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Abstract

The Jacobi metric introduced in mathematical physics can be used to analyze
Hamiltonian Monte Carlo (HMC). In a geometrical setting, each step of HMC
corresponds to a geodesic on a Riemannian manifold with a Jacobi metric. Our
calculation of the sectional curvature of this HMC manifold allows us to see that it
is positive in cases such as sampling from a high dimensional multivariate Gaus-
sian. We show that positive curvature can be used to prove theoretical concentra-
tion results for HMC Markov chains.

1 Introduction

In many important applications, we are faced with the problem of sampling from high dimensional
probability measures [[19]]. For example, in computational anatomy [8]], the goal is to estimate de-
formations between patient anatomies observed from medical images (e.g. CT and MRI). These de-
formations are then analyzed for geometric differences between patient groups, for instance in cases
where one group of patients has a certain disease, and the other group are healthy. The anatomical
deformations of interest have very high effective dimensionality. Each voxel of the image has essen-
tially three degrees of freedom, although prior knowledge about spatial smoothness helps regularize
the estimation problem and narrow down the effective degrees of freedom. Recently, several authors
formulated Bayesian approaches for this type of inverse problem [1} [2} 4], turning computational
anatomy into a high dimensional sampling problem.

Most high dimensional sampling problems have intractable normalizing constants. Therefore to
draw multiple samples we have to resort to general Markov chain Monte Carlo (MCMC) algorithms.
Many such algorithms scale poorly with the number of dimensions. One exception is Hamilto-
nian Monte Carlo (HMC). For example, in computational anatomy, various authors [22, 23] have
used HMC to sample anatomical deformations efficiently. Unfortunately, the theoretical aspects of
HMC are largely unexplored, although some recent work addresses the important question of how
to choose the numerical parameters in HMC optimally [3| [7].

1.1 Main Result

In this paper, we present a theoretical analysis of HMC. As a first step toward a full theoretical
analysis of HMC in the context of computational anatomy [22} 23], we focus our attention on the
numerical calculation of the expectation

I'= | f(q)7(dg) (1.1)
Rd

*The first and second authors made equal contributions and should be considered co-first authors.



by drawing samples (X1, Xo,...) from 7 using HMC, and then approximating the integral by the
sample mean of the chain:
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Here, Tj is the burn-in time, a certain number of steps taken in the chain that we discard due to
the influence of the starting state, and 7 is the running time, the number of steps in the chain that
we need to take to obtain a representative sample of the actual measure. Our main result quantifies
how large 7" must be in order to obtain a good approximation to the above stated integral through its
sample mean (V2 will be defined in §3| and  in the next paragraph):

P(L— 1] 2 7| flluip) < 207" /00VA(5T)),

The most interesting part of this result is the use of coarse Ricci curvature k. Following on ideas
from Sturm [20, [21]], Ollivier introduced & to quantify the curvature of a Markov chain [16]]. Joulin
and Ollivier [12]] used this concept of curvature to calculate new error bounds and concentration
inequalities for a wide range of MCMC algorithms. Their work links MCMC to Riemannian geom-
etry; this link is our main tool for analyzing HMC.

Our key idea is to recast the analysis of HMC as a problem in Riemannian geometry by using
the Jacobi metric. In high dimensional settings, we are able to make simplifications that allow
us to calculate distributions of curvatures on the Riemannian manifold associated to HMC. This
distribution is then used to calculate « and thus concentration inequalities. Our results hold in high
dimensions (large d) and for Markov chains with positive curvature.

The Jacobi metric connects seemingly different problems and enables us to transform a sampling
problem into a geometrical problem. It has been known since Jacobi [10] that Hamiltonian flows
correspond to geodesics on certain Riemannian manifolds. The Jacobi metric has been successfully
used in the study of phase transitions in physics; for a book-length account see [17]]. In probability
and statistics, the Jacobi metric has been mentioned in the rejoinder of [[7] as an area of research
promise.

The Jacobi metric enables us to distort space according to a probability distribution. This idea is
familiar to statisticians in the simple case of using the inverse cumulative distribution function to
distort uniformly spaced points into points from another distribution. When we want to sample
y € R from a distribution with cumulative distribution function F' we can pick a uniform random
number z € [0, 1] and let y be the largest number so that F'(y) < x. Here we are shrinking the
regions of low density so that they are less likely to be selected.

1.2 Structure of the Paper

After introducing basic concepts from Riemannian geometry, we recast HMC into the Riemmanian
setting, i.e. as geodesics on Riemannian manifolds (§2). This provides the necessary language to
state and prove that HMC has positive sectional curvature in high dimensions, in certain settings. We
then state the main concentration inequality from [12] (§3). Finally, we show how this concentration
inequality can be applied to quantify running times of HMC for the multivariate Gaussian in 100
dimensions (§4).

2 Sectional Curvature of Hamiltonian Monte Carlo

2.1 Riemannian Manifolds

We now introduce some basic differential and Riemannian geometry that is useful in describing
HMC; we will leave the more subtle points about curvature of manifolds and probability measures
for This apparatus will allow us to interpret solutions to Hamiltonian equations as geodesic
flows on Riemannian manifolds. We sketch this approach out briefly here, avoiding generality and
precision, but we invite the interested reader to consult [S]] or a similar reference for a more thorough
exposition.



Definition 2.1. Let X be a d-dimensional manifold, and let x € X be a point. Then the tangent
space T, X' consists of all v/(0), where v : (—¢,&) — X is a smooth curve and v(0) = z. The
tangent bundle 7' of A’ is the manifold whose underlying set is the disjoint union | |, ., 75X
Remark 2.2. This definition does not tell us how to stitch 7, X’ and T'X into manifolds. The details
of that construction can be found in any introductory book on differential geometry. It suffices to
note that 7, X is a vector space of dimension d, and T'X is a manifold of dimension 2d.

Definition 2.3. A Riemannian manifold is a pair (X, (-,-)), where X’ is a manifold and (-,-) is a
smoothly varying positive definite bilinear form on the tangent space T, X, for each z € X. We call
(-, ) the (Riemannian) metric.

The Riemannian metric allows one to measure distances between two points on X'. We define the
length of a curve 7 : [a, b] — X to be

b
L(y) = / (' (£),7' (1)) dt,

and the distance p(x,y) to be

p(z,y) = inf L(y).
v(0)==
y(1)=y

A geodesic on a Riemannian manifold is a curve v : [a, b] — X that locally minimizes distance, in
the sense that if 5 : [a,b] — X is another path with ¥(a) = ~y(a) and ¥(b) = ~(b) with F(¢) and
~(t) sufficiently close together for each ¢ € [a, b], then L(~y) < L(7).

Example. On R? with the standard metric, geodesics are exactly the line segments, since the shortest
path between two points is along a straight line.

In this article, we are primarily concerned with the case of X’ diffeomorphic to R?. However, it
will be essential to think in terms of Riemannian manifolds, for our metric on X will vary from the
standard metric. In @ we will see how to choose a metric, the Jacobi metric, that is tailored to a
non-uniform probability distribution 7 on X.

2.2 Hamiltonian Monte Carlo

In order to resolve some of the issues with the standard versions of MCMC related to slow mixing
times, we draw inspiration from ideas in physics. We mimic the movement of a body under potential
and kinetic energy changes to avoid diffusive behavior. The stationary probability will be linked to
the potential energy. The reader is invited to read [15] for an elegant survey of the subject.

The setup is as follows: let X be a manifold, and let 7 be a target distribution on X'. As with the
Metropolis-Hastings algorithm, we start at some point ¢y € X'. However, we use an analogue of the
laws of physics to tell us where to go for future steps.

To simplify our exposition, we assume that X = R?. This is not strictly necessary, but all distribu-
tions we consider will be on R?. In what follows, we let (¢, p,) be the position and momentum
after n steps of the walk.

To run Hamiltonian Monte Carlo, we must first choose functions V : X — Rand K : TX — R,

and we let H(q,p) = V(q) + K(q,p). We start at a point gy € X. Now, supposing we have ¢, the

position at step n, we sample p,, from a N'(0, I) distribution. We solve the differential equations
dq O0H dp  O0H

dt ~ dp’ dt —  9q
with initial conditions p(0) = p,, and ¢(0) = ¢y, and we let g, +1 = ¢(1).

2.1

In order to make the stationary distribution of the ¢,,’s be 7, we choose V' and K following Neal in

[15]}; we take
D
V()= —logn(g) +C,  K(p) =7l 22)
where C' and D > 0 are convenient constants. Note that V' only depends on ¢ and K only depends
on p. V is larger when 7 is smaller, and so trajectories are able to move more quickly starting from

lower density regions than out of higher density regions.



2.3 Curvature

Not all probability distributions can be efficiently sampled. In particular, high-dimensional distri-
butions such as the uniform distribution on the cube [0, 1] are especially susceptible to sampling
difficulties due to the curse of dimensionality, where in some cases it is necessary to take exponen-
tially many (in the dimension of the space) sample points in order to obtain a satisfactory estimate.
(See [13] for a discussion of the problems with integration on high-dimensional boxes and some
ideas for tackling them when we have additional information about the function.)

However, numerical integration on high-dimensional spheres is not as difficult. The reason is that
the sphere exhibits concentration of measure, so that the bulk of the surface area of the sphere lies
in a small ribbon around the equator (see [14} §III.1.6]). As a result, we can obtain a good estimate
of an integral on a high-dimensional sphere by taking many sample points around the equator, and
only a few sample points far from the equator. Indeed, a polynomial number (in the dimension and
the error bound) of points will suffice.

The difference between the cube and sphere, in this instance, is that the sphere has positive curva-
ture, whereas the cube has zero curvature. Spaces of positive curvature are amenable to efficient
numerical integration.

However, it is not just a space that can have positive (or otherwise) curvature. As we shall see, we
can associate a notion of curvature to a Markov chain, an idea introduced by Ollivier [[L6] and Joulin
[L1] following work of Sturm [20, 21]]. In this case as well, we will be able to perform numerical
integration, using Hamiltonian Monte Carlo, in the case of stationary distributions of Markov chains
with positive curvature. Furthermore, in §3| we will be able to provide error bounds for the integrals
1n question.

In order to make the geometry and the probability measure interdependent, we will deform our space
to take the probability distribution into account, in a manner reminiscent of the inverse transform
method mentioned in the introduction. Formally, this amounts to putting a suitable Riemannian
metric on our state space X. From now on, we shall assume that X’ is a manifold; in fact, it will
generally suffice to let it be R?, Nonetheless, even in the case of R, the extra Riemannian metric is
important since it is not the standard Euclidean one.

Given a probability distribution 7 on R, we now define a metric on R that is tailored to 7 and the
Hamiltonian it induces (see §2.2)). This construction is originally due to Jacobi, but our treatment
follows Pin in [18]].

Definition 2.4. Let (X, (-, -)) be a Riemannian manifold, and let 7 be a probability distribution on
X. Let V be the potential energy function associated to w by (2.2). For h € R, we define the Jacobi
metric to be

gh('v ) = 2(h - V)<v >

Remark 2.5. (X, gr) is not necessarily a Riemannian manifold, since g, will not be positive definite
if h — V is ever nonpositive. We could remedy this situation by restricting to the subset of X on
which h — V' > 0. However, this will not be problematical for us, as we will always select values of
h for which h — V' > 0.

The reason for using the Jacobi metric is the following result of Jacobi, following Maupertuis:

Theorem 2.6 (Jacobi-Maupertuis Principle, [10]). Trajectories q(t) of the Hamiltonian equa-
tions 21| with total energy h are geodesics of X with the Jacobi metric gy,.

The most convenient way for us to think about the Jacobi metric on X is as a distortion of space
to suit the probability measure. In order to do this, we make regions of high density larger, and we
make regions of low density smaller. However, the Jacobi metric does not completely override the
old notion of distance and scale; the Jacobi metric provides a compromise between physical distance
and density of the probability measure.

As we run Hamiltonian Monte Carlo as described in h changes at every step, as we let h =
V(gn) + K (py). That is, we actually vary the metric structure as we run the chain, or, alternatively,
move between different Riemannian manifolds. In practice, however, we prefer to think of the chain
as running on a single manifold, with a changing structure.



We will not give all the relevant definitions of curvature, only a few facts that provide some useful
intuition.

We will need the notion of sectional curvature in the plane spanned by u and v. Let X be a d-
dimensional Riemannian manifold, and z,y € X two distinct points. Let v € T, X, v’ € T, X be
two tangent vector at x and y that are related to each other by parallel transport along the geodesic
in the direction of u. Let § be the length of the geodesic between x and y, and ¢ the length of v (or
v’). Let p be the length of the geodesic between the two endpoints starting at - shooting in direction
ev, and y in direction ev’. Then the sectional curvature Sec, (u,v) at point x is given by

2
p=20 (1 - % Sec, (u,v) + O(e? + 525)> as (g,9) — 0.

See Figure 3 in our long paper [9]] for a pictorial representation.

We let Inf Sec denote the infimum of Sec, (u, v), where x runs over X and u, v run over all pairs of
linearly independent tangent vectors at x.

Remark 2.7. In practice, it may not be easy to compute Inf Sec precisely. As a result, we can
approximate it by running a suitable Markov chain on the collection of pairs of linearly independent
tangent vectors of X’; say we reach states (z1,u1,v1), (Z2,us,v2),. .., (T, us,v). Then we can
approximate Inf Sec by the empirical infimum of the sectional curvatures infi<;<; Secy, (u;, v;).
This approach has computational benefits, but also theoretical benefits: it allows us to ignore low
sectional curvatures that are unlikely to arise in practice.

Note that Sec depends on the metric. There is a formula, due to Pin [18]], connecting the sectional
curvature of a Riemannian manifold equipped with some reference metric, with that of the Jacobi
metric. We write down an expression for the sectional curvature in the special case where the
reference metric on X is the standard Euclidean metric and u and v are orthonormal tangent vectors
atapointx € X

Secy (u,v) = ﬁ (2(h -V) [((Hess V)u, u) + ((Hess V), v)]

+ 3[” grad V|| cos?(a) + || grad V||? 0082(6)] — || grad VH2>. (2.3)

Here, « is defined as the angle between grad V' and u, and 3 as the angle between grad V' and v, in
the standard Euclidean metric.

There is also a notion of curvature, known as coarse Ricci curvature for Markov chains [[16]]. (There
is also a notion of Ricci curvature for Riemannian manifolds, but we do not use it in this article.)
If P is the transition kernel for a Markov chain on a metric space (X, p), let P,, denote the tran-
sition probabilities starting from state z. We define the coarse Ricci curvature x(z,y) as the W
Wasserstein distance between two probability measures by

Wi(Pe, Py) = (1 = k2, y))p(2, y).
We write x for inf, ,cx k(2, y). We sometimes write « for an empirical infimum, as in Remark

3 Concentration Inequality for General MCMC

We now state Joulin and Ollivier’s [[12] concentration inequalities for general MCMC. This will
provide the link between geometry and MCMC that we will need for our concentration inequality
for HMC.

Definition 3.1. e The Lipschitz norm of a function f : (X, p) — Ris
[f(z) — f(y)]
fllLip == sup .
171 P z,yeX p(x,y)
If || f|lLip < C, we say that f is C-Lipschitz.

e The coarse diffusion constant of a Markov chain on a metric space (X, p) with kernel P at
a state ¢ € X is the quantity

1
o(q)® = 5//)(Xxp(x,y)2Pq(dw) Py(dy).



e The local dimension ng is

inf ff)(xxp(zvy)2 Pq(dﬂj) Pq(dy)
pasr [T 1f(@) — J(y)P Py(de) Py(dy)

f 1-Lipschitz

Ng =

e The eccentricity E(q) at a point ¢ € X is defined to be

E(q) = / p(x,y) m(dy).
x
Theorem 3.2 ([12]). If f : X — R is a Lipschitz function, then

_ . \To+1
L= B) s

1 T 0(x)2
2 0
TY=—(1+— _
Vi, T) w1 ( + T)sgg Ngk

Then, assuming that the diameters of the P,’s are unbounded, we have

~ ~ 2 2
Po(II = EqI| > r||flluip) < 2e77 /HOV70=TD),

|qu_ I‘ <
Theorem 3.3 ([12]). Let

Joulin and Ollivier [12] work with metric state spaces that have positive curvature. In contrast, in
the next section, we work with Euclidean state spaces. We show that HMC transforms Euclidean
state space into a state space with positive curvature. In HMC, curvature does not originate from the
state space but from the measure 7. The measure 7 acts on the state space according to the rules of
HMC; one can think of a distortion of the underlying state space, similar to the transform inverse
sampling for one dimensional continuous distributions.

4 Concentration Inequality for HMC

In this section, we apply Theorem for sampling from multivariate Gaussian distributions using
HMC. For a book-length introduction to sampling from multivariate Gaussians, see [6]. We begin
with a theoretical discussion, and then we present some simulation results. As we shall see, these
distributions have positive curvature in high dimensions.

Lemma 4.1. Let C be a universal constant and 7 be the d-dimensional multivariate Gaussian
N(0,%), where 3 is a (d x d) covariance matrix, all of whose eigenvalues lie in the range [1/C, C).
We denote by A = X~ ! the precision matrix. Let q be distributed according to , and p according
10 a Gaussian N'(0,1). Further, h = V(q) + K(q,p) is the sum of the potential and the kinetic
energy. The Euclidean state space X is equipped with the Jacobi metric gy,. Pick two orthonormal
tangent vectors u,v in the tangent space Ty X at point q. Then the sectional curvature Sec from
expression (2.3) is a random variable bounded from below with probability

P(d%Sec > K1) > 1 — Kqpe KoV,
K4, Ky, and K3 are positive constants that depend on C.

We note that the terms in involving cosines can be left out since they are always positive and
small. The other three terms can be written as three quadratic forms in standard Gaussian random
vectors. We then calculate tail inequalities for all these terms using Chernoff-type bounds. We also
work out the constants K1, K>, and K3 explicitly. For a detailed proof see our long paper [9].

There is a close connection between « and Sec of X equipped with the Jacobi metric: for Gaussians
with assumptions as in Lemma}4.1] we have
Sec
K2
as d — oo. We give the derivation in our long paper [9].
Now we can insert  into Theorem [3.3] and compute our concentration inequality for HMC. For

details on how to calculate the coarse diffusion constant o(q)?, the local dimension n,, and the
eccentricity E(q), see our long paper [9].
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Figure 1: Top left: Minimum and sample average of sectional curvatures for 14- to 50-dimensional
multivariate Gaussian 7 with identity covariance. For each dimension we run a HMC random walk
with T' = 10* steps. The other three plots: HMC after T = 10* steps for multivariate Gaussian 7
with identity covariance in d = 10, 100, 1000 dimensions. At each step we compute the sectional
curvature for d uniformly sampled orthonormal 2-frames in R

Remark 4.2. The coarse curvature x only depends on 7. However, in practice we compute x empir-
ically by running several steps of the chain as discussed in Remark 2.7, making x depend on z and
Ty. Thus, we typically assume T}, to be known in advance in some other way.

Example (Distribution of sectional curvature). We run a HMC Markov chain to sample a multi-
variate Gaussian 7. Figure [T] shows how the minimum and sample mean of sectional curvatures
during the HMC random walk tend closer with dimensionality, and around dimension 30 we cannot
distinguish them visually anymore. The minimum sectional curvatures are stable with small fluctu-
ations. The actual sample distributions are shown in three separate plots (Figure[I)) for 10, 100 and
1000 dimensions. These plots suggest that the sample distributions of sectional curvatures tend to a
Gaussian distribution with smaller variances as dimensionality increases.

Example (Running time estimate). Now we give a concentration inequality simulation for sampling
from a 100-dimensional multivariate Gaussian with with Gaussian decay between the absolute dis-
tance squared of the variable indices

m~ N(0,exp(~[i — j|*))

and the following parameters
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Figure 2: (Covariance structure with weak dependencies) Left: Sample means for 1000 simulations
for the first coordinate of the 100 dimensional multivariate Gaussian. The red lines indicate the error
bound r. Right: Concentration inequality with increasing burn-in and running time.

Error bound r=0.05 Starting point q =0
Markov chain kernel P ~ N(0,I1p9) Coarse Ricci curvature  x = 0.0024
Coarse diffusion constant  o2(g) = 100 Local dimension ng = 100
Lipschitz norm || fllLip = 0.1 Eccentricity E(0) =99.75

For calculations of these parameters see our long paper [9]. In Figure 2] on the left, we show 1000
simulations of this HMC chain and for each simulations we plot the sample mean approximation to
the integral. The red lines indicated the requested error bound at 7 = 0.05. From these simulation
results, we would expect the right burn-in and running time to be around 7" + T = ¢'°. In Figure
on the right, we see our theoretical concentration inequality as a function of burn-in and running
time T' + Ty (in logarithmic scale). The probability of making an error above our defined error
bound r = 0.05 is close to zero at burn-in time Ty = 0 and running time 7" = ¢!, The discrepancy
between the predicted theoretical results and the actual simulations suggest there might be hope for
improvements in future work.

5 Conclusion

Lemma@] states a probabilistic lower bound. So in rare occasions, we will still observe curvatures
below this bound or in very rare occasions even negative curvatures. Even if we had less conservative
bounds on the number of simulations steps Ty + 7', we could still not completely exclude “bad”
curvatures. For our approach to work, we need to make the explicit assumption that rare “bad”
curvatures have no serious impact on bounds for Ty + 7. Intuitively, as HMC can take big steps
around the state space towards the gradient of distribution 7, it should be able to recover quickly from
“bad” places. We are now working on quantifying this recovery behavior of HMC more carefully.

For a full mathematical development with proofs and more examples on the multivariate t distribu-
tion and in computational anatomy see our long paper [9].
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