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Abstract

In this paper we propose a framework for supervised and semi-supervised learning
based on reformulating the learning problem as a regularized Fredholm integral
equation. Our approach fits naturally into the kernel framework and can be in-
terpreted as constructing new data-dependent kernels, which we call Fredholm
kernels. We proceed to discuss the “noise assumption” for semi-supervised learn-
ing and provide both theoretical and experimental evidence that Fredholm kernels
can effectively utilize unlabeled data under the noise assumption. We demonstrate
that methods based on Fredholm learning show very competitive performance in
the standard semi-supervised learning setting.

1 Introduction
Kernel methods and methods based on integral operators have become one of the central areas of
machine learning and learning theory. These methods combine rich mathematical foundations with
strong empirical performance. In this paper we propose a framework for supervised and unsuper-
vised learning as an inverse problem based on solving the integral equation known as the Fredholm
problem of the first kind. We develop regularization based algorithms for solving these systems
leading to what we call Fredholm kernels.

In the basic setting of supervised learning we are given the data set (xi, yi), where xi ∈ X, yi ∈ R.
We would like to construct a function f : X → R, such that f(xi) ≈ yi and f is “nice enough”
to generalize to new data points. This is typically done by choosing f from a class of functions (a
Reproducing Kernel Hilbert Space (RKHS) corresponding to a positive definite kernel for the kernel
methods) and optimizing a certain loss function, such as the square loss or hinge loss.

In this paper we formulate a new framework for learning based on interpreting the learning problem
as a Fredholm integral equation. This formulation shares some similarities with the usual kernel
learning framework but unlike the standard methods also allows for easy incorporation of unlabeled
data. We also show how to interpret the resulting algorithm as a standard kernel method with a
non-standard data-dependent kernel (somewhat resembling the approach taken in [13]).

We discuss reasons why incorporation of unlabeled data may be desirable, concentrating in partic-
ular on what may be termed “the noise assumption” for semi-supervised learning, which is related
but distint from manifold and cluster assumption popular in the semi-supervised learning literature.
We provide both theoretical and empirical results showing that the Fredholm formulation allows for
efficient denoising of classifiers.

To summarize, the main contributions of the paper are as follows:
(1) We formulate a new framework based on solving a regularized Fredholm equation. The frame-
work naturally combines labeled and unlabeled data. We show how this framework can be expressed
as a kernel method with a non-standard data-dependent kernel.
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(2) We discuss “the noise assumption” in semi-supervised learning and provide some theoretical ev-
idence that Fredholm kernels are able to improve performance of classifiers under this assumption.
More specifically, we analyze the behavior of several versions of Fredholm kernels, based on com-
bining linear and Gaussian kernels. We demonstrate that for some models of the noise assumption,
Fredholm kernel provides better estimators than the traditional data-independent kernel and thus
unlabeled data provably improves inference.

(3) We show that Fredholm kernels perform well on synthetic examples designed to illustrate the
noise assumption as well as on a number of real-world datasets.

Related work. Kernel and integral methods in machine learning have a large and diverse literature
(e.g., [12, 11]). The work most directly related to our approach is [10], where Fredholm integral
equations were introduced to address the problem of density ratio estimation and covariate shift. In
that work the problem of density ratio estimation was expressed as a Fredholm integral equation and
solved using regularization in RKHS. This setting also relates to a line of work on on kernel mean
embedding where data points are embedded in Reproducing Kernel Hilbert Spaces using integral
operators with applications to density ratio estimation and other tasks [5, 6, 7]. A very interesting
recent work [9] explores a shrinkage estimator for estimating means in RKHS, following the Stein-
James estimator originally used for estimating the mean in an Euclidean space. The results obtained
in [9] show how such estimators can reduce variance. There is some similarity between that work
and our theoretical results presented in Section 4 which also show variance reduction for certain
estimators of the kernel although in a different setting. Another line of related work is the class
of semi-supervised learning techniques (see [15, 2] for a comprehensive overview) related to mani-
fold regularization [1], where an additional graph Laplacian regularizer is added to take advantage
of the geometric/manifold structure of the data. Our reformulation of Fredholm learning as a ker-
nel, addressing what we called “noise assumptions”, parallels data-dependent kernels for manifold
regularization proposed in [13].

2 Fredholm Kernels
We start by formulating learning framework proposed in this paper. Suppose we are given l labeled
pairs (x1, y1), . . . , (xl, yl) from the data distribution p(x, y) defined on X × Y and u unlabeled
points xl+1, . . . , xl+u from the marginal distribution pX(x) on X . For simplicity we will assume
that the feature space X is a Euclidean space RD, and the label set Y is either {−1, 1} for binary
classification or the real line R for regression. Semi-supervised learning algorithms aim to construct
a (predictor) function f : X → Y by incorporating the information of unlabeled data distribution.

To this end, we introduce the integral operator KpX associated with a kernel function k(x, z). In our
setting k(x, z) does not have to be a positive semi-definite (or even symmetric) kernel.

KpX : L2 → L2 and KpXf(x) =

∫
k(x, z)f(z)pX(z)dz, (1)

where L2 is the space of square-integrable functions. By the law of large numbers, the above oper-
ator can be approximated using unlabeled data from pX as

Kp̂Xf(x) =
1

l + u

l+u∑
i=1

k(x, xi)f(xi).

This approximation provides a natural way of incorporating unlabeled data into algorithms. In our
Fredholm learning framework, we will use functions in KpXH = {KpXf : f ∈ H}, where H is
an appropriate Reproducing Kernel Hilbert Space (RKHS) as classification or regression functions.
Note that unlike RKHS, this space of functions, KpXH, is density dependent.

In particular, this now allows us to formulate the following optimization problem for semi-supervised
classification/regression in a way similar to many supervised learning algorithms:
The Fredholm learning framework solves the following optimization problem1:

f∗ = arg min
f∈H

1

l

l∑
i=1

((Kp̂Xf)(xi)− yi)2 + λ‖f‖2H, (2)

1We will be using the square loss to simplify the exposition. Other loss functions can also be used in Eqn 2.
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The final classifier is c(x) = (Kp̂Xf∗) (x), where Kp̂X is the operator defined above. Eqn 2 is a
discretized and regularized version of the Fredholm integral equation KpXf = y, thus giving the
name of Fredholm learning framework.

Even though at a first glance this setting looks similar to conventional kernel methods, the extra
layer introduced by Kp̂X makes significant difference, in particular, by allowing the integration
of information from unlabeled data distribution. In contrast, solutions to standard kernel methods
for most kernels, e.g., linear, polynomial or Gaussian kernels, are completely independent of the
unlabeled data. We note that our approach is closely related to [10] where a Fredholm equation is
used to estimated the density ratio for two probability distributions.

The Fredholm learning framework is a generalization of the standard kernel framework. In fact, if
the kernel k is the δ-function, then our formulation above is equivalent to the Regularized Kernel
Least Squares equation f∗ = arg minf∈H

1
l

∑l
i=1(f(xi) − yi)2 + λ‖f‖2H. We could also replace

the L2 loss in Eqn 2 by other loss functions, such as hinge loss, resulting in a SVM-like classifier.

Finally, even though Eqn 2 is an optimization problem in a potentially infinite dimensional function
space H, a standard derivation, using the Representer Theorem (See full version for details), yields
a computationally accessible solution as follows:

f∗(x) =
1

l + u

l+u∑
j=1

kH(x, xj)vj , v =
(
KT
l+uKl+uKH + λI

)−1
KT
l+uy, (3)

where (Kl+u)ij = k(xi, xj) for 1 ≤ i ≤ l, 1 ≤ j ≤ l + u, and (KH)ij = kH(xi, xj) for
1 ≤ i, j ≤ l + u. Note that Kl+u is a l × (l + u) matrix.

Fredholm kernels: a convenient reformulation. In fact we will see that Fredholm learning prob-
lem induces a new data-dependent kernel, which we will refer to as Fredholm kernel2. To show this
connection, we use the following identity, which can be easily verified:(

KT
l+uKl+uKH + λI

)−1
KT
l+u = KT

l+u

(
Kl+uKHK

T
l+u + λI

)−1
.

Define KF = Kl+uKHK
T
l+u to be the l × l kernel matrix associated with a new kernel defined by

k̂F (x, z) =
1

(l + u)2

l+u∑
i,j=1

k(x, xi)kH(xi, xj)k(z, xj), (4)

and we consider the unlabeled data are fixed for computing this new kernel. Using this new kernel
k̂F , the final classifying function from Eqn 3 can be rewritten as:

c∗(x) =
1

l + u

l+u∑
i=1

k(x, xi)f
∗(xi) =

l∑
s=1

k̂F (x, xs)αs, α = (KF + λI)
−1
y.

Because of Eqn 4 we will sometimes refer to the kernels kH and k as the “inner” and “outer” kernels
respectively. It can be observed that this solution is equivalent to a standard kernel method, but using
a new data dependent kernel k̂F , which we will call the Fredholm kernel, since it is induced from
the Fredholm problem formulated in Eqn 2.

Proposition 1. The Fredholm kernel defined in Eqn 4 is positive semi-definite as long as KH is
positive semi-definite for any set of data x1, . . . , xl+u.

The proof is given in the full version. The “outer” kernel k does not have to be either positive definite
or even symmetric. When using Gaussian kernel for k, discrete approximation in Eqn 4 might be
unstable when the kernel width is small, so we also introduce the normalized Fredholm kernel,

k̂NF (x, z) =

l+u∑
i,j=1

k(x, xi)∑
n k(x, xn)

kH(xi, xj)
k(z, xj)∑
n k(z, xn)

. (5)

It is easy to check that the resulting Fredholm kernel k̂NF is still symmetric positive semi-definite.
Even though Fredholm kernel was derived using L2 loss here, it could also be derived when hinge
loss is used, which will be explained in full version.

2 We note that the term Fredholm Kernel has been used in mathematics ([8], page 103) and also in a different
learning context [14]. Our usage represents a different object.
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3 The Noise Assumption and Semi-supervised Learning
In order for unlabeled data to be useful in classification tasks it is necessary for the marginal distri-
bution of the unlabeled data to contain information about the conditional distribution of the labels.
Several ways in which such information can be encoded has been proposed including the “cluster
assumption” [3] and the “manifold assumption” [1]. The cluster assumption states that a cluster (or
a high density area) contains only (or mostly) points belonging to the same class. That is, if x1 and
x2 belong to the same cluster, the corresponding labels y1, y2 should be the same. The manifold
assumption assumes that the regression function is smooth with respect to the underlying manifold
structure of the data, which can be interpreted as saying that the geodesic distance should be used
instead of the ambient distance for optimal classification. The success of algorithms based on these
ideas indicates that these assumptions do capture certain characteristics of real data. Still, better
understanding of unlabeled data may still lead to progress in data analysis.

Figure 1: Left: only labelled points, and Right:
with unlabelled points.

The noise assumption. We propose to for-
mulate a new assumption, the “noise assump-
tion”, which is that in the neighborhood of ev-
ery point, the directions with low variance (for
the unlabeled data) are uninformative with re-
spect to the class labels, and can be regarded as
noise. While intuitive, as far as we know, it has
not been explicitly formulated in the context
of semi-supervised learning algorithms, nor ap-
plied to theoretical analysis.

Note that even if the noise variance is small along a single direction, it could still significantly de-
crease the performance of a supervised learning algorithm if the noise is high-dimensional. These
accumulated non-informative variations in particular increase the difficulty of learning a good clas-
sifier when the amount of labeled data is small. The first figure on right illustrates the issue of noise
with two labeled points. The seemingly optimal classification boundary (the red line) differs from
the correct one (in black) due to the noisy variation along the y axis for the two labeled points.
Intuitively unlabeled data shown in the right panel of Figure 1 can be helpful in this setting as low
variance directions can be estimated locally such that algorithms could suppress the influences of
the noisy variation when learning a classifier.

Connection to cluster and manifold assumptions. The noise assumption is compatible with the
manifold assumption within the manifold+noise model. Specifically, we can assume that the func-
tions of interest vary along the manifold and are constant in the orthogonal direction. Alternatively,
we can think of directions with high variance as “signal/manifold” and directions with low vari-
ance as “noise”. We note that the noise assumption does not require the data to conform to a
low-dimensional manifold in the strict mathematical sense of the word. The noise assumption is
orthogonal to the cluster assumption. For example, Figure 1 illustrates a situation where data has no
clusters but the noise assumption applies.

4 Theoretical Results for Fredholm Kernels
Non-informative variation in data could degrade traditional supervised learning algorithms. We
will now show that Fredholm kernels can be used to replace traditional kernels to inject them with
“noise-suppression” power with the help of unlabeled data. In this section we will present two views
to illustrate how such noise suppression can be achieved. Specifically, in Section 4.1) we show that
under certain setup, linear Fredholm kernel suppresses principal components with small variance.
In Section 4.2) we prove that under certain conditions we are able to provide good approximations
to the “true” kernel on the hidden underlying space.

To make our arguments more clear, we assume that there are infinite amount of unlabelled data; that
is, we know the marginal distribution of data exactly. We will then consider the following continuous
versions of the un-normalized and normalized Fredholm kernels as in Eqn 4 and 5:

kUF (x, z) =

∫ ∫
k(x, u)kH(u, v)k(z, v)p(u)p(v)dudv (6)

kNF (x, z) =

∫ ∫
k(x, u)∫

k(x,w)p(w)dw
kH(u, v)

k(z, v)∫
k(z, w)p(w)dw

p(u)p(v)dudv. (7)
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Note, in the above equations and in what follows, we sometimes write p instead of pX for the
marginal distribution when its choice is clear from context. We will typically use kF to denote
appropriate normalized or unnormalized kernels depending on the context.

4.1 Linear Fredholm kernels and inner products

For this section, we consider the unormalized Fredholm kernel, that is kF = kUF . If the “outer”
kernel k(u, v) is linear, i.e. k(u, v) = 〈u, v〉, the resulting Fredholm kernel can be viewed as an
inner product. Specifically, the un-normalized Fredholm kernel from Eqn 6 can be rewritten as:

kF (x, z) = xTΣF z, where ΣF =

∫ ∫
ukH(u, v)vT p(u)p(v)dudv.

Thus kF (x, z) is simply an inner product which depends on both the unlabeled data distribution p(x)
and the “inner” kernel kH. This inner product re-weights the standard norm in feature space based
on variances along the principal directions of the matrix ΣF . We show that for the model when un-
labeled data is sampled from a normal distribution this kernel can be viewed as a “soft thresholding”
PCA, suppressing the directions with low variance. Specifically, we have the following3

Theorem 2. Let kH(x, z) = exp
(
−‖x−z‖

2

2t

)
and assume the distribution pX for unlabeled data is

a single multi-variate normal distribution, N(µ, diag(σ2
1 , . . . , σ

2
d)). We have

ΣF =

(
D∏
d=1

√
t

2σ2
d + t

)(
µµT + diag

(
σ4
1

2σ2
1 + t

, . . . ,
σ4
D

2σ2
D + t

))
.

Assuming that the data is mean-subtracted, i.e. µ = 0, we see that xTΣF z re-scales the projections
along the principal components when computing the inner product; that is, the rescaling factor for

the i-th principal direction is
√

σ4
i

2σ2
i+t

.

Note that this rescaling factor σ4
i

2σ2
i+t
≈ 0 when σ2

i � t. On the other hand when σ2
i � t, we

have that σ4
i

2σ2
i+t
≈ σ2

i

2 . Hence t can be considered as a soft threshold that eliminates the effects of
principal components with small variances. When t is small the rescaling factors are approximately
proportional to diag(σ2

1 , σ
2
2 , . . . , σ

2
D), in which case ΣF is is proportional to the covariance matrix

of the data XXT .

4.2 Kernel Approximation With Noise

We have seen that one special case of Fredholm kernel could achieve the effect of principal compo-
nents re-scaling by using linear kernel as the “outer” kernel k. In this section we give a more general
interpretation of noise suppression by the Fredholm kernel.
First, we give a simple senario to provide some intuition be-
hind the definition of Fredholm kernle. Consider a stan-
dard supervised learning setting which uses the solution f∗ =

arg minf∈H
1
l

∑l
i=1(f(xi)−yi)2+λ‖f‖2H as the classifier. Let

ktarget
H denote the ideal kernel that we intend to use on the clean

data, which we call the target kernel from now on. Now sup-
pose what we have are two noisy labelled points xe and ze for
“true” data x̄ and z̄, i.e. xe = x̄ + εx, ze = z̄ + εz . The
evaluation of ktarget

H (xe, ze) can be quite different from the true
signal ktarget

H (x̄, z̄), leading to an suboptimal final classifier (the
red line in Figure 1 (a)). On the other hand, now consider the
Fredholm kernel from Eqn 6 (or similarly from Eqn 7): kF (xe, ze) =

∫ ∫
k(xe, u)p(u) · kH(u, v) ·

k(ze, v)p(v)dudv, and set the outer kernel k to be the Gaussian kernel, and the inner kernel kH to be
the same as target kernel ktarget

H . We can think of kF (xe, ze) as an averaging of kH(u, v) over all pos-
sible pairs of data u, v, weighted by k(xe, u)p(u) and k(ze, v)p(v) respectively. Specifically, points

3The proof of this and other results can be found in the full version.
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that are close to xe (resp. ze) with high density will receive larger weights. Hence the weighted
averages will be biased towards x̄ and z̄ respectively (which presumably lie in high density regions
around xe and ze). The value of kF (xe, ze) tends to provide a more accurate estimate of kH(x̄, z̄).
See the right figure for an illustration where the arrows indicate points with stronger influences in the
computation of kF (xe, ze) than kH(xe, ze). As a result, the classifier obtained using the Fredholm
kernel will also be more resilient to noise and closer to the optimum.

The Fredholm learning framework is rather flexible in terms of the choices of kernels k and kH.
In the remainder of this section, we will consider a few specific scenarios and provide quantitative
analysis to show the noise robustness of the Fredholm kernel.
Problem setup. Assume that we have a ground-truth distribution over the subspace spanned by
the first d dimension of the Euclidean space RD. We will assume that this distribution is a sin-
gle Gaussian N(0, λ2Id). Suppose this distribution is corrupted with Gaussian noise along the or-
thogonal subspace of dimension D − d. That is, for any “true” point x̄ drawn from N(0, λ2Id),
its observation xe is drawn from N(x̄, σ2ID−d). Since the noise lies in a space orthogonal
to data distribution, this means that any observed point, labelled or unlabeled, is sampled from
pX = N(0, diag(λ2Id, σ

2ID−d). We will show that Fredholm kernel provides a better approxima-
tion to the “original” kernel given unlabeled data than simply computing the kernel of noisy points.
We choose this basic setting to be able to state the theoretical results in a clean manner. Even though
this is a Gaussian distribution over a linear subspace with noise, this framework has more general
implications since local neighborhoods of manifolds are (almost) linear spaces.

Note: In this section we use normalized Fredholm kernel given in Eqn 7, that is kF = kNF for now
on. Un-normalized Fredholm kernel displays similar behavior, while the bounds are trickier.

Linear Kernel. First we consider the case where the target kernel ktarget
H (u, v) is the linear kernel,

ktarget
H (u, v) = uT v. We will set kH in Fredholm kernel to also be linear, and k to be the Gaussian

kernel k(u, v) = e−
‖u−v‖2

2t We will compare kF (xe, ze) with the target kernel on the two observed
points, that is, with ktarget

H (xe, ze). The goal is to estimate ktarget
H (x̄, z̄). We will see that (1) both

kF (xe, ze) and (appropriately scaled) kH(xe, ze) are unbiased estimators of ktarget
H (x̄, z̄), however (2)

the variance of kF (xe, ze) is smaller than that of ktarget
H (xe, ze), making it a more precise estimator.

Theorem 3. Suppose the probability distribution for the unlabeled data pX =
N(0, diag(λ2Id, σ

2ID−d)). For Fredholm kernel defined in Eqn 7, we have

Exe,ze(ktarget
H (xe, ze)) = Exe,ze

((
t+ λ2

λ2

)2

kF (xe, ze)

)
= x̄T z̄

Moreover, when λ > σ, Varxe,ze

((
t+λ2

λ2

)2
kF (xe, ze)

)
< Varxe,ze(ktarget

H (xe, ze)).

Remark: Note that we have a normalization constant for the Fredholm kernel to make it an unbiased
estimator of x̄T z̄. In practice, choosing normalization is subsumed in selecting the regularization
parameter for kernel methods.

Thus we can see the Fredholm kernel provides an approximation of the “true” linear kernel, but with
smaller variance compared to the actual linear kernel on noisy data.

Gaussian Kernel. We now consider the case where the target kernel is the Gaussian kernel:
ktarget
H (u, v) = exp

(
−‖u−v‖

2

2r

)
. To approximate this kernel, we will set both k and kH to be Gaus-

sian kernels. To simplify the presentation of results, we assume that k and kH have the same kernel
width t. The resulting Fredholm kernel turns out to also be a Gaussian kernel, whose kernel width
depends on the choice of t.

Our main result is the following. Again, similar to the case of linear kernel, the Fredholm estimation
kF (xe, ze) and ktarget

H (xe, ze) are both unbiased estimator for the target ktarget
H (x̄, z̄) up to a constant;

but kF (xe, ze) has a smaller variance.
Theorem 4. Suppose the probability distribution for the unlabeled data pX =

N(0, diag(λ2Id, σ
2ID−d)). Given the target kernel ktarget

H (u, v) = exp
(
−‖u−v‖

2

2r

)
with ker-

nel width r > 0, we can choose t, given by the equation t(t+λ2)(t+3λ2)
λ4 = r, and two scaling
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constants c1, c2, such that
Exe,ze(c−11 ktarget

H (xe, ze)) = Exe,ze(c−12 kF (xe, ze)) = ktarget
H (x̄, z̄).

and when λ > σ, we have Varxe,ze(c−11 ktarget
H (xe, ze)) > Varxe,ze(c−12 kF (xe, ze)).

Remark. In practice, when applying kernel methods for real world applications, optimal kernel
width r is usually unknown and chosen by cross-validation or other methods. Similarly, for our
Fredholm kernel, one can also use cross-validation to choose the optimal t for kF .

5 Experiments
Using linear and Gaussian kernel for k or kH respectively, we will define three instances of the
Fredholm kernel as follows.
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Figure 2: Noise but not
cluster assumption. Gaussian
noise in R100 is added. Linear
(above) and non-linear (be-
low) class boundaries.

(1) FredLin1: k(x, z) = xT z and kH(x, z) = exp
(
−‖x−z‖

2

2r

)
.

(2) FredLin2: k(x, z) = exp
(
−‖x−z‖

2

2r

)
and kH(x, z) = xT z.

(3) FredGauss: k(x, z) = kH(x, z) = exp
(
−‖x−z‖

2

2r

)
.

For the kernels in (2) and (3) that use the Gaussian kernel as outside
kernel k we can also define their normalized version, which we will
denote by by FredLin2(N) and FredGauss(N) respectively.

Synthetic examples. Noise and cluster assumptions.

To isolate the ability of Fredholm kernels to deal with noise from
the cluster assumption, we construct two synthetic examples that
violate the cluster assumption, shown in Figure 2. The figures show
first two dimensions, with multi-variate Gaussian noise with vari-
ance σ2 = 0.01 in R100 added. The classification boundaries are
indicated by the color. For each class, we provide several labeled
points and large amount of unlabeled data. Note that the classifica-
tion boundary in the “circle” example is non-linear.

We compare Fredholm kernel based classifier with RLSC (Reg-
ularized Least Squares Classifier), and two widely used semi-
supervised methods, the transductive support vector machine and
LapRLSC. Since the examples violate the cluster assumption, the
two existing semi-supervised learning algorithms, Transductive
SVM and LapRLSC, should not gain much from the unlabeled data.
For TSVM, we use the primal TSVM proposed in [4], and we will
use the implementation of LapRLSC given in [1]. Different num-
bers of labeled points are given for each class, together with another
2000 unlabeled points. To choose the optimal parameters for each method, we pick the parameters
based on their performance on the validation set, while the final classification error is computed on
the held-out testing data set. Results are reported in Table 1 and 2, in which Fredholm kernels show
clear improvement over other methods for synthetic examples in term of classification error.

Real-world Data Sets. Unlike artificial examples, it is usually difficult to verify whether certain
assumptions are satisfied in real-world problems. In this section, we examine the performance of
Fredholm kernels on several real-world data sets and compare it with the baseline algorithms men-
tioned above.
Linear Kernels. Here we consider text categorization and sentiment analysis, where linear methods
are known to perform well. We use the following data (represented by TF-IDF features):
(1) 20 news group: it has 11269 documents with 20 classes, and we select the first 10 categories
for our experiment. (2) Webkb: the original data set contains 7746 documents with 7 unbalanced
classes, and we pick the two largest classes with 1511 and 1079 instances respectively. (3) IMDB
movie review: it has 1000 positive reviews and 1000 negative reviews of movie on IMDB.com. (4)
Twitter sentiment data from Sem-Eval 2013: it contains 5173 tweets, with positive, neural and neg-
ative sentiment. We combine neutral and negative classes to set up a binary classification problem.
Results are reported in Table 3. In Table4, we use WebKB as an example to illustrate the change of
the performance as number of labeled points increases.
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Number
of Labeled

Methods(Linear)
RLSC TSVM LapRLSC FredLin1 FredLin2(N)

8 10.0(± 3.9) 5.2(± 2.2) 10.0(± 3.5) 3.7(± 2.6) 4.5(± 2.1)
16 9.1(± 1.9) 5.1(± 1.1) 9.1(± 2.2) 2.9(± 2.0) 3.6(± 1.9)
32 5.8(± 3.2) 4.5(± 0.8) 6.0(± 3.2) 2.3(± 2.3) 2.6(± 2.2)

Table 1: Prediction error of different classifiers for the“two lines” example.

Number
of Labeled

Methods(Gaussian)
K-RLSC TSVM LapRLSC FredGauss(N)

16 17.4(± 5.0) 32.2(± 5.2) 17.0(± 4.6) 7.1(± 2.4)
32 16.5(± 7.1) 29.9(± 9.3) 18.0(± 6.8) 6.0(± 1.6)
64 8.7(± 1.7) 20.3(± 4.2) 9.7(± 2.0) 5.5(± 0.7)

Table 2: Prediction error of different classifiers for the “circle” example.

Gaussian Kernel. We test our methods on hand-written digit recognition. The experiment use
subsets of two handwriting digits data sets MNIST and USPS: (1) the one from MNIST contains
10k digits in total with balanced examples for each class, and the one for USPS is the original testing
set containing about 2k images. The pixel values are normalized to [0, 1] as features. Results are
reported in Table 5. In Table 6, we show that as we add additional Gaussian noise to MNIST data,
Fredholm kernels start to show significant improvement.

Data Set
Methods(Linear)

RLSC TSVM FredLin1 FredLin2 FredLin2(N)
Webkb 16.9(± 1.4) 12.7(± 0.8) 13.0(± 1.3) 12.0(± 1.6) 12.0(± 1.6)
20news 22.2(± 1.0) 21.0(± 0.9) 20.5 (± 0.7) 20.5 (±0.7) 20.5(± 0.7)
IMDB 30.0(± 2.0) 20.2(± 2.6) 19.9(± 2.3) 21.7(± 2.9) 21.7(± 2.7)
Twitter 38.7(± 1.1) 37.6(± 1.4) 37.4(± 1.2) 37.4(± 1.2) 37.5(± 1.2)

Table 3: The error of various methods on the text data sets. 20 labeled data per class are given with
rest of the data set as unlabeled points. Optimal parameter for each method are used.

Number
of Labeled

Methods(Linear)
RLSC TSVM FredLin1 FredLin2 FredLin2(N)

10 20.7(± 2.4) 13.5(± 0.5) 14.8(± 2.4) 14.6(± 2.4) 14.6(± 2.3)
20 16.9(± 1.4) 12.7(± 0.8) 13.0(± 1.3) 12.0(± 1.6) 12.0(± 1.6)
80 10.9(± 1.4) 9.7(± 1.0) 8.1(± 1.0) 7.9(± 0.9) 7.9(± 0.9)

Table 4: Prediction error on Webkb with different number of labeled points.

Data Set
Methods(Gaussian)

K-RLSC LapRLSC FredGauss FredGauss(N)
USPST 11.8(± 1.4) 10.2 (±0.5) 12.4(± 1.8) 10.8(± 1.1)
MNIST 14.3(± 1.2) 8.6(± 1.2) 12.2(±1.0) 13.0(± 0.9)

Table 5: Prediction error of nonlinear classifiers on the MNIST and USPS. 20 labeled data per class
are given with rest of the data set as unlabeled points. Optimal parameter for each method are used.

Number
of Labeled

Methods(Gaussian)
K-RLSC LapRLSC FredGauss FredGauss(N)

10 34.1(± 2.1) 35.6 (±3.5) 27.9(± 1.6) 29.0(± 1.5)
20 27.2(± 1.1) 27.3 (±1.8) 21.9(± 1.2) 22.9(± 1.2)
40 20.0(± 0.7) 20.3 (±0.8) 17.3(± 0.5) 18.4(± 0.4)
80 15.6(± 0.4) 15.6 (±0.5) 14.8(± 0.6) 15.4(± 0.5)

Table 6: The prediction error of nonlinear classifiers on MNIST corrupted with Gaussian noise with
standard deviation 0.3, with different numbers of labeled points, from 10 to 80. Optimal parameter
for each method are used.
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