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Abstract

The presence of noise and small scale structures usually leads to large kernel es-
timation errors in blind image deblurring empirically, if not a total failure. We
present a scale space perspective on blind deblurring algorithms, and introduce a
cascaded scale space formulation for blind deblurring. This new formulation sug-
gests a natural approach robust to noise and small scale structures through tying
the estimation across multiple scales and balancing the contributions of different
scales automatically by learning from data. The proposed formulation also allows
to handle non-uniform blur with a straightforward extension. Experiments are
conducted on both benchmark dataset and real-world images to validate the effec-
tiveness of the proposed method. One surprising finding based on our approach is
that blur kernel estimation is not necessarily best at the finest scale.

1 Introduction

Blind deconvolution is an important inverse problem that gains increasing attentions from various
fields, such as neural signal analysis[3, 10] and computational imaging [6, 8]. Although some re-
sults obtained in this paper are applicable to more genera bilinear estimation problems, we will use
blind image deblurring as an example. Image blur is an undesirable degradation that often accom-
panies the image formation process due to factors such as camera shake. Blind image deblurring
aims to recover a sharp image from only one blurry observed image. While significant progress has
been maderecently [6, 16, 14, 2, 22, 11], most of the existing blind deblurring methods do not work
well in the presence of noise, leading to inaccurate blur kernel estimation, which is a problem that
has been observed in several recent work [17, 26]. Figure 1 shows an example where the kernel
recovery quality of previous methods degrades significantly even though only 5% of Gaussian noise
is added to the blurry input. Moreover, it has been empirically observed that even for noise-freeim-
ages, image structures with scale smaller than that of the blur kernel are actually harmful for kernel
estimation [22]. Therefore, various structure selection techniques, such as hard/hysteresis gradient
thresholding [2, 16], selective edge map [22], and image decomposition [24] are incorporated into
kernel estimation.

In this paper, we propose a novel formulation for blind deblurring, which explains the conventional
empirical coarse-to-fine estimation scheme and reveals some novel perspectives. Our new formu-
lation not only offers the ability to encompass the conventional multi-scale estimation scheme, but
also offers the ability to achieve robust blind deblurring in a simple but principled way. Our model
analysis leads to severa interesting and perhaps surprising observations: (z) Blur kernel estimation
is not necessarily best at the finest image scale and (i7) Thereis no universal single image scale that
can be defined as a priori to maximize the performance of blind deblurring.

The remainder of the paper is structured as follows. In Section 2, we conduct an analysisto motivate
our proposed scal e-adaptive blind deblurring approach. Section 3 presents the proposed approach,
including a generalization to noise-robust kernel estimation as well as non-uniform blur estimation.
We discuss the relationship of the proposed method to several previous methodsin Section 4. Ex-
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Figure 1: Sensitivity of blind deblurring to image noise. Random gaussian noise (5%) is added
to the observed blurry image before kernel estimation. The deblurred images are obtained with
the corresponding estimated blur kernels and the noise-free blurry image to capitalize the kernel
estimation accuracy.

perimentsare carried out in Section 5, and the results are compared with those of the state-of-the-art
methods in the literature. Finally, we conclude the paper in Section 6.

2 Motivational Analysis
For uniform blur, the blurry image can be modeled as follows
y=kx*x+n, (1)

where x denotes 2D convolution,® x is the unknown sharp image, y is the observed blurry image,
k is the unknown blur kernel (ak.a., point spread function), and n is a zero-mean Gaussian noise
term [6]. As mentioned above, most of the blind deblurring methods are sensitive to image noise
and small scale structures [17, 26, 22]. Although these effects have been empirically observed [2,
22, 24, 17], we provide a complementary analysis in the following, which motivates our proposed
approach later. Our analysisis based on the following result:

Theorem 1 (Point Source Recovery [1]) For asignal x containing point sources at different loca-
tions, if the minimum distance between sources is at least 2/ f., where f. denotes the cut-off fre-
quency of the Gaussian kernel k, then x can be recovered exactly given k and the observed signal
y in the noiseless case.

Although Theorem 1 is stated in the noisel ess and non-blind case with a parametric Gaussian kernel,
itisstill enlightening for analyzing the general blind deblurring case we areinterested in. Assparsity
of the image is typically exploited in the image derivative domain for blind deblurring, Theorem 1
implies that large image structures whose gradients are distributed far from each other are likely
to be recovered more accurately, which in return, benefits the kernel estimation. On the contrary,
small image structures with gradients distributed near each other are likely to have larger recovery
errors, and thus is harmful for kernel estimation. We refer these small image structures as small
scale structure in this paper.

Apart from the above recoverability analysis, Theorem 1 also suggests a straightforward approach
to deal with noise and small scale structures by performing blur kernel estimation after smoothing
the noisy (and blurry) image y with alow-passfilter f,, with a proper cut-off frequency f.

vp=b*xy @y, =L «ksx+fpxn e y,=k,xx+n, 2

wherek, £ f, xk andn, = f, x n. Asf, is alow-pass filter, the noise level of y, is reduced.
Also, as the small scale structures correspond to signed spikes with small separation distance in
the derivative domain, applying a local averaging will make them mostly canceled out [22], and
therefore, noise and small scale structure can be effectively suppressed. However, applying the low-
pass filter will also smooth the large image structures besides noise, and as a result, it will ater the
profile of the edges. As the salient large scale edge structures are the crucial information for blur
kernel estimation, the low-passfiltering may |ead toinaccuratekernel estimation. Thisistheinherent
limitation of linear filtering for blind deblurring. To achieve noisereductionwhileretaining the latent
edge structures, one may resort to non-linear filtering schemes, such as anisotropic diffusion [20],
Bilateral filtering [19], sparse regression [5]. These approaches typically assume the absence of
motion blur, and thus can cause over-sharpening of the edge structures and over-smoothing of image
details when blur is present [17], resulting in afiltered image that is no longer linear with respect to
the latent sharp image, making accurate kernel estimation even more difficult.

1We also overload * to dencte the 2D convolution followed by lexicographic ordering based on the context.
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Figure 2: Multi-Scale Blind Sparse Recovery. The signa structures of different scales will be
recovered at different scales. Large scale structures are recovered first and small structures are
recovered later. Top: original signal, blur kernel. Bottom: the recovered signal and bluer kernel
progressively across different scales (scale-4 to scale-1 represents the coarsest scale to the finest
(original) scale. The blur kernel at the i-th scale isinitialized with the solution from the i-1-th scale.
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3 TheProposed Approach

To facilitate subsequent analysis, we first introduce the definition of scale space [15, 4]:

Definition 1 For an image x, its scale-space representation corresponding to a Gaussian filter G
is defined by the convolution G, * x, where the variance s is referred to as the scale parameter.

Without loss of clarity, we also refer the different scale levels as different scale spacesin the sequel.

Natural images have amulti-scale property, meaning that different scale levelsreveal different scales
of image structures. According to Theorem 1, different scale spaces may play different roles for
kernel estimation, due to the different recoverability of the signal componentsin the corresponding
scale spaces. We propose anew framework for blind deblurring by introducing a variable scalefilter,
which defines the scal e space where the blind estimation processis operated. With the scalefilter, it
is straightforward to come up with a blur estimation procedure similar to the conventional coar se-to-
fine estimation by constructing an image pyramid. However, we operate deblurring in a space with
the same spatial resolution as the original image rather than a downscaled space as conventionally
done. Therefore, it avoids the additional estimation error caused by interpolation between spatial
scalesin the pyramid. To mitigate the problem of structure smoothing, weincorporatethe knowledge
about the filter into the deblurring model, which is different from the way of using filtering simply as
apre-processing step. More importantly, we can formulate the deblurring problem in multiple scale
spacesin this way, and learn the contribution of each scale space adaptively for each input image.

3.1 Scale-SpaceBlind Deblurring M odel

Our task is to recover k and x from the filtered observationy ,,, obtained via (2) with a known scale
filter f,. The model is derived in the derivative domain, and weusex € R™ andy,, € R™ to denote
the lexicographically ordered sharp and (filtered-) blurry image derivatives respectively. 2 The final
deblurred image is recovered via a non-blind deblurring step with the estimated blur kernel [26].

From the modifed observation model (2), we can obtain the following likelihood:

©)

f —f,xk 2 -k 2
p(yp|X,k, )\) x exp _|| p *Y p * >’<X|2:| = exp |:_|YP P *XH2

2\ 2\ ’

where )\ is the variance of the Gaussian noise. Maximum likelihood estimation using (3) isill-posed

and further regularization over the unknownsis required. We use a parametrized Gaussian prior for

x, p(x) = [, p(zi) o< T, N(x;;0,7;), where the unknown scale variables v = [y1,72,---] are
closely related to the sparsity of x and they will be estimated jointly with other variables. Rather than

computing the Maximum A Posteriori (MAP) solution, which typically requires empirical tricks to

achieve success [16, 2], we use type-11 maximum likelihood estimation following [13, 21, 25], by

marginalizing over the latent image and maximizing over the other unknowns

maxy 1, 3>0 | P(yp[x, k, )p(x)dx = ming x>0y, BTy, + log [y, (4

%The derivative filters used in thiswork are {[—1, 1], [-1,1]7}.



whereX, £ (AL + H,I'HT), H,, isthe convolution matrix of k,, and I" £ diag[~]. Using standard
linear al gebratechniques together with an upper-bound over X ., we can reform (4) as follows [21]

.1
\nin Xpr sy —f, x k*x|3 4+ 7r,(x,k,\) + (n —m)log A,

) (5)
with (.1, 3) £ 3 Jmin -+ log(A+ 7l ),

which now resembles a typical regularized-regression formulation for blind deblurring when elim-
inating f,. The proposed objective function has one interesting property as stated in the following.

Theorem 2 (Scale Space Blind Deblurring) Taking f,, as a Gaussian filter, solving (5) essentially
achieves estimation for x and k in the scale space defined by f,, giveny in the original space.

In essence, Theorem 2 reveals the eguivalence between performing blind deblurring on y directly
while constraining x and k in a certain scale space and by solving the proposed model (5) with the
aid of the additional filter f,,. This places the proposed mode! (5) on a sound theoretical footing.

Cascaded Scale-Space Blind Deblurring. If the blur kernel k has a clear cut-off frequency and
the target signal contains structures at distinct scales, then we can suppress the structures with scale
smaller than k using a properly designed scale filter f,, according to Theorem 1, and then solve (5)
for kernel estimation. However, in practice, the blur kernels are typically non-parametric and with
complex forms, therefore do not have a clear cut-off frequency. Moreover, natural images have a
multi-scal e property, meaning different scale spacesreveal differentimage structures. All thesefacts
suggests that it is not easy to select a fixed scalefilter £, apriori and calls for avariable scalefilter.

Nevertheless, based on the basic point that large scale structures are more advantageous than small
scale structures for kernel estimation, a natural idea is to perform (5) separately at different scales,
and pick the best estimation as the output. While this is an appealing idea, it is not applicable in
practice due to the non-availability of the ground-truth, which is required for evaluating the estima-
tion quality. A more practical approach is to perform (5) in a cascaded way, starting the estimation
from a large scale and then reducing the scale for the next cascade. The kernel estimation from
the previous scale is used as the starting point for the next one. With this scheme, the blur kernel
is refined along with the resolution of the scale space, and may become accurate enough before
reaching the finest resolution level, as shown in Figure 2 for a 1D example. The latent sparse sig-
nal in this example contains 4 point sources, with the minimum separation distance of 2, which is
smaller than the support of the blur kernel. It is observed that some large elements of the blur kernel
are recovered first and then the smaller ones appear later at a smaller scale. It can aso be noticed
that the kernel estimation is aready fairly accurate before reaching the finest scale (i.e., the original
pixel-level representation). In this case, the final estimation at the last scale isfairly stable given the
initialization from the last scale. However, performing blind deblurring by solving (5) in the last
original scaledirectly (i.e., f, = ¢) cannot achieve successful kernel estimation (results not shown).

A similar strategy by constructing an image pyramid has been applied successfully in many of the
recent deblurring methods|[6, 16, 2, 22, 8, 25]. It isimportant to emphasize that the main purpose of
our scale-space perspectiveis more to provide complementary analysis and understanding of theem-
pirical coarse-to-fine approach in blind deblurring algorithms, than to replace it. More discussions
on this point are provided in Section 4. Nevertheless, the proposed alternative approach can achieve
performance on par with state-of-the-art methods, as shown in Figure 4. More importantly, this al-
ternative formulation offers us a number of extra dimensions for generalization, such as extensions
to noise robust kernel estimation and scale-adaptive estimation, as shown in the next section.

3.2 Scale-Adaptive Deblurring via Tied Scale-Space Estimation
In the above cascade procedure, a singlefilter f,, is used at each step in a greedy way. Instead, we

can define a set of scale filters P £ {fp}z’,’:l, apply each of them to the observed image y to get

aset of filtered observations {y,}/_,, and then tie the estimation across all scales with the shared
latent sharp image x. By constructing P as a set of Gaussian filters with decreasing radius, it is
equivalent to perform blind deblurring in different scale spaces. Large scale space is more robust

to image noise, and thus is more effective in stabilizing the estimation; however, only large scale

*log |2,] < 3, log (A + yillkpll3) + (n — m) log A [25].
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Figure 3: Scale Adaptive Contribution Learning for a set of 25 Gaussian filters with radius r €
(0, 5] onthefirst image[14]. Left: without adding noise. Right: with 5% additive noise. The values
in the heat-map represent the contribution weight (/\;1) for each scale filter during the iterations.
The table on the right shows the performance (SSD error) of blind deblurring with different scales:
original scale (org.scale), empiricaly optimal scale (opt . scale), multiple scales with uniform
contribution weights (uni . scale) and multiple scales with adaptive weights (adaptive).

structures are “visible” (recoverable) in this space. Small scale space offers the potential to recover
more fine details, but is less robust to image noise. By conducting deblurring in multiple scale
spaces simultaneously, we can exploit the complementary property of different scales for robust
blind deblurring in a unified framework. Furthermore, different scales may contribute differently
to the kernel estimation, we therefore use a distinct noise level parameter A, for each scale, which
reflects the relative contribution of that scale to the estimation. Concretely, thefinal cost function can
be obtained by accumulating the cost function (5) over all the P filtered observations with adaptive
noise parameters 4
P
. 1 2
{Apr}ﬁ};{go’x; 36 *y — B beoexlf 4+ ROk ) + (0 —m) glog Aps

(6)
2
. Xy
where R(x,k, {\p}) = > mp(xk {Ap}) =D min —- + log(Ap + 7illkpll3)-
p pi

The penalty function R here is in effect a penaty term that exploits multi-scale regulari-
ty/consistency of the solution space. The effectiveness of the proposed approach compared to other
methodsisillustrated in Figure 1 and moreresults are provided in Section 5. Formulating the deblur-
ring problem as (6), our joint estimation framework enjoys anumber of featuresthat are particularly
appropriatefor the purpose of blind deblurring in presence of noise and small scaleimage structures:
(v) It exploits both the regularization of sharing the latent sharp image x across all filtered observa-
tions and the knowledge about the set of filters {f,}. In this way, k is recovered directly without
post-processing as previous work [26]; (i) the proposed approach can be extended to handle non-
uniform blur, as discussed in Section 3.3; and (z7) thereis no inherent limitations on the form of the
filters we can use besides Gaussian filters, e.g., we can also use directiona filters asin [26].

Scale Adaptiveness. With this cost function, the contribution of each filtered observation y ,, con-
structed by f, is reflected by weight A, *. The parameters {\, ! } areinitialized uniformly acrossall
filters and are then learned during the kernel estimation process automatically. In this scenario, a
smaller noiselevel estimation indicatesalarger contributionin estimation. It is natural to expect that
the distribution of the contribution weights for the same set of filters will change under different in-
put noise levels, as shown in Figure 3. From the figure, we obtain a number of interest observations:

eThe proposed agorithm is adaptive to observations with different noise levels. As we can see,
filters with smaller radius contribute more in the noise-free case, while in the noisy case, filters
with larger radius contribute more.

eThe distribution of the contribution weights evolves during the iterative estimation process. For
examplein the noise-less case, starting with uniform weights, the middle-scal efilters contribute the
most at the beginning of the iterations, while smaller-scal e filters contribute more to the estimation
later on, a natural coarse-to-fine behavior. Similar trends can also be observed for the noisy case.

“This can be achieved either in an online fashion or in one shot.
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Figure 4: Blind Deblurring Results: Noise-free Case. (a) Performance comparison(i mage esti-
mation error) on the benchmark dataset [14], which contains (b) 8 blur kernels and (c) 4 images.

eWhile it is expected that the original scale space is not the “optimal” scale for kernel estimation
in presence of noise, it is somewhat surprising to find that this is also the case for the noise-
free case. This corroborates previous findings that small scale structures are harmful to kernel
estimation [22], and our algorithm automatically learn the scale space to suppress the effects of
small scale structures.

eTheweight distributionis moreflat in the noise-free case, whileit is more peaky for the noisy case.

Figure 3 is obtained with the first kernel and image in Figure 4. Similar properties can be observed
for different images/blurs, although the position of the empirical mode are unlikely to be the same.

The table in Figure 3 shows the estimation error using difference scale space configurations. Blind
deblurring in the original space directly (org.scale) fails, indicated by the large estimation error.
However, when setting the filter as f,,, whose contribution A\, ! is empirically the largest among all
filters (opt . scale), the performance is much better than in the origina scale directly, with the
estimation error reduced significantly. The proposed method, by tying multiple scales together and
learning adaptive contribution weights (adaptive), performsthe best across all the configurations,
especialy in the noisy case.

3.3 Non-Uniform Blur Extension

The extension of the uniform blind deblurring model proposed above to the non-uniformblur caseis
achieved by using ageneralized observation model [18, 9], representing the blurry image as the sum-

mation of differently transformed versionsof the latent sharpimagey = Hx+n = >, w;P;x+
n = Dw + n. Here P; isthe j-th projection or homography operator (a combination of rotations
and translations) and w; is the corresponding combination weight representing the proportion of

time spent at that particular camera pose during exposure. D = [P 1x, Pox,--- ,P;x, - - - | denotes
the dictionary constructed by projectively transforming x using a set of transformation operators.

w 2 [wy,ws,---]T denotes the combination weights of the blurry image over the dictionary. The
uniform convolutional model (1) can be obtained by restricting {P ;} to be translations only. With
derivations similar to those in Section 3.1, it can be shown that the cost function for the genera

non-uniform blur case is

P
. 1 . xf
%ng 3o e = FEpxl + 3 min =+ dog(h + ull g 3) + (= m) ;mg Ao (D)

Pyt

whereH, £ F,, > ; w; P; isthe compound operator incorporating both the additional filter and the
non-uniformblur. ¥, is the convolutional matrix form of f,, and h;, denotes the effective compound
local kernel at site in the image plane constructed with w and the set of transformation operators.

4 Discussions

We discuss the relationship of the proposed approach with several recent methods to help under-
standing properties of our approach further.

Image Pyramid based Blur Kernel Estimation. Since the blind deblurring work of Fergus et
al. [6], image pyramid has been widely used as a standard architecture for blind deblurring [16, 2, 8,
22, 13, 25]. Theimage pyramid is constructed by resizing the observed image with a fixed ratio for
multiple times until reaching a scale where the corresponding kernel is very small, e.g. 3 x 3. Then
the blur kernel is estimated firstly from the smallest image and is upscaled for initializing the next
level. This processis repeated until the last level is reached. While it is effective for exploiting the
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solution space, this greedy pyramid construction does not provide an effective way to handle image
noise. Our formulation not only retains properties similar to the pyramid coarse-to-fine estimation,
but also offersthe extraflexibility to achieve scale-adaptive estimation, which is robust to noise and
small scale structures.

Noise-Robust Blind Deblurring [17, 26]. Based on the observation that using denoising as a pre-
processing can help with blur kernel estimation in the presence of noise, Tai et al. [17] proposed to
perform denoising and kernel estimation alternatively, by incorporating an additional image penalty
function designed specially taking the blur kernel into account [17]. This approach uses separate
penalty terms and introduces additional balancing parameters. Our proposed model, on the contrary,
has a coupled penalty function and learns the balancing parameters from the data. Moreover, the
proposed model can be generalized to non-uniform blur in a straightforward way. Another recent
method [26] performs blind kernel estimation on images filtered with different directiona filters
separately and then reconstructs the final kernel in a second step via inverse Radon transform [26].
This approach is only applicable to uniform blur and directional auxiliary filters. Moreover, it treats
each filtered observation independently thus may introduce additional errors in the second kernel
reconstruction step, due to factors such as mis-alignment between the estimated compound kernels.

Small Scale Structuresin Blur Kernel Estimation [22, 2]. Based on the observation that small
scale structures are harmful for kernel estimation, Xu and Jia [22] designed an empirical approach
for structure selection based on gradient magnitudes. Structure selection has also been incorporated
into blind deblurring in various forms before, such as gradient thresholding [2, 16]. However, it
is hard to determine a universal threshold for different images and kernels. Other techniques such
as image decomposition has also been incorporated [24], where the observed blurry image is de-
composed into structure and texture layers. However, standard image decomposition techniques do
not consider image blur, thus might not work well in the presence of blur. Another issue for this
approach is again the selection of the parameter for separating texture from structure, which isim-
age dependent in general. The proposed method achieves robustness to small scale structures by
optimizing the scale contribution weights jointly with blind deblurring, in an image adaptive way.

The optimization techniques used in this paper has been used before for image deblurring [13, 21,
25], with different context and motivations.

5 Experimental Results

We perform extensive experiments in this section to evaluate the performance of the proposed
method compared with several state-of-the-art blind deblurring methods, including two recent noise
robust deblurring methods of Tai et al. [17], and Zhong et al. [26], as well as a non-uniform de-
blurring method of Xu et al. [23]. We construct {f,} as Gaussian filters, with the radius uniformly
sampled over a specified range, which is typically set as [0.1, 3] in the experiment. > The number of
iterationsis used as the stopping criteriaand is fixed as 15 in practice.

Evaluation using the Benchmark Dataset of Levin et al. [14]. We first perform evaluation on
the benchmark dataset of Levin et al. [14], containing 4 images and 8 blur kernels, leading to 32
blurry imagesin total (see Figure 4). Performances for the noise-free case are reported in Figure 4,
where the proposed approach performs on par with state-of-the-art. To evaluate the performances

The number of filters P should be large enough to characterize the scale space. We typically set P = 7.
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et al. [26] and Xu et al. [23]. Full images are shown in the supplementary file.

of different methodsin the presence of noise, we add i.i.d. Gaussian noise to the blurry images, and
then perform kernel estimation. The estimated kernels are used for non-blind deblurring [12] on
the noise-free blurry images. The bar plotsin Figure 5 show the sum-of-squared-difference (SSD)
error of the deblurred images using the proposed method and the method of Zhong et al. [26] when
the noise level is 5%. As the same non-blind deblurring method is used, this SSD error reflects
the quality of the kernel estimation. It is clear that the proposed method performs better than the
method of Zhong et al. [26] overall. We also show the results of different methods with increasing
noise levelsin Figure 5. It is observed that while the conventional methods (e.g. Levin et al. [13],
Zhang et al. [25]) performs well when the noise level is low, their performances degrade rapidly
when the noise level increases. The method of Zhong et al. [26] performs more robustly across
different noise levels, but does not performs as well as the other methods when the noise level is
very low. Thismight be caused by the loss of information during its two-step process. The proposed
method outperformsthe other methods for all the noise levels, proving its effectiveness.

Deblurring on Real-World I mages. We further evaluate the performance of the proposed method
on real-world imagesfromthe literature[17, 7, 8]. Theresultsare shownin Figure 6. For thexkyoto
image from [17], the deblurred image of Tai et al. [17] has some ringing artifacts while the result
of Zhong et al. [26] has ghosting effects due to the inaccurate kernel estimation. The deblurred
image from the propose method has neither ghosting or strong ringing artifacts. For the other two
test images, the non-uniform deblurring method [23] produces deblurred images that are still very
blurry, asit achieves kernel estimations close to a delta kernel for both images, due to the presence
of noise. The method of Zhong et al. [26] can only handle uniform blur and the deblurred images
have strong ringing artifacts. The proposed method can estimate the non-uniform blur accurately
and can produce high-quality deblurring results better than the other methods.

6 Conclusion

We present an analysis of blind deblurring approach from the scale-space perspective. The novel
analysis not only helps in understanding several empirical techniques widely used in the blind de-
blurring literature, but also inspires new extensions. Extensive experiments on benchmark dataset
as well as real-world images verify the effectiveness of the proposed method. For future work, we
would like to investigate the extension of the proposed approach in several directions, such as blind
image denoising and multi-scale dictionary learning. The task of learning the auxiliary filtersin a
blur and image adaptive fashion is another interesting future research direction.
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