to set γ0 > 0 is particularly beneficial. It prevents fn
from being arbitrarily large (hence preventing 1 − ynfn ≪ 0). This implies that isolated observa-
tions far away from linear decision boundary (even when correctly classified when learning) tend
to be support vectors in a nonlinear SVM, yielding more conservative learned nonlinear decision
boundaries. Figure 1 shows examples of logN (1 − ynfn;−λn, γ−1λn) Exp(λn; γ0) for γ = 100
and γ0 = {0.01, 100}. The vertical lines denote the margin boundary (ynfn = 1) and the decision
boundary (ynfn = 0). We see that when γ0 is small, the density has a very pronounced negative
skewness (like in the hinge loss of the original SVM) whereas when γ0 is large, the density tends to
be more of a symmetric shape.

3 Inference

We wish to compute the posterior p(f ,λ, γ|y,X), where λ = [λ1 . . . λN ]⊤. We describe and have
implemented three inference procedures: Markov chain Monte Carlo (MCMC), a point estimate via
expectation-conditional maximization (ECM) and a GP approximation for fast inference.
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Figure 1: Examples of logN (1 − ynfn;−λn, γ

−1λn)Exp(λn; γ0) for γ = 100 and γ0 = 0.01 (left) and
γ0 = 100 (right). The vertical lines denote the margin boundary (ynfn = 1) and the decision boundary
(ynfn = 0).

MCMC Inference is implemented by repeatedly sampling from the conditional posterior of pa-
rameters in (6). Conditional conjugacy allows us to express the following distributions in closed
form:

f |y,λ, γ ∼ N (m,S) , m = γSYΛ
−1(1 + λ) , S = γ

−1
K(K+ γ

−1
Λ)−1

Λ ,

λ
−1

n
|fn, yn, γ ∼ IG

(

√

1 + 2γ0γ−1

|1− ynfn|
, γ + 2γ0

)

, γ|y, f ,λ ∼ Ga

(

a0 +
1

2
N, b0 +

1

2
ǫ
⊤
Λ

−1
ǫ

)

,
(7)

where Λ = diag(λ), Y = diag(y), ǫ = 1 + λ − Yf , and IG(µ, γ) is the inverse Gaussian
distribution with parameters µ and γ [10].

In MCMC γ0 plays a crucial role, because it controls the prior variance of the latent variables λn,
thus greatly improving mixing, particularly that of γ. We also verified empirically that for small
values of γ0, γ is consistently underestimated. In practice we fix γ0 = 0.1, however, a conjugate
prior (gamma) exists, and sampling from its conditional posterior is straightforward if desired.

The parameters of the covariance function θ in the GP require Metropolis-Hastings type algorithms,
as in most cases no closed form for their conditional posterior is available. However, the problem is
relatively well studied. We have found that slice sampling methods [12], in particular the surrogate
data sampler of [13], work well in practice, and are employed here.

For the case of SVMs, MCMC is naturally important as a way of quantifying the uncertainty of the
parameters of the model. Further, it allows us to use the hierarchy in (6) as a building block in more
sophisticated models, or to bring more flexibility to f through specialized prior specifications. As an
example of this, Section 5 describes a specification for a nonlinear discriminative factor model.

ECM The expectation-conditional maximization algorithm is a generalization of the expectation-
maximization (EM) algorithm. It can be used when there are multiple parameters that need to be
estimated [14]. From (6) we identify f and γ as the parameters to be estimated, and λn as the
latent variables. The Q function in EM-style algorithms is the complete data log-posterior, where
expectations are taken w.r.t. the posterior distribution evaluated at the current value of the parameter
of interest. From (7) we see that λn appears in the conditional posterior p(f |y,K,λ, γ) as first order
terms, thus we can write

〈λ−1
n 〉 = E[λ−1

n |yn, f (i)n , γ(i)] =
√

1 + 2γ0(γ(i))−1|u(i)n |−1 , (8)

where f
(i)
n and γ(i) are the estimates of fn and γ at the i-th iteration, and u

(i)
n = 1 − ynf

(i)
n . From

(7) and (8) we can obtain the EM updates: f (i+1) = K(K+ (γ(i))−1〈Λ〉)−1Y(1 + 〈λ〉) and

γ(i+1) =
(

a0 − 1 + 1
2N

)

(

b0 +
1
2

∑N
n=1〈λ−1

n 〉(u(i+1)
n )2 + 2u

(i+1)
n + 〈λn〉

)−1

.

In the ECM setting, learning the parameters of the covariance function is not as straightforward as in
MCMC. However, we can borrow from the GP literature [7] and use the fact that we can marginalize
f while conditioning on λ and γ:

Z(y,X,λ, γ,θ) = N (Y(1 + λ),K+ γ−1Λ) . (9)

Note that K is a function of X and θ. Estimation of θ is done by maximizing logZ(y,X,λ, γ,θ).
For this we need only compute the partial derivatives of (9) w.r.t. θ, and then use a gradient-based
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optimizer. This is commonly known as Type II maximum likelihood (ML-II) [7]. In practice we
alternate between EM updates for {f , γ} and θ updates for a pre-specified number of iterations
(typically the model converges after 20 iterations).

Speeding up inference Perhaps one of the most well known shortcomings of GP is that its cubic
complexity is prohibitive for large scale problems. However there is an extensive literature about
approximations for fast GP models [15]. Here we use the Fully Independent Training Conditional
(FITC) approximation [16], as it offers an attractive balance between complexity and performance
[15]. The basic idea behind FITC is to assume that f is generated i.i.d. from pseudo-inputs {vm}Mm=1
via fm ∈ R

M such that fm ∼ N (0,Kmm), where Kmm is aM×M covariance matrix. Specifically,
from (5) we have

p(u|fm) =
∏N
n=1 p(un|fm) = N (KnmK−1

mmfm, diag(K−Qnn) + γ−1Λ) ,

where u = 1 − Yf , Kmn is the cross-covariance matrix between {vm}Mm=1 and {xn}Nn=1, and
Qnn = KnmK−1

mmKmn. If we marginalize out fm thus

Z(y,X,λ, γ,θ) = N (Y(1 + λ),Qnn + diag(K−Qnn) + γ−1Λ) . (10)

Note that if we drop the diag(·) term in (10) due to the i.i.d. assumption for f , we recover the full
GP marginal from (9). Similar to the ML-II approach previously described, for a fixed M we can
maximize logZ(y,X,λ, γ,θ) w.r.t. θ and {vm}Mm=1 using a gradient-based optimizer but with the
added benefit of having decreased the computational cost from O(N3) to O(NM2) [16].

Predictions Making predictions under the model in (6), with conditional posterior distributions in
(7), can be achieved using standard results of the multivariate normal distribution. The predictive
distribution of f⋆ for a new observation x⋆ given the dataset {X,y} can be written as

f⋆|x⋆,X,y ∼ N (k⋆ΣY(1 + λ), k⋆ − k⊤
⋆ Σk⋆) , (11)

where Σ = (K + γ−1Λ)−1, k⋆ = k(x⋆,x⋆,θ) and k⋆ = [k(x⋆,x1,θ) . . . k(x⋆,xN ,θ)]
⊤.

Furthermore, we can directly use the probit link Φ(f⋆) to compute

p(y⋆ = 1|x⋆,X,y) =
∫

Φ(f⋆)p(f⋆|x⋆,X,y)df⋆ = Φ
(

k⋆ΣY(1 + λ)(1 + k⋆ − k⊤
⋆ Σk⋆)

−1
)

,

which follows from [7]. Computing the class membership probability is not possible in standard
SVMs, because in such optimization-based methods one does not obtain the variance of the predic-
tive distribution; this variance is an attractive component of the Bayesian construction.

The mean of the predictive distribution (11) is tightly related to the predictor in standard SVMs, in
the sense that both are manifestations of the representer theorem. In particular

E[f⋆|x⋆,X,y] =
∑N
n=1 αnk(x⋆,xn,θ) , (12)

where α = (K + γ−1Λ)−1Y(1 + λ). From the expectations of λn and f conditioned on γ and
γ0 it is possible to show that α is a vector with elements γ(1 − c) ≤ αn ≤ γ(1 + c), where

c =
√

1 + 2γ0γ−1. We differentiate three types of elements in α as follows

α =







ynγ(1 + c), if ynfn < 1

α0
n , if ynfn = 1 (λn = 0)

ynγ(1− c) , if ynfn > 1

, (13)

with α0 = K−1
0,0 (y0 − γ(1 + c)K0,aya − γ(1− c)K0,byb), where α0

n is an element of α0, and

0, a and b are subsets of {1, . . . , N} for which λn = 0, ynfn < 1 and ynfn > 1, respectively.
This implies α and so the prediction rule in (12) depend on data for which λn > 0 only through
γ and γ0. Note also that we do not need the values of λ but whether or not they are different than
zero. When γ0 → 0 then c → 1 and α becomes a sparse vector bounded above by 2γ. This result
for standard SVMs can be found independently from the Karush-Kuhn-Tucker conditions for its
objective function [4].

For ECM and variational Bayes EM inference (the latter discussed below in Section 5), we set
γ0 = 0 and therefore α is sparse, with αn = 0 when ynfn > 1, as in traditional SVMs. This
property of the proposed use of GPs within the Bayesian SVM formulation is a significant advantage
relative to traditional classifier design based directly on GPs, for which we do not have such sparsity
in general. For MCMC inference, we find the sampler mixes better when γ0 6= 0. Details on the
derivations of (13) and the concavity of the problem may be found in Supplementary Material.
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4 Related Work

A key contribution of this paper concerns extension of the linear Bayesian SVM developed in [5]
to a nonlinear Bayesian SVM. This has been implemented by replacing the linear f(x) = β⊤x
considered in [5] with an f(x) drawn from a GP. The most relevant previous work is that for which
a classifier is directly implemented via a GP, without an explicit connection to the margin associated
with the SVM [7]. Specifically, GP-based classifiers have been developed by [17]. In [7] the f is
drawn from a GP, as in (6), but f is used directly with a probit or logit link function, to estimate class
membership probability. Previous GP-based classifiers did not use f within a margin-based classifier
as in (6), implemented here via p(un) = N (−λn, γ−1λn), where un = 1−ynfn. It has been shown
empirically that nonlinear SVMs and GP classifiers often perform similarly [8]. However, for the
latter, inference can be challenging due to the non-conjugacy of multivariate normal distribution
to the link function. Common inference strategies employ iterative approximate inference schemes,
such as the Laplace approximation [17] or expectation propagation (EP) [18]. The model we propose
here is locally fully conjugate (except for the GP kernel parameters) and inference can be easily
implemented using EM style algorithms, or via MCMC. Besides, the prediction rule of the GP
classifier, which has a form almost identical to (12), is generally not sparse and therefore lacks the
interpretation that may be provided by the relatively few support vectors.

5 Discriminative Factor Models

Combinations of factor models and linear classifiers have been widely used in many applications,
such as gene expression, proteomics and image analysis, as a way to perform classification and
feature selection simultaneously [19, 20]. One of the most common modeling approaches can be
written as xn = Awn + ǫn, ǫn ∼ N (0, ψ−1I) , L(yn|β,wn, ·) ,
where A is a d×K matrix of factor loadings, wn ∈ R

K is a vector of factor scores, ǫn is observation
noise (and/or model residual), β is a vector ofK linear classifier coefficients and L(·) is for instance
but not limited to the linear SVM likelihood in (5) (a logit or probit link may also be used). One of
many possible prior specification for the above model is

ak ∼ N (0,Φk) , wn ∼ N (0, I) , ψ ∼ Ga(aψ, bψ) , β ∼ N (0,G) ,

where ak is a column of A, Φk = diag(φ1k, . . . , φdk), φik ∼ Exp(ν), G = diag(g1, . . . , gK) and
each element of A is distributed aik ∼ Laplace(ν) after marginalizing out {φik} [10]. Shrinkage
in A is typically a requirement when N ≪ d or when its columns, ak, need to be interpreted. For
simplicity, we can set G = I, however a shrinkage prior for the elements gk of G might be useful in
some applications, as a mechanism for factor score selection. Although the described model usually
works well in practice, it assumes that there is a linear mapping from R

d to R
K , such that K ≪ d,

in which the classes {−1, 1} are linearly separable. We can relax this assumption by imposing
the hierarchical model in (6) in place of β. This implies that matrix K from (6) has now entries
kij = k(wi,wj ,θ). Inference using MCMC is straightforward except for the conditional posterior
of the factor scores. This model is related to latent-variable GP models (GP-LVM) [21], in that we
infer the latent {wi} that reside within a GP kernel. However, here {wi} are also factor scores in a
factor model, and the GP is used within the context of a Bayesian SVM classifier; neither of latter
two have been considered previously.

For the nonlinear Bayesian SVM classifier we no longer have a closed form for the conditional of
wn, due to the covariance function of the GP prior. Thus, we require a Metropolis-Hastings type
algorithm. Here we use elliptical slice sampling [22]. Specifically, we sample wn from

p(wn|A,W\n, ψ,y,λ, γ,θ) ∝ p(wn|xn,A, ψ)Z(y,wn,W\n,λ, γ,θ) , (14)

where p(wn|xn,A, ψ) ∼ N (SNψAxn,SN), W = [w1 . . . wN ], W\n is matrix W without

column n, S−1
N = ψA⊤A + I, and we have marginalized out f as in (9) with W in place of X.

The elliptical slice sampler proposes samples from p(wn|xn,A, ψ) while biasing them towards
more likely configurations of λ. Provided that λ ultimately controls the predictive distribution of
the classifier in (11), samples of wn will at the same time attempt to fit the data and to improve
classification performance. From (14), note that we sample one column of W at a time, while
keeping the others fixed. Details of the elliptical slice sampler are found in [22]. In applications in
which sampling from (14) is time prohibitive, we can use instead a variational Bayes EM (VB-EM)
approach. In the E-step, we approximate the posterior of A, {Φk}, ψ, f , λ and γ by a factorized
distribution q(A)

∏

k q(Φk)q(ψ)q(f)q(λ)q(γ) and in the M-step we optimize W and θ, using L-
BFGS [23]. Details of the implementation can be found in the Supplementary Material.
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6 Experiments

In all experiments we set the covariance function to (i) either the square exponential (SE), which
has the form k(xi,xj , θ) = exp

(

−‖xi − xj‖2
/

θ2), where θ2 is known as the characteristic length
scale; or (ii) the automatic relevance determination (ARD) SE in which each dimension of x has
its own length scale [7]. All code used in the experiments was written in Matlab and executed on a
2.8GHz workstation with 4Gb RAM.

Table 1: Benchmark data results. Mean % error
from 10-fold cross-validation.

Data set N d BSVM SVM GPC

Ionosphere 351 34 5.98 5.71 7.41
Sonar 208 60 11.06 11.54 12.50
Wisconsin 683 9 2.93 3.07 2.64
Crabs 200 7 1.5 2.0 2.5
Pima 768 8 21.88 24.22 22.01
USPS 3 vs 5 1540 256 1.49 1.56 1.69

Benchmark data We first compare the perfor-
mance of the proposed Bayesian hierarchy for
nonlinear SVM (BSVM) against EP-based GP
classification (GPC) and an optimization-based
SVM, on six well known benchmark datasets.
In particular, we use the same data and settings
as [8], specifically 10-fold cross-validation and
SE covariance function. The parameters of the
SVM {γ, θ} are obtained by grid search using
an internal 5-fold cross-validation. GPC uses ML-II and a modified SE function k(xi,xj ,θ) =
θ21 exp

(

−‖xi − xj‖2
/

θ22), where θ1 acts as regularization trade-off similar to γ in our formulation
[7]. For our model we set 200 as the maximum number of iterations of the ECM algorithm and run
ML-II every 20 iterations. Table 1 shows mean errors for the methods under consideration. We see
that all three perform similarly as one might expect thus error bars are not showed, however BSVM
slightly outperforms the others in 4 out of 6 datasets. From the three methods, the SVM is clearly
faster than the others. GP classification and our model essentially scale cubically with N , however,
ours is relatively faster mainly due to overhead computations needed by the EP algorithm. More
specifically, running times for the larger dataset (USPS 3 vs 5) were approximately 1000, 1200 and
5000 seconds for SVM, BSVM and GPC, respectively.

Table 2: FITC results (mean % error) for USPS data.

3 vs. 5 (N = 767) 4 vs. non-4 (N = 7291)
FITC-GPC FITC-BSVM FITC-GPC FITC-BSVM

Error 3.69± 0.26 3.49± 0.29 2.59± 0.17 2.44± 0.17
Time 102 46 604 116

In order to test the approximation intro-
duced in Section 3 (to accelerate GP in-
ference) we use the traditional splitting of
USPS, 7291 for model fitting and the re-
maining 2007 for testing, on two different
tasks: 3 vs. 5 and 4 vs. non-4. Table 2

shows mean error rates and standard deviations for FITC versions of BSVM and GPC, forM = 100
pseudo-inputs and 10 repetitions. We see that FITC-BSVM slightly outperforms FITC-GPC in both
tasks while being relatively faster. As baselines, full BSVM and GPC on the 3 vs. 5 task perform
roughly similar at 2.46% error. We also verified (results not shown) that increasing M consistently
decreases error rates for both FITC-BSVM and FITC-GPC.

USPS data We applied the model proposed in Section 5 to the well known 3 vs. 5 subset of the
USPS handwritten digits dataset, consisting of 1540 gray scale 16 × 16 images, rescaled within
[−1, 1]. We use the resampled version, this is, 767 for model fitting and the remaining 773 for test-
ing. As baselines, we also perform inference as a two step procedure, first fitting the factor model
(FM), followed by a linear (L) or a nonlinear (N) SVM classifier. We also consider learning jointly
the factor model but with a linear SVM (LDFM), and a two step procedure consisting of LDFM fol-
lowed by a nonlinear SVM. Our proposed nonlinear discriminative factor model is denoted NDFM.
VB-EM versions of LDFM and NDFM are denoted as VLDFM and VNDFM, respectively. MCMC
details for the linear SVM part can be found in [5]. For inference, we set K = 10, a SE covari-
ance function and run the sampler for 1200 iterations, from which we discard the first 600 and keep
every 10-th for posterior summaries. We observed in general good mixing regardless of random
initialization, and results remained very similar for different Markov chains.

Table 3 shows classification results for the eight classifiers considered; we see that the nonlinear
classifiers perform substantially better than the linear counterparts. In addition, the proposed non-
linear joint model (NDFM) is the best of all five. The nonlinear classifier is powerful enough to
perform well in both two step procedures. We found that VNDFM is not performing as good as
NDFM because the data likelihood is dominating over the labels likelihood in the updates for the
factor scores, which is not surprising considering the marked size differences between the two. On
the positive side, runtime for VNDFM is approximately two orders of magnitude smaller than that
of NDFM. We also tried a joint nonlinear model with a probit link as in GP classification and we
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Table 3: Mean % error with standard deviations and runtime (seconds) for USPS and gene expression data.
FM+L FM+N LDFM VLDFM LDFM+N VLDFM+N NDFM VNDFM

USPS (Test set)
Error 6.21± 0.32 3.36± 0.26 5.95± 0.31 5.56± 0.18 3.62± 0.26 3.62± 0.19 2.72± 0.13 3.23± 0.16
Time 44 840 120 60 920 160 20000 210

Gene expression (10-fold cross-validation)
Error 22.70± 0.92 19.52± 1.02 22.70± 0.92 22.31± 0.78 20.31± 0.88 19.52± 0.88 18.33± 0.84 18.33± 0.84
Time 105 136 126 25 158 57 1100 103

found its classification performance (a mean error rate of 3.10%) being slightly worse than that for
NDFM. In addition, we found that using ARD SE covariance functions to automatically select for
features of A and larger values of K did not substantial changed the results.

Gene expression data The dataset originally introduced in [24] consists of gene expression mea-
surements from primary breast tumor samples for a study focused towards finding expression pat-
terns potentially related to mutations of the p53 gene. The original data were normalized using RMA
and filtered to exclude genes showing trivial variation. The final dataset consists of 251 samples and
2995 normalized gene expression values. The labeling variable indicates whether or not a sample
exhibits the mutation. We use the same baseline and inference settings from our previous experi-
ment, but validation is done by 10-fold cross-validation. In preliminary results we found that factor
score selection improves results, hence for the linear classifier (L) we used an exponential prior for
the variances of β, gk ∼ Exp(ρ), and for the nonlinear case (N) we set an ARD SE covariance
function for K. Table 3 summarizes the results, the nonlinear variants outperform their linear coun-
terparts and our joint model perform slightly better than the others. Additionally, the joint nonlinear
model with GP and probit link yielded an error rate of 19.52%.

As a way of quantifying whether the features (factor loadings) produced by FM, LDFM and NDFM
are meaningful from a biological point of view, we performed Gene Ontology (GO) searches for the
gene lists encoded by each column of A. In order to quantify the strength of the association between
GO annotations and our gene lists we obtained Bonferroni corrected p-values [25]. We thresholded
the elements of matrix A such that |aik| > 0.1. Using the 10 lists from each model we found that
FM, LDFM and NDFM produced respectively 5, 5 and 8 factors significantly associated to GO terms
relevant to breast cancer. The GO terms are: fatty acid metabolism, induction of programmed cell
death (apoptosis), anti-apoptosis, regulation of cell cycle, positive regulation of cell cycle, cell cycle
and Wnt signaling pathway. The strongest associations in all models are unsurprisingly apoptosis
and positive regulation of cell cycle, however, only NDFM produced a significant association to
anti-apoptosis which we believe is responsible for the edge in performance of NDFM in Table 3.

7 Conclusion

We have introduced a fully Bayesian version of nonlinear SVMs, extending the previous restriction
to linear SVMs [5]. Almost all of the existing joint feature-learning and classifier-design mod-
els assumed linear classifiers [2, 3, 26]. We have demonstrated in our experiments that there is a
substantial performance improvement manifested by the nonlinear classifier. In addition, we have
extended the Bayesian equivalent of the hinge loss to a more general loss function, for both linear
and nonlinear classifiers. We have demonstrated that this approach enhances modeling flexibility,
and yields improved MCMC mixing. The Bayesian setup allows one to directly compute class
membership probabilities. We showed how to use the nonlinear SVM as a module in a larger model,
and presented compelling results to highlight its potential. Point estimate inference using ECM is
conceptually simpler and easier to implement than MCMC or GP classification, although MCMC is
attractive for integrating the factor model and classifier (for example). We showed how FITC and
VB-EM based approximations can be used in conjunction with the SVM nonlinear classifier and
discriminative factor modeling, respectively, as a way to scale inference in a principled way.
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