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Abstract

We present two related contributions of independent interest: (1) high-probability
finite sample rates for £-NN density estimation, and (2) practical mode estimators
—based on k-NN — which attain minimax-optimal rates under surprisingly general
distributional conditions.

1 Introduction

We prove finite sample bounds for k-nearest neighbor (k-NN) density estimation, and subsequently
apply these bounds to the related problem of mode estimation. These two main results, while related,
are interesting on their own.

First, k-NN density estimation [1]] is one of the better known and simplest density estimation pro-
cedures. The estimate fi(x) of an unknown density f (see Definition [1| of Section [3)) is a simple
functional of the distance r4(x) from  to its k-th nearest neighbor in a sample X[,,) £ {X;}!" .
As such it is intimately related to other functionals of 74 (x), e.g. the degree of vertices x in k-NN
graphs and their variants used in modeling communities and in clustering applications (see e.g. [2]).

While this procedure has been known for a long time, its convergence properties are still not fully
understood. The bulk of research in the area has concentrated on establishing its asymptotic con-
vergence, while its finite sample properties have received little attention in comparison. Our finite
sample bounds are concisely derived once the proper tools are identified. The bounds hold with high
probability, under general conditions on the unknown density f. This generality proves quite useful
as shown in our subsequent application to the problem of mode estimation.

The basic problem of estimating the modes (local maxima) of an unknown density f has also been
studied for a while (see e.g. [3]] for an early take on the problem). It arises in various unsupervised
problems where modes are used as a measure of typicality of a sample X. In particular, in modern
applications, mode estimation is often used in clustering, with the modes representing cluster centers
(see e.g. [4,15] and general applications of the popular mean-shift procedure).

While there exists a rich literature on mode estimation, the bulk of theoretical work concerns es-
timators of a single mode (highest maximum of f), and often concentrates on procedures that are
hard to implement in practice. Given the generality of our first result on k-NN density estimation,
we can prove that some simple implementable procedures yield optimal estimates of the modes of
an unknown density f, under surprisingly general conditions on f.

Our results are overviewed in the following section, along with an overview of the rich literature on
k-NN density estimation and mode estimation. This is followed by our theoretical setup in Section[3}
our rates for k-NN density estimation are detailed in Section[d] while the results on mode estimation
are given in Section 3

*Much of this work was conducted when this author was at TTI-Chicago.



2 Overview of results and related Work

2.1 Rates for k-NN density estimates

The k-NN density estimator dates back perhaps to the early work of [[1]] where it is shown to be
consistent when the unknown density f is continuous on R%. While one of the best known and
simplest procedure for density estimation, it has proved more cumbersome to analyze than its smooth
counterpart, the kernel density estimator.

More general consistency results such as [6, [7] have been established since its introduction. In
particular [6]] shows that, for f Lipschitz in a neighborhood of a point x, where f(z) > 0, and
k = k(n) satisfying & — oo and k/n?/(>t%) — 0, the estimator is asymptotically normal, i.e.

VE(fe(z) — f(z))/f() Py N(0,1). The recent work of [8], concerning generalized weighted
variants of k-NN, shows that asymptotic normality holds under the weaker restriction k/n*/(4t4) —
0 if f is twice differentiable at x.

Asymptotic normality as stated above yields some insight into the rate of convergence of fj: we
can expect that | f(z) — f(z)| < f(z)/Vk under the stated conditions on k. In fact, [8] shows
that such a result can be obtained in expectation for n = n(z) sufficiently large. In particular,
their conditions on k allows for a setting of k ~ n?/(4+d) (not allowed under the above conditions)
yielding a minimax-optimal I risk E | fi,(z) — f(2)]> < f(2)2/k = O(n~4/(4+d),

While consistency results and bounds on expected error are now well understood, we still don’t have
a clear understanding of the conditions under which high probability bounds on | fx(x) — f(x)| are
possible. This is particularly important given the inherent instability of nearest neighbors estimates
which are based on order-statistics rather than the more stable average statistics at the core of kernel-
density estimates. The recent result of [9]] provides an initial answer: they obtain a high-probability
bound uniformly over x taking value in the sample X[}, however under conditions not allowing for
optimal settings of k& (where f is assumed Lipschitz).

The bounds in the present paper hold with high-probability, simultaneously for all z in the support
of f. Rather than requiring smoothness conditions on f, we simply give the bounds in terms of the
modulus of continuity of f at any z, i.e. how much f can change in a neighborhood of z. This
allows for a useful degree of flexibility in applying these bounds. In particular, optimal bounds
under various degrees of smoothness of f at x easily follow. More importantly, for our application
to mode estimation, the bounds allow us to handle | fx(z) — f(x)| at different € R with varying
smoothness in f. As a result we can derive minimax-optimal mode estimation rates for practical
procedures under surprisingly weak assumptions.

2.2 Mode estimation

There is an extensive literature on mode estimation and we unfortunately can only overview some
of the relevant work. Most of the literature covers the case of a unimodal distribution, or one where
there is a single maximizer xg of f.

Early work on estimating the (single) mode of a distribution focused primarily on understand-
ing the consistency and rates achievable by various approaches, with much less emphasis on the
ease of implementation of these approaches. The common approaches consist of estimating z( as
& £ arg sup,cra fn(2) where f,, is an estimate of f, usually a kernel density estimate. Various
work such as [3} 10} [11] establish consistency properties of the approach and achievable rates under
various Euclidean settings and regularity assumptions on the distribution . More recent work such
as [12, [13] address the problem of optimal choice of bandwidth and kernel to adaptively achieve
the minimax risk for mode estimation. Essentially, under smoothness « (e.g. f is x times differen-
tiable), the minimax risk (infz sup; Ey || — x|} is of the form n~(#=1/(2r+d) 4 independently
established in [[14] and [[15]].

As noticed early in [16], the estimator argsup,cga fn(2), while yielding much insight into the
problem, is hard to implement in practice. Hence, other work, apparently starting with [[16} [14]
have looked into so-called recursive estimators of the (single) mode which are practical and easy
to update as the sample size increases. These approaches can be viewed as some form of gradient-



ascent of f,, with carefully chosen step sizes. The later versions of [14] are shown to be minimax-
optimal. Another line of work is that of so-called direct mode estimators which estimate the mode
from practical statistics of the data [[17, 18]. In particular, [18] shows that the simple and practical
estimator arg maxzex,,,, fn(x), where f, is a kernel-density estimator, is a consistent estimator of
the mode. We show in the present paper that arg maxze x,, fx(x), where fi is a k-NN density
estimator, is not only consistent, but converges at a minimax-optimal rate under surprisingly mild
distributional conditions.

The more general problem of estimating all modes of distribution has received comparatively little
attention. The best known practical approach for this problem is the mean-shift procedure and its
variants [19, 14, 20, 21]], quite related to recursive-mode-estimators, as they essentially consist of
gradient ascent of f,, starting from every sample point, where f;,, is required to be appropriately
smooth to ascend (e.g. a smooth kernel estimate). While mean-shift is popular in practice, it has
proved quite difficult to analyze. A recent result of [22] comes close to establishing the consistency
of mean-shift, as it establishes the convergence of the procedure to the right gradient lines (essen-
tially the ascent path to the mode) if it is seeded from fixed starting points rather than the random
samples themselves. It remains unclear however whether mean-shift produces only frue modes,
given the inherent variability in estimating f from sample. This question was recently addressed by
[23]] which proposes a hypothesis test to detect false modes based on confidence intervals around
Hessians estimated at the modes returned by any procedure.

Interestingly, while a k-NN density estimate fj, is far from smooth, in fact not even continuous, we
show a simple practical procedure that identifies any mode of the unknown density f under mild
conditions: we mainly require that f is well approximated by a quadratic in a neighborhood of
each mode. Our finite sample rates (on ||Z — x¢||, for an estimate & of any mode z) are of the
form O(k:’l/ 4), hold with high-probability and are minimax-optimal for an appropriate choice of
k= ©(nY/4+d),

If in addition f is Lipschitz or more generally Holder-continuous (in principle uniform continuity
of f is enough), all the modes returned above a level set A of f; can be optimally assigned to

separate modes of the unknown f. Since A 27,0, the procedure consistently prunes false modes.
This feature is made intrinsic to the procedure by borrowing from insights of [9} 24] on identifying
false clusters by inspecting levels sets of f,,. These last works concern the related area of level set
estimation, and do not study mode estimation rates.

As alluded to so far, our results are given in terms of local assumptions on modes rather than
global distributional conditions. We show that any mode that is sufficiently salient (this is locally
parametrized) w.r.t. the finite sample size n, is optimally estimated, while false modes are pruned
away. In particular our results allow for f having a countably infinite number of modes.

3 Preliminaries

Throughout the analysis, we assume access to a sample X[,,; = {X;};_; drawn iid. from an

absolutely continuous distribution F over R?, with Lebesgue-density function f. We let X" denote
the support of the density function f.

The k-NN density estimate at a point x is defined as follows.

Definition 1 (k-NN density estimate). For every x € RY, let ry,(x) denote the distance from x to its
k-th nearest neighbor in X|,). The density estimate is given as:

N k
n-vg - rp(z)?’

fr(2)

where vq denotes the volume of the unit sphere in RY.

All balls considered in the analysis are closed Euclidean balls of R%.



4 k-NN density estimation rates

In this section we bound the error in estimating f(x) as fi(x) at every « € X. The main results of
the section are Lemmas [3|and 4] These lemmas are easily obtained given the right tools: uniform
concentration bounds on the empirical mass of balls in RY, using relative Vapnik-Chervonenkis
bounds, i.e. Bernstein’s type bounds rather than Chernoff type bounds (see e.g. Theorem 5.1 of
[25])). We next state a form of these bounds for completion.

Lemma 1. Let G be a class of functions from X to {0,1} with VC dimension d < oo, and P a
probability distribution on X. Let E denote expectation with respect to P. Suppose n points are
drawn independently at random from P; let IE,, denote expectation with respect to this sample. Then
for any 6 > 0, with probability at least 1 — 9§, the following holds for all g € G:

- min(ﬂn V ]En97 /B»,QL + Bn @) < ]Eg - ]Eng < mln(ﬁi + ﬂn V Enga ﬁn m)a
where B, = \/(4/n)(dIn2n + In(8/9)).

These sort of relative VC bounds allows for a tighter relation (than Chernoff type bounds) between
empirical and true mass of sets (£, g and Eg) in those situations where these quantities are small,
i.e. of the order of 32 = O(1/n) above. This is particularly useful since the balls we have to deal
with are those containing approximately & points, and hence of (small) mass approximately k/n.

A direct result of the above lemma is the following lemma of [26]. This next lemma essentially
reworks Lemma [T] above into a form we can use more directly. We re-use Cj,, below throughout
the analysis.

Lemma 2 ([26]). Pick0 < § < 1. Let Cs, £ 16log(2/6)\/dlogn. Assume k > dlogn. With
probability at least 1 — 6, for every ball B C R% we have,

The main idea in bounding f(z) is to bound the random term 7 (x) in terms of f(z) using Lemma
above. We can deduce from the lemma that if a ball B(x,r) centered has mass roughly k/n, then
its empirical mass is likely to be of the order k/n; hence ri(x) is likely to be close to the radius r
of B(z,r). Now if f does not vary too much in B(z, ), then we can express the mass of B(z,r) in
terms of f(z), and thus get our desired bound on 7 (z) and fj(z) in terms of f(x).

Our results are given in terms of how f varies in a neighborhood of x, captured as follows.
Definition 2. For z € R? and e > 0, define 7#(e, ) = sup {r LSUP| g < f(2) — fl2) < e},
and 7 (e, x) £ sup {7’ SSUP |y < f(T) — f(2') < e} .

The continuity parameters (e, ) and 7*(¢, ) (related to the modulus of continuity of f at x) are eas-

ily bounded under smoothness assumptions on f at x. Our high-probability bounds on the estimates
fx(x) in terms of f(x) and the continuity parameters are given as follows.

Lemma 3 (Upper-bound on fx). Suppose k > 40(?’“. Then, with probability at least 1 — 6, for all
z €R¥and all € > 0,

fula) < (1 n 2%‘5%) () +9).

_=

provided k satisfies vq - 7(e,2)* - (f(z) +¢€) > £ — C;,,



Lemma 4 (Lower-bound on f,). Then, with probability at least 1 — §, for all x € R? and all € > 0,

hiw = (1-92) ste

provided k satisfies vg - 7 (e, x)* - (f(x) —€) > % + C(S,n%-

~

-,

The proof of these results are concise applications of Lemmal[2]above. They are given in the appendix

(long version). The trick is in showing that, under the conditions on k, there exists an r = (k/(n -
f(z)))"/* which is at most #(e, ') or (e, ) as appropriate; hence, f does not vary much on B(z,7)
so we must have
k
F (B(z,r)) =~ volume (B(z, 7)) - f(z) = vq - 7% f(z) ~ —.
n

Using Lemmawe get 7 () ~ r; plug this value into fi(z) to obtain fi,(z) =~ (14 1/VE) f(x).

Lemmas [3]and ] allow a great deal of flexibility as we will soon see with their application to mode
estimation. In particular we can consider various smoothness conditions simultaneously at different
x for different biases e.

Suppose for instance that f is locally Holder at z, ie. 3r,L,8 > 0 st for all 2’ €
B(z,r), |f(x)— f(@')| < L|lz—2'||°. Then for small ¢, both #(¢, z) and #(e, z) are at least
(e/L)'/8; pick ¢ = O(f(x)/Vk) for n sufficiently large, then by both lemmas we have, w.h.p.,
|fe(z) — f(x)] < O(f(x)/Vk) provided k = Q(log? n) and satisfies vg(1/LvVk)YP f(z) > Ck/n
for some constant C. This allows for a setting of k = © (n??/(2+4) for a minimax-optimal rate
of |fulw) — f(x)] = O (n?/5+a),

The ability to consider various biases € would prove particularly helpful in the next section on
mode estimation where we have to consider different approximations in different parts of space with

varying smoothness in f. In particular, at a mode z, we will essentially have 8 = 2 (f is twice
differentiable) while elsewhere on X we might not have much smoothness in f.

5 Mode estimation

We start with the following definition of modes.
Definition 3. We denote the set of modes of f by M = {x : Ir > 0,Va' € B(z,r), f(z') < f(z)}.

We need the following assumption at modes.

Assumption 1. f is twice differentiable in a neighborhood of every x € M. We denote the gradient
and Hessian of f by V f and V? f. Furthermore, V2 f(x) is negative definite at all x € M.

Assumption[I]excludes modes at the boundary of the support of f (where f cannot be continuously
differentiable). We note that most work on the subject consider only interior modes as we are
doing here. Modes on the boundary can however be handled under additional boundary smoothness
assumptions to ensure that f puts sufficient mass on any ball around such modes. This however only
complicates the analysis, while the main insights remain the same as for interior modes.

An implication of Assumption [I]is that for all z € M, V f is continuous in a neighborhood of z,
with V f(z) = 0. Together with V2 f(x) < 0 (i.e. negative definite), f is well-approximated by a
quadratic in a neighborhood of a mode = € M. This is stated in the following lemma.

Lemma 5. Let f satisfy Assumption|l} Consider any x € M. Then there exists a neighborhood
B(z,r),r > 0, and constants C,,, C,, > 0 such that, for all 2’ € B(xz,r), we have

Colla’ —zl” < f(z) — f(z') < Cp |l — 2| (1)

We can therefore parametrize a mode x € M locally as follows:

Definition 4 (Critical radius r,, around mode x). For every mode x € M, there exists r, > 0, such
that B(x,ry) is contained in a set A, satisfying the following conditions:

() A is a connected component of a level set X* = {x' € X : f(x') > \} for some \ > 0.

(i) 3C,, Cp > 0,V € Ay, Cy |2/ — z))* < f(z) — f(a!) < Cy |2/ — x| (So Ay "M = {z}.)



Return arg maXzex, fk( )-

Figure 1: Estimate the mode of a unimodal density f from X,.

Figure 2: The analysis argues over different regions (depicted) around a mode .

Finally, we assume that every hill in f corresponds to a mode in M:

Assumption 2. Each connected component of any level set X, X > 0, contains a mode in M.

5.1 Single mode

We start with the simple but common assumption that |[M| = 1. This case has been extensively
studied to get a handle on the inherent difficulty of mode estimation. The usual procedures in the
statistical literature are known to be minimax-optimal but are not practical: they invariably return the
maximizer of some density estimator (usually a kernel estimate) over the entire space R?. Instead
we analyze the practical procedure of Figure [I| where we pick the maximizer of fj, out of the finite
sample X(,,. The rates of Theoremare optimal (O(n~Y/(4+d)) for a setting of k = O(n*/(4+d)),

Theorem 1. Let & > 0. Assume f has a single mode x( and satisfies Assumptions[I} 2] There exists

Ng, 5 such that the following holds for n > Ny, 5. Let C’I07 Cgc0 be as in Deﬁnmon Suppose k
satisfies

24C5. f (x0) ’ 1 |Csn /D ) vg \4/(4+d)
# _ 5 (2d+4)/(4+d) (24 2
<k< .
( C 7 ) N ) B (2 émo ) f(xO) ( 4 n) ( )

o' xo

Let x be the mode returned in the procedure of Figure[l) With probability at least 1 — 25 we have

an 1

lz — 2ol <5 f(xo)'m~

Zo

Proof. Let r,, be the critical radius of Deﬁnition Let 7, (z0) = inf {r : B(zo,r) N X[y # 0}.
Let 0 < 7 < 1 to be later specified, and assume the event that r,(z) < STy We W111 bound the
probability of this event once the proper setting of 7 becomes clear.

Consider 7 satisfying r,,, > 7 > 2r,(xo)/7 (see Figure[2). We will first upper bound f}, for any z
outside B(xg, ), then lower-bound f, for x € B(zg, r(x0))-

Recall A, from Definition[d] By equation (I)) we have

sup flz) < f(xo) — O (7/2)* £ F. 3)
2€ Ay \B(z0,7/2)

The above allows us to apply Lemmal[3|as follows. First note that for any z € X\ B(xo,7/2), f(z) <
F since Ag, is a level set of the unimodal f, i.e. sup ¢4, f(z) < infgea,, f(x). Therefore, for

any x € X\ B(xg,7) lete = F'— f(x). By equation (3) the modulus of continuity #(e, z) is at least



Initialize: M, < 0.
For \ = maXze X, fn(z) down to 0:

o Letey 2 \- C(;,n/\/E.
o Let {Ai}m be the CCs of G (A — ex — &) disjoint from M,,.
i=1
o My +— MpU {xl 4 AGMAX,e 4N XA fn(m)}m .
n i=1

Return the estimated modes M.

Figure 3: Estimate the modes of a multimodal f from X{,,;. The parameter € serves to prune.

7/2. Therefore, if k satisfies

va - (7/2)" - (F(20) = Cug(7/2) 2 = = s, @
we have with probability at least 1 — §
C& n = ~ 2
sup  fr(z) < (1—1—2 : ) f(zg) — Cuy (7/2)7) . %)
x€X\B(zo,T) \/E ( ’ )
Now we turn to @ € B(zg,r,(x0)). We have again by equation that inf,c gz ) f(2) >
flxo) — C‘xo (77)> £ F. Therefore, for z € B(zq, 7 (z0)) let € = f(z) — F, we have 7(e, z) >
TF — rn(x0) > 77 /2. It follows that, if & satisfies
. N k VEk
va ((r/2P)" - (F(@0) = Can(77)?) = = + Csn 2, ©®)
we have by Lemma [ that, with probability at least 1 — § (under the same event used in Lemma 3)
. 06 n A ~\2
f > (12 ~ Gy (77)?). 7
it i) = (1= S () = (o) @

Next, with a bit of algebra, we can pick 7 and 7 so that the Lh.s. of @) is less than the Lh.s.
of equation . It suffices to pick 72 = C,, /8C,, and 7> > 24f(x0)Cs.,/CryVk. Given these
settings, equations (@) and (6)) are satisfied whenever k satisfies equation (2)) of the lemma statement.
It follows that, with probability at least 1 — &, infoeB(a.r, (x0)) fk(T) > SUDLcx\ B(zo,7) fr(T)-
Therefore, the empirical mode chosen by the procedure is in B(zg, 7). We are free to choose 7 as

small as max {\/ 24(20)Csn/ (CagVE), 270 (w0) /T}.

We’ve assumed so far the event that 7,,(zo) < F7,,. We bound the probability of this event as
follows. Let r £ \/ 24f(x0)Cs,n/ C’xo V'k. Under the above setting of 7, the Theorem’s assumptions
on k imply that » < r,,, and that vg - ((r/2)r)*- (f(a:o) - éxo((T/Q)T)2> >k C’(;,n%. Again,

by equation li this implies that F(B(zo, (1/2)r)) > £ + C’57n@. By Lemma, , with probability
at least 1 — 9, F,(B(xo, (7/2)r)) > k/n and therefore rn(xOSL < (1/2)r < (7/2)rg,. It now
becomes clear that we can just pick 7 = r. O

5.2 Multiple modes

In this section we turn to the problem of estimating the modes of a more general density f with an
unknown number of modes.

The algorithm of Figureoperates on the following set of nested graphs G (). These are subgraphs
of a mutual k-NN graph on the sample X,,), where vertices are connected if they are in each other’s
nearest neighbor sets. The connected components (CCs) of these graphs G(\) are known to be good
estimates of the CCs of corresponding level sets of the unknown density f [9} 26, 27].



Definition 5 (k-NN level set G())). Given X € R, let G(\) denote the graph with vertices in
X[il] = {a: € Xpp & fu(z) > /\} , and where vertices x,x’ are connected by an edge when and only

when ||z — 2’| < o - min {ry(x), r(2')}, for some o > /2.

We will show that for a given n, any sufficiently salient mode is optimally recovered; furthermore,
if f is uniformly continuous on R%, then the procedure returns no false mode above a level \,, — 0.

5.2.1 Optimal Recovery for Any Mode

The guarantees of this section would be given in terms of salient modes as defined below. Essentially
a mode xg is salient if it is separated from other modes by a sufficiently wide and deep valley.
We define saliency in a way similar to [9]], but simpler: we only require a wide valley since the
smoothness of f at the mode (as expressed in equation 1)) takes care of the depth.

We start with a notion of separation between sets inspired from [26]].

Definition 6 (r-separation). A, A’ C X are r-separated if there exists a (separating) set S C R¢
such that: every path from A to A’ crosses S, and SUP e 54 B(0,r) f(z) < infrcavar f(2).

Our notion of mode saliency follows: for a mode x, we require the critical set A, of Definition E]to
be well separated from all components at the level where it appears.

Definition 7 (r-salient Modes). A mode x of f is said to be r-salient for v > 0 if the following
holds. There exist A, as in Deﬁnition (with the corresponding r,, C, and Cy), which is a CC of
say X e £ {x € X : f(x) > Ao} A, is r-separated from X = \ A,.

The next theorem again yields the optimal rates O(n~/(4+4)) for k = O(n*/(4+4)),
Theorem 2 (Recovery of salient modes). Assume f satisfies Assumptions Suppose € =

n—oo

é(n) ——= 0. Let z9 be an r-salient mode for some r > 0. Assume k = (C’gn) Then
there exist N = N (xq, {é(n)}) depending on xo and é(n) such that the following holds forn > N.

Let Ay, Csy, Cyy be as in Deﬁnition and let \,, = infyea,, f(x). Let 6 > 0. Suppose k further
satisfies

2 4d/(4+d)
( 24Cs.nf (x0) ) <k< (1 Cﬁ,n) \(2d+4)/(4+d) (ﬂdn) 4/4+d)
<k< 2 )

Cv’m0 min {r%o/ll, (r/a)Q} 2 C’xo 4

Let M,, be the modes returned by the procedure of Figure 3| With probability at least 1 — 26, there
exists © € M., such that

05771 1
o =0l <5y L2 faw) - 11

5.2.2 Pruning guarantees

The proof of the main theorem of this section is based on Lemma 7.4 of [[24].
Theorem 3. Let A £ sup, f(z) and r(e) = sup,cpe max {(e,x),7(e,x)}. Assume f satisfies

Assumption 2| Suppose r(&) = Q (k/ n)l/ 4 \which is feasible whenever f is uniformly continuous
onR% In particular, if f is Holder continuous, i.e.

Vo, o' € R |f(x) — f(2)| < Lz fx'||ﬁ , for some L > 0,0 < f <1,
then we can just let € = ) (k/n)ﬁ/d since r(€) > (¢/L)'/8. Define

A k VE) 2
= 2,8=C2 = ye .
Ao max{ e,SkC’(s,n, (n +Csn " ) vdr(g)d}

Assume k > 90(?’71. The following holds with probability at least 1 — §. Pick any A > 2\g, and
let \f = ianGX[A] f(x). All estimated modes in M, N XA] can be assigned to distinct modes in

[n
MO X,
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