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Abstract

This paper introduces a novel mathematical and computational framework,
namely Log-Hilbert-Schmidt metric between positive definite operators on a
Hilbert space. This is a generalization of the Log-Euclidean metric on the Rie-
mannian manifold of positive definite matrices to the infinite-dimensional setting.
The general framework is applied in particular to compute distances between co-
variance operators on a Reproducing Kernel Hilbert Space (RKHS), for which we
obtain explicit formulas via the corresponding Gram matrices. Empirically, we
apply our formulation to the task of multi-category image classification, where
each image is represented by an infinite-dimensional RKHS covariance operator.
On several challenging datasets, our method significantly outperforms approaches
based on covariance matrices computed directly on the original input features,
including those using the Log-Euclidean metric, Stein and Jeffreys divergences,
achieving new state of the art results.

1 Introduction and motivation

Symmetric Positive Definite (SPD) matrices, in particular covariance matrices, have been playing
an increasingly important role in many areas of machine learning, statistics, and computer vision,
with applications ranging from kernel learning [12], brain imaging [9], to object detection [24, 23].
One key property of SPD matrices is the following. For a fixed n ∈ N, the set of all SPD matrices
of size n × n is not a subspace in Euclidean space, but is a Riemannian manifold with nonpositive
curvature, denoted by Sym++(n). As a consequence of this manifold structure, computational
methods for Sym++(n) that simply rely on Euclidean metrics are generally suboptimal.

In the current literature, many methods have been proposed to exploit the non-Euclidean structure
of Sym++(n). For the purposes of the present work, we briefly describe three common approaches
here, see e.g. [9] for other methods. The first approach exploits the affine-invariant metric, which
is the classical Riemannian metric on Sym++(n) [18, 16, 3, 19, 4, 24]. The main drawback of this
framework is that it tends to be computationally intensive, especially for large scale applications.
Overcoming this computational complexity is one of the main motivations for the recent develop-
ment of the Log-Euclidean metric framework of [2], which has been exploited in many computer
vision applications, see e.g. [25, 11, 17]. The third approach defines and exploits Bregman diver-
gences on Sym++(n), such as Stein and Jeffreys divergences, see e.g. [12, 22, 8], which are not
Riemannian metrics but are fast to compute and have been shown to work well on nearest-neighbor
retrieval tasks.

While each approach has its advantages and disadvantages, the Log-Euclidean metric possesses
several properties which are lacking in the other two approaches. First, it is faster to compute than
the affine-invariant metric. Second, unlike the Bregman divergences, it is a Riemannian metric
on Sym++(n) and thus can better capture its manifold structure. Third, in the context of kernel
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learning, it is straightforward to construct positive definite kernels, such as the Gaussian kernel,
using this metric. This is not always the case with the other two approaches: the Gaussian kernel
constructed with the Stein divergence, for instance, is only positive definite for certain choices of
parameters [22], and the same is true with the affine-invariant metric, as can be numerically verified.

Our contributions: In this work, we generalize the Log-Euclidean metric to the infinite-
dimensional setting, both mathematically, computationally, and empirically. Our novel metric,
termed Log-Hilbert-Schmidt metric (or Log-HS for short), measures the distances between positive
definite unitized Hilbert-Schmidt operators, which are scalar perturbations of Hilbert-Schmidt oper-
ators on a Hilbert space and which are infinite-dimensional generalizations of positive definite ma-
trices. These operators have recently been shown to form an infinite-dimensional Riemann-Hilbert
manifold by [14, 1, 15], who formulated the infinite-dimensional version of the affine-invariant
metric from a purely mathematical viewpoint. While our Log-Hilbert-Schmidt metric framework
includes the Log-Euclidean metric as a special case, the infinite-dimensional formulation is signifi-
cantly different from its corresponding finite-dimensional version, as we demonstrate throughout the
paper. In particular, one cannot obtain the infinite-dimensional formulas from the finite-dimensional
ones by letting the dimension approach infinity.

Computationally, we apply our abstract mathematical framework to compute distances between co-
variance operators on an RKHS induced by a positive definite kernel. From a kernel learning per-
spective, this is motivated by the fact that covariance operators defined on nonlinear features, which
are obtained by mapping the original data into a high-dimensional feature space, can better cap-
ture input correlations than covariance matrices defined on the original data. This is a viewpoint
that goes back to KernelPCA [21]. In our setting, we obtain closed form expressions for the Log-
Hilbert-Schmidt metric between covariance operators via the Gram matrices.

Empirically, we apply our framework to the task of multi-class image classification. In our approach,
the original features extracted from each input image are implicitly mapped into the RKHS induced
by a positive definite kernel. The covariance operator defined on the RKHS is then used as the rep-
resentation for the image and the distance between two images is the Log-Hilbert-Schmidt distance
between their corresponding covariance operators. On several challenging datasets, our method sig-
nificantly outperforms approaches based on covariance matrices computed directly on the original
input features, including those using the Log-Euclidean metric, Stein and Jeffreys divergences.

Related work: The approach most closely related to our current work is [26], which computed
probabilistic distances in RKHS. This approach has recently been employed by [10] to compute
Bregman divergences between RKHS covariance operators. There are two main theoretical issues
with the approach in [26, 10]. The first issue is that it is assumed implicitly that the concepts of
trace and determinant can be extended to any bounded linear operator on an infinite-dimensional
Hilbert space H. This is not true in general, as the concepts of trace and determinant are only well-
defined for certain classes of operators. Many quantities involved in the computation of the Bregman
divergences in [10] are in fact infinite when dim(H) = ∞, which is the case if H is the Gaussian
RKHS, and only cancel each other out in special cases 1. The second issue concerns the use of
the Stein divergence by [10] to define the Gaussian kernel, which is not always positive definite, as
discussed above. In contrast, the Log-HS metric formulation proposed in this paper is theoretically
rigorous and it is straightforward to define many positive definite kernels, including the Gaussian
kernel, with this metric. Furthermore, our empirical results consistently outperform those of [10].

Organization: After some background material in Section 2, we describe the manifold of positive
definite operators in Section 3. Sections 4 and 5 form the core of the paper, where we develop the
general framework for the Log-Hilbert-Schmidt metric together with the explicit formulas for the
case of covariance operators on an RKHS. Empirical results for image classification are given in
Section 6. The proofs for all mathematical results are given in the Supplementary Material.

2 Background

The Riemannian manifold of positive definite matrices: The manifold structure of Sym++(n)
has been studied extensively, both mathematically and computationally. This study goes as far

1We will provide a theoretically rigorous formulation for the Bregman divergences between positive definite
operators in a longer version of the present work.
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back as [18], for more recent treatments see e.g. [16, 3, 19, 4]. The most commonly encountered
Riemannian metric on Sym++(n) is the affine-invariant metric, in which the geodesic distance
between two positive definite matrices A and B is given by

d(A,B) = || log(A−1/2BA−1/2)||F , (1)

where log denotes the matrix logarithm operation and F is an Euclidean norm on the space of
symmetric matrices Sym(n). Following the classical literature, in this work we take F to be the
Frobenious norm, which is induced by the standard inner product on Sym(n). From a practical
viewpoint, the metric (1) tends to be computationally intensive, which is one of the main motivations
for the Log-Euclidean metric of [2], in which the geodesic distance between A and B is given by

dlogE(A,B) = || log(A)− log(B)||F . (2)

The main goal of this paper is to generalize the Log-Euclidean metric to what we term the Log-
Hilbert-Schmidt metric between positive definite operators on an infinite-dimensional Hilbert space
and apply this metric in particular to compute distances between covariance operators on an RKHS.

Covariance operators: Let the input space X be an arbitrary non-empty set. Let x = [x1, . . . , xm]
be a data matrix sampled from X , where m ∈ N is the number of observations. Let K be a
positive definite kernel on X × X and HK its induced reproducing kernel Hilbert space (RKHS).
Let Φ : X → HK be the corresponding feature map, which gives the (potentially infinite) mapped
data matrix Φ(x) = [Φ(x1), . . . ,Φ(xm)] of size dim(HK) × m in the feature space HK . The
corresponding covariance operator for Φ(x) is defined to be

CΦ(x) =
1

m
Φ(x)JmΦ(x)T : HK → HK , (3)

where Jm is the centering matrix, defined by Jm = Im − 1
m1m1Tm with 1m = (1, . . . , 1)T ∈ Rm.

The matrix Jm is symmetric, with rank(Jm) = m − 1, and satisfies J2
m = Jm. The covariance

operator CΦ(x) can be viewed as a (potentially infinite) covariance matrix in the feature space HK ,
with rank at most m− 1. If X = Rn and K(x, y) = 〈x, y〉Rn , then CΦ(x) = Cx, the standard n×n
covariance matrix encountered in statistics. 2

Regularization: Generally, covariance matrices may not be full-rank and thus may only be positive
semi-definite. In order to apply the theory of Sym++(n), one needs to consider the regularized
version (Cx + γIRn) for some γ > 0. In the infinite-dimensional setting, with dim(HK) = ∞,
CΦ(x) is always rank-deficient and regularization is always necessary. With γ > 0, (CΦ(x) +γIHK

)
is strictly positive and invertible, both of which are needed to define the Log-Hilbert-Schmidt metric.

3 Positive definite unitized Hilbert-Schmidt operators

Throughout the paper, let H be a separable Hilbert space of arbitrary dimension. Let L(H) be
the Banach space of bounded linear operators on H and Sym(H) be the subspace of self-adjoint
operators in L(H). We first describe in this section the manifold of positive definite unitized Hilbert-
Schmidt operators on which the Log-Hilbert-Schmidt metric is defined. This manifold setting is
motivated by the following two crucial differences between the finite and infinite-dimensional cases.

(A) Positive definite: If A ∈ Sym(H) and dim(H) = ∞, in order for log(A) to be well-defined
and bounded, it is not sufficient to require that all eigenvalues of A be strictly positive. Instead, it is
necessary to require that all eigenvalues of A be bounded below by a positive constant (Section 3.1).

(B) Unitized Hilbert-Schmidt: The infinite-dimensional generalization of the Frobenious norm is the
Hilbert-Schmidt norm. However, if dim(H) =∞, the identity operator I is not Hilbert-Schmidt and
would have infinite distance from any Hilbert-Schmidt operator. To have a satisfactory framework,
it is necessary to enlarge the algebra of Hilbert-Schmidt operators to include I (Section 3.2).

These differences between the cases dim(H) = ∞ and dim(H) < ∞ are sharp and manifest
themselves in the concrete formulas for the Log-Hilbert-Schmidt metric which we obtain in Sections
4.2 and 5. In particular, the formulas for the case dim(H) = ∞ are not obtainable from their
corresponding finite-dimensional versions when dim(H)→∞.

2 One can also define CΦ(x) = 1
m−1

Φ(x)JmΦ(x)T . This should not make much practical difference if m
is large.
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3.1 Positive definite operators

Positive and strictly positive operators: Let us discuss the first crucial difference between the
finite and infinite-dimensional settings. Recall that an operator A ∈ Sym(H) is said to be positive
if 〈Ax, x〉 ≥ 0 ∀x ∈ H. The eigenvalues of A, if they exist, are all nonnegative. If A is positive and
〈Ax, x〉 = 0⇐⇒ x = 0, thenA is said to be strictly positive, and all its eigenvalues are positive. We
denote the sets of all positive and strictly positive operators on H, respectively, by Sym+(H) and
Sym++(H). Let A ∈ Sym++(H). Assume that A is compact, then A has a countable spectrum of
positive eigenvalues {λk(A)}dim(H)

k=1 , counting multiplicities, with limk→∞ λk(A) = 0 if dim(H) =

∞. Let {φk(A)}dim(H)
k=1 denote the corresponding normalized eigenvectors, then

A =

dim(H)∑
k=1

λk(A)φk(A)⊗ φk(A), (4)

where φk(A)⊗ φk(A) : H → H is defined by (φk(A)⊗ φk(A))w = 〈w, φk(A)〉φk(A), w ∈ H.
The logarithm of A is defined by

log(A) =

dim(H)∑
k=1

log(λk(A))φk(A)⊗ φk(A). (5)

Clearly, log(A) is bounded if and only if dim(H) < ∞, since for dim(H) = ∞, we have
limk→∞ log(λk(A)) = −∞. Thus, when dim(H) =∞, the condition that A be strictly positive is
not sufficient for log(A) to be bounded. Instead, the following stronger condition is necessary.

Positive definite operators: A self-adjoint operator A ∈ L(H) is said to be positive definite (see
e.g. [20]) if there exists a constant MA > 0 such that

〈Ax, x〉 ≥MA||x||2 for all x ∈ H. (6)
The eigenvalues of A, if they exist, are bounded below by MA. This condition is equivalent to
requiring that A be strictly positive and invertible, with A−1 ∈ L(H). Clearly, if dim(H) < ∞,
then strict positivity is equivalent to positive definiteness. Let P(H) denote the open cone of self-
adjoint, positive definite, bounded operators onH, that is

P(H) = {A ∈ L(H), A∗ = A,∃MA > 0 s.t. 〈Ax, x〉 ≥MA||x||2 ∀x ∈ H}. (7)
Throughout the remainder of the paper, we use the following notation: A > 0⇐⇒ A ∈ P(H).

3.2 The Riemann-Hilbert manifold of positive definite unitized Hilbert-Schmidt operators

Let HS(H) denote the two-sided ideal of Hilbert-Schmidt operators on H in L(H), which is a
Banach algebra with the Hilbert-Schmidt norm, defined by

||A||2HS = tr(A∗A) =

dim(H)∑
k=1

λk(A∗A). (8)

We now discuss the second crucial difference between the finite and infinite-dimensional settings. If
dim(H) = ∞, then the identity operator I is not Hilbert-Schmidt, since ||I||HS = ∞. Thus, given
γ 6= µ > 0, we have || log(γI) − log(µI)||HS = | log(γ) − log(µ)| ||I||HS = ∞, that is even the
distance between two different multiples of the identity operator is infinite. This problem is resolved
by considering the following extended (or unitized) Hilbert-Schmidt algebra [14, 1, 15]:

HR = {A+ γI : A∗ = A, A ∈ HS(H), γ ∈ R}. (9)
This can be endowed with the extended Hilbert-Schmidt inner product

〈A+ γI,B + µI〉eHS = tr(A∗B) + γµ = 〈A,B〉HS + γµ, (10)
under which the scalar operators are orthogonal to the Hilbert-Schmidt operators. The corresponding
extended Hilbert-Schmidt norm is given by

||(A+ γI)||2eHS = ||A||2HS + γ2, where A ∈ HS(H). (11)
If dim(H) <∞, then we set || ||eHS = || ||HS, with ||(A+ γI)||eHS = ||A+ γI||HS.

Manifold of positive definite unitized Hilbert-Schmidt operators: Define
Σ(H) = P(H) ∩HR = {A+ γI > 0 : A∗ = A, A ∈ HS(H), γ ∈ R}. (12)

If (A+ γI) ∈ Σ(H), then it has a countable spectrum {λk(A) + γ}dim(H)
k=1 satisfying λk + γ ≥MA

for some constant MA > 0. Thus (A + γI)−1 exists and is bounded, and log(A + γI) as defined
by (5) is well-defined and bounded, with log(A+ γI) ∈ HR.
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The main results of [15] state that when dim(H) = ∞, Σ(H) is an infinite-dimensional Riemann-
Hilbert manifold and the map log : Σ(H) → HR and its inverse exp : HR → Σ(H) are diffeomor-
phisms. The Riemannian distance between two operators (A + γI), (B + µI) ∈ Σ(H) is given by

d[(A+ γI), (B + µI)] = || log[(A+ γI)−1/2(B + µI)(A+ γI)−1/2]||eHS. (13)
This is the infinite-dimensional version of the affine-invariant metric (1) 3.

4 Log-Hilbert-Schmidt metric

This section defines and develops the Log-Hilbert-Schmidt metric, which is the infinite-dimensional
generalization of the Log-Euclidean metric (2). The general formulation presented in this section is
then applied to RKHS covariance operators in Section 5.

4.1 The general setting
Consider the following operations on Σ(H):

(A+ γI)� (B + µI) = exp(log(A+ γI) + log(B + µI)), (14)

λ� (A+ γI) = exp(λ log(A+ γI)) = (A+ γI)λ, λ ∈ R. (15)

Vector space structure on Σ(H): The key property of the operation � is that, unlike the usual
operator product, it is commutative, making (Σ(H),�) an abelian group and (Σ(H),�,�) a vector
space, which is isomorphic to the vector space (HR,+, ·), as shown by the following.
Theorem 1. Under the two operations � and �, (Σ(H),�,�) becomes a vector space, with �
acting as vector addition and � acting as scalar multiplication. The zero element in (Σ(H),�,�)
is the identity operator I and the inverse of (A+ γI) is (A+ γI)−1. Furthermore, the map

ψ : (Σ(H),�,�)→ (HR,+, ·) defined by ψ(A+ γI) = log(A+ γI), (16)

is a vector space isomorphism, so that for all (A+ γI), (B + µI) ∈ Σ(H) and λ ∈ R,

ψ((A+ γI)� (B + µI)) = log(A+ γI) + log(B + µI),

ψ(λ� (A+ γI)) = λ log(A+ γI), (17)

where + and · denote the usual operator addition and multiplication operations, respectively.

Metric space structure on Σ(H): Motivated by the vector space isomorphism between
(Σ(H),�,�) and (HR,+, ·) via the mapping ψ, the following is our generalization of the Log-
Euclidean metric to the infinite-dimensional setting.
Definition 1. The Log-Hilbert-Schmidt distance between two operators (A+ γI) ∈ Σ(H), (B +
µI) ∈ Σ(H) is defined to be

dlogHS[(A+ γI), (B + µI)] =
∥∥log[(A+ γI)� (B + µI)−1]

∥∥
eHS

. (18)

Remark 1. For our purposes in the current work, we focus on the Log-HS metric as defined above
based on the one-to-one correspondence between the algebraic structures of (Σ(H),�,�) and
(HR,+, ·). An in-depth treatment of the Log-HS metric in connection with the manifold structure of
Σ(H) will be provided in a longer version of the paper.

The following theorem shows that the Log-Hilbert-Schmidt distance satisfies all the axioms of a met-
ric, making (Σ(H), dlogHS) a metric space. Furthermore, the square Log-Hilbert-Schmidt distance
decomposes uniquely into a sum of a square Hilbert-Schmidt norm plus a scalar term.
Theorem 2. The Log-Hilbert-Schmidt distance as defined in (18) is a metric, making
(Σ(H), dlogHS) a metric space. Let (A + γI) ∈ Σ(H), (B + µI) ∈ Σ(H). If dim(H) = ∞,
then there exist unique operators A1, B1 ∈ HS(H) ∩ Sym(H) and scalars γ1, µ1 ∈ R such that

A+ γI = exp(A1 + γ1I), B + µI = exp(B1 + µ1I), (19)

and
d2

logHS[(A+ γI), (B + µI)] = ‖A1 −B1‖2HS + (γ1 − µ1)2. (20)
If dim(H) <∞, then (19) and (20) hold withA1 = log(A+γI), B1 = log(B+µI), γ1 = µ1 = 0.

3We give a more detailed discussion of Eqs. (12) and (13) in the Supplementary Material.
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Log-Euclidean metric: Theorem 2 states that when dim(H) <∞, we have dlogHS[(A+γI), (B+
µI)] = dlogE[(A + γI), (B + µI)]. We have thus recovered the Log-Euclidean metric as a special
case of our framework.

Hilbert space structure on (Σ(H),�,�): Motivated by formula (20), whose right hand side is a
square extended Hilbert-Schmidt distance, we now show that (Σ(H),�,�) can be endowed with
an inner product, under which it becomes a Hilbert space.
Definition 2. Let (A+γI), (B+µI) ∈ Σ(H). Let A1, B1 ∈ HS(H)∩Sym(H) and γ1, µ1 ∈ R be
the unique operators and scalars, respectively, such that A+ γI = exp(A1 + γ1I) and B + µI =
exp(B1 +µ1I), as in Theorem 2. The Log-Hilbert-Schmidt inner product between (A+ γI) and
(B + µI) is defined by

〈A+ γI,B + µI〉logHS = 〈log(A+ γI), log(B + µI)〉eHS = 〈A1, B1〉HS + γ1µ1. (21)
Theorem 3. The inner product 〈 , 〉logHS as given in (21) is well-defined on (Σ(H),�,�). En-
dowed with this inner product, (Σ(H),�,�, 〈 , 〉logHS) becomes a Hilbert space. The correspond-
ing Log-Hilbert-Schmidt norm is given by

||A+ γI||2logHS = || log(A+ γI)||2eHS = ||A1||2HS + γ2
1 . (22)

In terms of this norm, the Log-Hilbert-Schmidt distance is given by

dlogHS[(A+ γI), (B + µI)] =
∥∥(A+ γI)� (B + µI)−1

∥∥
logHS

. (23)

Positive definite kernels defined with the Log-Hilbert-Schmidt metric: An important conse-
quence of the Hilbert space structure of (Σ(H),�,�, 〈 , 〉logHS) is that it is straightforward to
generalize many positive definite kernels on Euclidean space to Σ(H)× Σ(H).
Corollary 1. The following kernels defined on Σ(H)× Σ(H) are positive definite:

K[(A+ γI), (B + µI)] = (c+ 〈A+ γI,B + µI〉logHS)d, c > 0, d ∈ N, (24)

K[(A+ γI), (B + µI)] = exp(−dplogHS[(A+ γI), (B + µI)]/σ2), 0 < p ≤ 2. (25)

4.2 Log-Hilbert-Schmidt metric between regularized positive operators

For our purposes in the present work, we focus on the following subset of Σ(H):

Σ+(H) = {A+ γI : A ∈ HS(H) ∩ Sym+(H) , γ > 0} ⊂ Σ(H). (26)
Examples of operators in Σ+(H) are the regularized covariance operators (CΦ(x) +γI) with γ > 0.
In this case the formulas in Theorems 2 and 3 have the following concrete forms.
Theorem 4. Assume that dim(H) =∞. Let A,B ∈ HS(H) ∩ Sym+(H). Let γ, µ > 0. Then

d2
logHS[(A+ γI), (B + µI)] = || log(

1

γ
A+ I)− log(

1

µ
B + I)||2HS + (log γ − logµ)2. (27)

Their Log-Hilbert-Schmidt inner product is given by

〈(A+ γI), (B + µI)〉logHS = 〈log(
1

γ
A+ I), log(

1

µ
B + I)〉HS + (log γ)(logµ). (28)

Finite dimensional case: As a consequence of the differences between the cases dim(H) <∞ and
dim(H) = ∞, we have different formulas for the case dim(H) < ∞, which depend on dim(H)
and which are surprisingly more complicated than in the case dim(H) =∞.
Theorem 5. Assume that dim(H) <∞. Let A,B ∈ Sym+(H). Let γ, µ > 0. Then

d2
logHS[(A+ γI), (B + µI)] = || log(

A

γ
+ I)− log(

B

µ
+ I)||2HS

+2(log γ − logµ)tr[log(
A

γ
+ I)− log(

B

µ
+ I)] + (log γ − logµ)2 dim(H). (29)

The Log-Hilbert-Schmidt inner product between (A+ γI) and (B + µI) is given by

〈(A+ γI), (B + µI)〉logHS = 〈log(
A

γ
+ I), log(

B

µ
+ I)〉HS

+(log γ)tr[log(
B

µ
+ I)] + (log µ)tr[log(

A

γ
+ I)] + (log γ logµ) dim(H). (30)
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5 Log-Hilbert-Schmidt metric between regularized covariance operators

Let X be an arbitrary non-empty set. In this section, we apply the general results of Section 4 to
compute the Log-Hilbert-Schmidt distance between covariance operators on an RKHS induced by a
positive definite kernelK on X ×X . In this case, we have explicit formulas for dlogHS and the inner
product 〈 , 〉logHS via the corresponding Gram matrices. Let x = [xi]

m
i=1, y = [yi]

m
i=1, m ∈ N,

be two data matrices sampled from X and CΦ(x), CΦ(y) be the corresponding covariance operators
induced by the kernel K, as defined in Section 2. Let K[x], K[y], and K[x,y] be the m × m
Gram matrices defined by (K[x])ij = K(xi, xj), (K[y])ij = K(yi, yj), (K[x,y])ij = K(xi, yj),
1 ≤ i, j ≤ m. Let A = 1√

γmΦ(x)Jm : Rm → HK , B = 1√
µmΦ(y)Jm : Rm → HK , so that

ATA =
1

γm
JmK[x]Jm, BTB =

1

µm
JmK[y]Jm, ATB =

1
√
γµm

JmK[x,y]Jm. (31)

Let NA and NB be the numbers of nonzero eigenvalues of ATA and BTB, respectively. Let ΣA
and ΣB be the diagonal matrices of size NA ×NA and NB ×NB , and UA and UB be the matrices
of size m×NA and m×NB , respectively, which are obtained from the spectral decompositions

1

γm
JmK[x]Jm = UAΣAU

T
A ,

1

µm
JmK[y]Jm = UBΣBU

T
B . (32)

In the following, let ◦ denote the Hadamard (element-wise) matrix product. Define

CAB = 1TNA
log(INA

+ ΣA)Σ−1
A (UTAA

TBUB ◦ UTAATBUB)Σ−1
B log(INB

+ ΣB)1NB
. (33)

Theorem 6. Assume that dim(HK) =∞. Let γ > 0, µ > 0. Then

d2
logHS[(CΦ(x) + γI), (CΦ(y) + µI)] = tr[log(INA

+ ΣA)]2 + tr[log(INB
+ ΣB)]2

−2CAB + (log γ − logµ)2. (34)

The Log-Hilbert-Schmidt inner product between (CΦ(x) + γI) and (CΦ(y) + µI) is

〈(CΦ(x) + γI), (CΦ(y) + µI)〉logHS = CAB + (log γ)(logµ). (35)

Theorem 7. Assume that dim(HK) <∞. Let γ > 0, µ > 0. Then
d2

logHS[(CΦ(x) + γI), (CΦ(y) + µI)] = tr[log(INA
+ ΣA)]2 + tr[log(INB

+ ΣB)]2 − 2CAB

+2(log
γ

µ
)(tr[log(INA

+ ΣA)]− tr[log(INB
+ ΣB)]) + (log

γ

µ
)2 dim(HK). (36)

The Log-Hilbert-Schmidt inner product between (CΦ(x) + γI) and (CΦ(y) + µI) is
〈(CΦ(x) + γI), (CΦ(y) + µI)〉logHS = CAB + (logµ)tr[log(INA

+ ΣA)]

+(log γ)tr[log(INB
+ ΣB)] + (log γ logµ) dim(HK). (37)

6 Experimental results

This section demonstrates the empirical performance of the Log-HS metric on the task of multi-
category image classification. For each input image, the original features extracted from the image
are implicitly mapped into the infinite-dimensional RKHS induced by the Gaussian kernel. The co-
variance operator defined on the RKHS is called the GaussianCOV and is used as the representation
for the image. In a classification algorithm, the distance between two images is the Log-HS distance
between their corresponding GaussianCOVs. This is compared with the directCOV representation,
that is covariance matrices defined using the original input features. In all of the experiments, we
employed LIBSVM [7] as the classification method. The following algorithms were evaluated in
our experiments: Log-E (directCOV and Gaussian SVM using the Log-Euclidean metric), Log-HS
(GaussianCOV and Gaussian SVM using the Log-HS metric), Log-HS∆ (GaussianCOV and SVM
with the Laplacian kernel K(x, y) = exp(− ||x−y||σ )). For all experiments, the kernel parameters
were chosen by cross validation, while the regularization parameters were fixed to be γ = µ = 10−8.
We also compare with empirical results by the different algorithms in [10], namely J-SVM and S-
SVM (SVM with the Jeffreys and Stein divergences between directCOVs, respectively), JH-SVM
and SH-SVM (SVM with the Jeffreys and Stein divergences between GaussianCOVs, respectively),
and results of the Covariance Discriminant Learning (CDL) technique of [25], which can be consid-
ered as the state-of-the-art for COV-based classification. All results are reported in Table1.
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Table 1: Results over all the datasets
Methods Kylberg texture KTH-TIPS2b KTH-TIPS2b (RGB) Fish

G
au

ss
ia

nC
O

V
Log-HS 92.58%(±1.23) 81.91%(±3.3) 79.94%(±4.6) 56.74%(±2.87)
Log-HS∆ 92.56%(±1.26) 81.50%(±3.90) 77.53%(±5.2) 56.43%(±3.02)

SH-SVM[10] 91.36%(±1.27) 80.10%(±4.60) - -
JH-SVM[10] 91.25%(±1.33) 79.90%(±3.80) - -

di
re

ct
C

O
V

Log-E 87.49%(±1.54) 74.11%(±7.41) 74.13%(±6.1) 42.70%(±3.45)
S-SVM[10] 81.27%(±1.07) 78.30%(±4.84) - -
J-SVM[10] 82.19%(±1.30) 74.70%(±2.81) - -
CDL [25] 79.87%(±1.06) 76.30%(±5.10) - -

Texture classification: For this task, we used the Kylberg texture dataset [13], which contains
28 texture classes of different natural and man-made surfaces, with each class consisting of 160
images. For this dataset, we followed the validation protocol of [10], where each image is resized
to a dimension of 128 × 128, with m = 1024 observations computed on a coarse grid (i.e., every
4 pixels in the horizontal and vertical direction). At each point, we extracted a set of n = 5 low-
level features F(x, y) = [Ix,y, |Ix| , |Iy| , |Ixx| , |Iyy|] ,where I , Ix, Iy , Ixx and Iyy, are the intensity,
first- and second-order derivatives of the texture image. We randomly selected 5 images in each class
for training and used the remaining ones as test data, repeating the entire procedure 10 times. We
report the mean and the standard deviation values for the classification accuracies for the different
experiments over all 10 random training/testing splits.

Material classification: For this task, we used the KTH-TIPS2b dataset [6], which contains images
of 11 materials captured under 4 different illuminations, in 3 poses, and at 9 scales. The total number
of images per class is 108. We applied the same protocol as used for the previous dataset [10],
extracting 23 low-level dense features: F(x, y) =

[
Rx,y, Gx,y, Bx,y,

∣∣G0,0
x,y

∣∣ , . . . ∣∣G4,5
x,y

∣∣], where
Rx,y, Gx,y, Bx,y are the color intensities and

∣∣Go,sx,y∣∣ are the 20 Gabor filters at 4 orientations and 5
scales. We report the mean and the standard deviation values for all the 4 splits of the dataset.

Fish recognition: The third dataset used is the Fish Recognition dataset [5]. The fish data are
acquired from a live video dataset resulting in 27370 verified fish images. The whole dataset is
divided into 23 classes. The number of images per class ranges from 21 to 12112, with a medium
resolution of roughly 150 × 120 pixels. The significant variations in color, pose and illumination
inside each class make this dataset very challenging. We apply the same protocol as used for the
previous datasets, extracting the 3 color intensities from each image to show the effectiveness of our
method: F(x, y) = [Rx,y, Gx,y, Bx,y]. We randomly selected 5 images from each class for training
and 15 for testing, repeating the entire procedure 10 times.

Discussion of results: As one can observe in Table1, in all of the datasets, the Log-HS framework,
operating on GaussianCOVs, significantly outperforms approaches based on directCOVs computed
using the original input features, including those using Log-Euclidean, Stein and Jeffreys diver-
gences. Across all datasets, our improvement over the Log-Euclidean metric is up to 14% in ac-
curacy. This is consistent with kernel-based learning theory, because GaussianCOVs, defined on
the infinite-dimensional RKHS, can better capture nonlinear input correlations than directCOVs, as
we expected. To the best of our knowledge, our results in the Texture and Material classification
experiments are the new state of the art results for these datasets. Furthermore, our results, which
are obtained using a theoretically rigorous framework, also consistently outperform those of [10].
The computational complexity of our framework, its two-layer kernel machine interpretation, and
other discussions are given in the Supplementary Material.

Conclusion and future work

We have presented a novel mathematical and computational framework, namely Log-Hilbert-
Schmidt metric, that generalizes the Log-Euclidean metric between SPD matrices to the infinite-
dimensional setting. Empirically, on the task of image classification, where each image is repre-
sented by an infinite-dimensional RKHS covariance operator, the Log-HS framework substantially
outperforms other approaches based on covariance matrices computed directly on the original input
features. Given the widespread use of covariance matrices, we believe that the Log-HS framework
can be potentially useful for many problems in machine learning, computer vision, and other ap-
plications. Many more properties of the Log-HS metric, along with further applications, will be
reported in a longer version of the current paper and in future work.
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