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Abstract

We propose and analyse estimators for statistical functionals of one or more dis-
tributions under nonparametric assumptions. Our estimators are derived from the
von Mises expansion and are based on the theory of influence functions, which ap-
pear in the semiparametric statistics literature. We show that estimators based ei-
ther on data-splitting or a leave-one-out technique enjoy fast rates of convergence
and other favorable theoretical properties. We apply this framework to derive es-
timators for several popular information theoretic quantities, and via empirical
evaluation, show the advantage of this approach over existing estimators.

1 Introduction

Entropies, divergences, and mutual informations are classical information-theoretic quantities that
play fundamental roles in statistics, machine learning, and across the mathematical sciences. In
addition to their use as analytical tools, they arise in a variety of applications including hypothesis
testing, parameter estimation, feature selection, and optimal experimental design. In many of these
applications, it is important to estimate these functionals from data so that they can be used in down-
stream algorithmic or scientific tasks. In this paper, we develop a recipe for estimating statistical
functionals of one or more nonparametric distributions based on the notion of influence functions.

Entropy estimators are used in applications ranging from independent components analysis [15],
intrinsic dimension estimation [4] and several signal processing applications [9]. Divergence es-
timators are useful in statistical tasks such as two-sample testing. Recently they have also gained
popularity as they are used to measure (dis)-similarity between objects that are modeled as distribu-
tions, in what is known as the “machine learning on distributions” framework [5, 28]. Mutual infor-
mation estimators have been used in in learning tree-structured Markov random fields [19], feature
selection [25], clustering [18] and neuron classification [31]. In the parametric setting, conditional
divergence and conditional mutual information estimators are used for conditional two sample test-
ing or as building blocks for structure learning in graphical models. Nonparametric estimators for
these quantities could potentially allow us to generalise several of these algorithms to the nonpara-
metric domain. Our approach gives sample-efficient estimators for all these quantities (and many
others), which often outperfom the existing estimators both theoretically and empirically.

Our approach to estimating these functionals is based on post-hoc correction of a preliminary esti-
mator using the Von Mises Expansion [7, 36]. This idea has been used before in the semiparametric
statistics literature [3, 30]. However, most studies are restricted to functionals of one distribution
and have focused on a “data-split” approach which splits the samples for density estimation and
functional estimation. While the data-split (DS) estimator is known to achieve the parametric con-



vergence rate for sufficiently smooth densities [3, 14], in practical settings, as we show in our simu-
lations, splitting the data results in poor empirical performance.

In this paper we introduce the method of influence function based nonparametric estimators to the
machine learning community and expand on this technique in several novel and important ways.
The main contributions of this paper are:

1. We propose a “leave-one-out” (LOO) technique to estimate functionals of a single distribution.
We prove that it has the same convergence rates as the DS estimator. However, the LOO estimator
has better empirical performance in our simulations since it makes efficient use of the data.

2. We extend both DS and LOO methods to functionals of multiple distributions and analyse their
convergence. Under sufficient smoothness both estimators achieve the parametric rate and the
DS estimator has a limiting normal distribution.

3. We prove a lower bound for estimating functionals of multiple distributions. We use this to
establish minimax optimality of the DS and LOO estimators under sufficient smoothness.

4. We use the approach to construct and implement estimators for various entropy, diver-
gence, mutual information quantities and their conditional versions. A subset of these
functionals are listed in Table 1 in the Appendix. Our software is publicly available at
github.com/kirthevasank/if-estimators.

5. We compare our estimators against several other approaches in simulation. Despite the generality
of our approach, our estimators are competitive with and in many cases superior to existing
specialised approaches for specific functionals. We also demonstrate how our estimators can be
used in machine learning applications via an image clustering task.

Our focus on information theoretic quantities is due to their relevance in machine learning applica-
tions, rather than a limitation of our approach. Indeed our techniques apply to any smooth functional.

History: We provide a brief history of the post-hoc correction technique and influence functions.
We defer a detailed discussion of other approaches to estimating functionals to Section 5. To our
knowledge, the first paper using a post-hoc correction estimator was that of Bickel and Ritov [2].
The line of work following this paper analysed integral functionals of a single one dimensional
density of the form [ v(p) [2, 3, 11, 14]. A recent paper by Krishnamurthy et al. [12] also extends
this line to functionals of multiple densities, but only considers polynomial functionals of the form
J p®q® for densities p and q. All approaches above of use data splitting. Our work contributes to
this line of research in two ways: we extend the technique to a more general class of functionals and
study the empirically superior LOO estimator.

A fundamental quantity in the design of our estimators is the influence function, which appears both
in robust and semiparametric statistics. Indeed, our work is inspired by that of Robins et al. [30]
and Emery et al. [6] who propose a (data-split) influence-function based estimator for functionals of
a single distribution. Their analysis for nonparametric problems rely on ideas from semiparametric
statistics: they define influence functions for parametric models and then analyse estimators by
looking at all parametric submodels through the true parameter.

2 Preliminaries

Let X be a compact metric space equipped with a measure p, e.g. the Lebesgue measure. Let
F and G be measures over X' that are absolutely continuous w.r.t u. Let f,g € Lo(X) be the
Radon-Nikodym derivatives with respect to ;. We focus on estimating functionals of the form:
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where ¢, v are real valued Lipschitz functions that twice differentiable. Our framework permits
more general functionals (e.g. functionals based on the conditional densities), but we will focus on
this form for ease of exposition. To facilitate presentation of the main definitions, it is easiest to
work with functionals of one distribution T'(F'). Define M to be the set of all measures that are
absolutely continuous w.r.t 4, whose Radon-Nikodym derivatives belong to Lo (X).



Central to our development is the Von Mises expansion (VME), which is the distributional analog
of the Taylor expansion. For this we introduce the Gateaux derivative which imposes a notion of
differentiability in topological spaces. We then introduce the influence function.

Definition 1. Ler P, H € M and U : M — R be any functional. The map U’ : M — R

where U'(H; P) = % |t=0 is called the Gdteaux derivative at P if the derivative exists and
is linear and continuous in H. U is Gdteaux differentiable at P if the Gdteaux derivative exists at P.

Definition 2. Let U be Gdteaux differentiable at P. A function ¢(-; P) : X — R which satisfies
U'(Q — P; P) = [¢(z; P)dQ(x), is the influence function of U w.rt the distribution P.

By the Riesz representation theorem, the influence function exists uniquely since the domain of U is
a bijection of Lo (X) and consequently a Hilbert space. The classical work of Fernholz [7] defines
the influence function in terms of the Gateaux derivative by,

OU((1 —t)P + td,)
ot t=0 @

where J, is the dirac delta function at . While our functionals are defined only on non-atomic
distributions, we can still use (2) to compute the influence function. The function computed this
way can be shown to satisfy Definition 2.

W(z; P) =U' (6, — P; P) =

Based on the above, the first order VME is,
U(@) = U(P)+U'(Q = PiP) + Ba(P.Q) = U(P) + [ (s PIUQ() + FalP.Q), )

where Ro is the second order remainder. Gateaux differentiability alone will not be sufficient for
our purposes. In what follows, we will assign Q — F and P — F, where F, F' are the true and
estimated distributions. We would like to bound the remainder in terms of a distance between I’ and
F. For functionals T of the form (1), we restrict the domain to be only measures with continuous
densities, Then, we can control Ry using the Lo metric of the densities. This essentially means that
our functionals satisfy a stronger form of differentiability called Fréchet differentiability [7, 36] in
the Lo, metric. Consequently, we can write all derivatives in terms of the densities, and the VME
reduces to a functional Taylor expansion on the densities (Lemmas 9, 10 in Appendix A):
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This expansion will be the basis for our estimators.

These ideas generalise to functionals of multiple distributions and to settings where the functional
involves quantities other than the density. A functional T (P, Q) of two distributions has two
Giteaux derivatives, T/ (-; P, @) for i = 1,2 formed by perturbing the ith argument with the other
fixed. The influence functions vy, 1, satisfy, VP, P, € M,

, OT(Py +t(Q1 — Py), P
Ti(Q1 — Pi; P, ) = (B (gtl 1), o)

OT(Py, P, + t(Q2 — P>
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The VME can be written as,
T(q1,q2) = T(p1,p2) Jr/?/fl(x;pl,pQ)m(fU)dx+/1/12(93;p1,p2)€h($)d33

+0(lp1 = a1ll2) + Olp2 — a2113)- (6)

3 Estimating Functionals

First consider estimating a functional of a single distribution, T'(f) = ¢( [ v(f)du) from samples
X7 ~ f. We wish to find an estimator T with low expected mean squared error (MSE) E[(T —T')?].



Using the VME (4), Emery et al. [6] and Robins et al. [30] suggest a natural estimator. If we use
half of the data X" /% to construct an estimate f (1) of the density f, then by (4):

T() - T(GY) = [ (e i) f@du+ O(1f - FVI).

As the influence function does not depend on (the unknown) F, the first term on the right hand side
is simply an expectation of ¢(X; f (1)) w.r.t F'. We can use the second half of the data X" a1 t
estimate this expectation with its sample mean. This leads to the following preliminary estimator:
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We can similarly construct an estimator Tés) by using X" for density estimation and X /2 for

n/2+1
averaging. Our final estimator is obtained via Tps = (T(l) + T2 ) /2. In what follows, we shall
refer to this estimator as the Data-Split (DS) estimator. The DS est1mat0r for functionals of one
distribution has appeared before in the statistics literature [2, 3, 30].

The rate of convergence of this estimator is determined by the O(||f — f(V)||2) error in the VME
and the n~! rate for estimating an expectation. Lower bounds from several literature [3, 14] confirm
minimax optimality of the DS estimator when f is sufficiently smooth. The data splitting trick is
common approach [3, 12, 14] as the analysis is straightforward. While in theory DS estimators enjoy
good rates of convergence, data splitting is unsatisfying from a practical standpoint since using only
half the data each for estimation and averaging invariably decreases the accuracy.

To make more effective use of the sample, we propose a Leave-One-Out (LOO) version of the above

estimator,
Z (T(f-) +v(Xii /). ®)

where f,i is a density estimate using all the samples X' except for X;. We prove that the LOO
Estimator achieves the same rate of convergence as the DS estimator but empirically performs much

better. Our analysis is specialised to the case where f_i is a kernel density estimate (Section 4).

We can extend this method to estimate functionals of two distributions. Say we have n i.i.d samples
X7 from f and m samples Y from g. Akin to the one distribution case, we propose the following
DS and LOO versions.

T =1(fO,50) Z vp(Xis FN, Z (Y f,61). (9)
i=n/2+1 j =m/2+1

N max(n,m) . ) .

TLoozmax > (T(f_z-,g_o+wf<xi;f_i7g_i)+wg(n;f_,~,g_i>)- (10)

Here, (1), §_; are defined similar to f @, f_i. For the DS estimator, we swap the samples to

compute f,g? and average. For the LOO estimator, if n > m we cycle through the points Y™ until

we have summed over all X" or vice versa. ﬁoo is asymmetric when n = m. A seemingly natural
alternative would be to sum over all nm pairings of X;’s and Y;’s. However, this is computationally
more expensive. Moreover, a straightforward modification of our proof in Appendix D.2 shows that
both approaches converge at the same rate if n and m are of the same order.

Examples: We demonstrate the generality of our framework by presenting estimators for several
entropies, divergences mutual informations and their conditional versions in Table 1 (Appendix H).
For many functionals in the table, these are the first computationally efficient estimators proposed.
We hope this table will serve as a good reference for practitioners. For several functionals (e.g.
conditional and unconditional Rényi-a divergence, conditional Tsallis-o mutual information) the
estimators are not listed only because the expressions are too long to fit into the table. Our software
implements a total of 17 functionals which include all the estimators in the table. In Appendix F we
illustrate how to apply our framework to derive an estimator for any functional via an example.



As will be discussed in Section 5, when compared to other alternatives, our technique has several
favourable properties: the computational complexity of our method is O(n?) when compared to
O(n?) of other methods; for several functionals we do not require numeric integration; unlike most
other methods [28, 32], we do not require any tuning of hyperparameters.

4 Analysis

Some smoothness assumptions on the densities are warranted to make estimation tractable. We use
the Holder class, which is now standard in nonparametrics literature.

Definition 3. Let X C R? be a compact space. Foranyr = (r1,...,rq),r; € N, define |r| =, r;

and D" = %. The Holder class X.(s, L) is the set of functions on Lo(X) satisfying,
11 eee wd

D" f(z) = D" f(y)l < Lz —y[*~",

forallrs.t. |r| < |s|andforall z,y € X.

Moreover, define the Bounded Holder Class (s, L, B', B) to be {f € ¥(s,L) : B’ < f < B}.
Note that large s implies higher smoothness. Given n samples X{* from a d-dimensional density
f. the kernel density estimator (KDE) with bandwidth h is f(t) = 1/(nh%) 31" | K (£=%+). Here
K : R? — R is a smoothing kernel [35]. When f € X(s, L), by selecting h € @(nﬁ) the KDE
achieves the minimax rate of Op(n%) in mean squared error. Further, if f is in the bounded
Hoélder class X(s, L, B’, B) one can truncate the KDE from below at B’ and from above at B and

achieve the same convergence rate [3]. In our analysis, the density estimators f OR f_i, g, g_; are
formed by either a KDE or a truncated KDE, and we will make use of these results.

We will also need the following regularity condition on the influence function. This is satisfied for
smooth functionals including those in Table 1. We demonstrate this in our example in Appendix F.

Assumption 4. For a functional T(f) of one distribution, the influence function v satisfies,
E[((X: f) = (X3 £)*] € O(If = FII?) as |If = fI> = 0.

For a functional T f, g) of two distributions, the influence functions ¢, 14 satisfy,
E; [(wf(X; 119" = vp(X: f, g))ﬂ cO(If = fI*+lg=3d1?) as If = I llg=d'lI* —o0.
By [(60(V5 £,9) = (V3 £,0)°] € OUF = FIP+ g —'I2) as If = 7P llg - II* = 0.

Under the above assumptions, Emery et al. [6], Robins et al. [30] show that the DS estimator on a

single distribution achieves MSE E[(Ths —T(f))?] € O(n?+7 +n~1) and further is asymptotically
normal when s > d/2. Their analysis in the semiparametric setting contains the nonparametric
setting as a special case. In Appendix B we review these results with a simpler self contained
analysis that directly uses the VME and has more interpretable assumptions. An attractive property
of our proof is that it is agnostic to the density estimator used provided it achieves the correct rates.

For the LOO estimator (Equation (8)), we establish the following result.

Theorem 5 (Convergence of LOO Estimator for 7'(f)). Let f € X(s, L, B, B') and v satisfy
Assumption 4. Then, B[(Tooo — T(f))?] is O(n%) when s < d/2 and O(n=') when s > d /2.

The key technical challenge in analysing the LOO estimator (when compared to the DS estimator)
is in bounding the variance as there are several correlated terms in the summation. The bounded
difference inequality is a popular trick used in such settings, but this requires a supremum on the in-
fluence functions which leads to significantly worse rates. Instead we use the Efron-Stein inequality
which provides an integrated version of bounded differences that can recover the correct rate when
coupled with Assumption 4. Our proof is contingent on the use of the KDE as the density estimator.
While our empirical studies indicate that ZA“LOO’S limiting distribution is normal (Fig 2(c)), the proof

seems challenging due to the correlation between terms in the summation. We conjecture that 77,
is indeed asymptotically normal but for now leave it to future work.



We reiterate that while the convergence rates are the same for both DS and LOO estimators, the data
splitting degrades empirical performance of T, as we show in our simulations.

Now we turn our attention to functionals of two distributions. When analysing asymptotics we will
assume that as n, m — oo, n/(n+m) — ¢ € (0,1). Denote N = n + m. For the DS estimator (9)
we generalise our analysis for one distribution to establish the theorem below.

Theorem 6 (Convergence/Asymptotic Normality of DS Estimator for T'(f,g)). Ler f,g €
Y(s,L,B,B’) and 15,14 satisfy Assumption 4. Then, E[(Ths — T(f, 9))?] is (9(nﬁ + mﬁ)
when s < d/2 and O(n~* +m™1) when s > d/2. Further, when s > d/2 and when v ¢,1), # 0,
fDS is asymptotically normal,

VN(Tos ~ T(f,9)) 5N (07 %Vf Vs (X5 f9)] + ﬁ% [q (Vs 1, g)]) . an
The convergence rate is analogous to the one distribution case with the estimator achieving the
parametric rate under similar smoothness conditions. The asymptotic normality result allows us to
construct asymptotic confidence intervals for the functional. Even though the asymptotic variance
of the influence function is not known, by Slutzky’s theorem any consistent estimate of the variance
gives a valid asymptotic confidence interval. In fact, we can use an influence function based esti-
mator for the asymptotic variance, since it is also a differentiable functional of the densities. We
demonstrate this in our example in Appendix F.

The condition 9 ¢,1, # 0 is somewhat technical. When both 1y and 4 are zero, the first order
terms vanishes and the estimator converges very fast (at rate 1/n?). However, the asymptotic behav-
ior of the estimator is unclear. While this degeneracy occurs only on a meagre set, it does arise for
important choices, such as the null hypothesis f = g in two-sample testing problems.

Finally, for the LOO estimator (10) on two distributions we have the following result. Convergence
is analogous to the one distribution setting and the parametric rate is achieved when s > d/2.

Theorem 7 (Convergence of LOO Estimator for 7'(f, g)). Let f,g € X(s,L, B, B’) and 1,1y

satisfy Assumption 4. Then, E[(fwo —T(f,9))? is (’)(nﬁ + mﬁ) when s < d/2 and
On=t+m~1) when s > d/2.

For many functionals, a Holderian assumption (3(s, L)) alone is sufficient to guarantee the rates in

Theorems 5,6 and 7. However, for some functionals (such as the a-divergences) we require f, g, f, g
to be bounded above and below. Existing results [3, 12] demonstrate that estimating such quantities
is difficult without this assumption.

Now we turn our attention to the question of statistical difficulty. Via lower bounds given by Birgé
and Massart [3] and Laurent [14] we know that the DS and LOO estimators are minimax optimal
when s > d/2 for functionals of one distribution. In the following theorem, we present a lower
bound for estimating functionals of two distributions.

Theorem 8 (Lower Bound for T'(f, g)). Let f,g € X(s,L) and T be any estimator for T(f, g).
Define T = min{8s/(4s + d), 1}. Then there exists a strictly positive constant c such that,

liminf inf  sup E[(f —T(f, g))z] >c(n"+mT).
N T f,gex(s,L)

Our proof, given in Appendix E, is based on LeCam’s method [35] and generalises the analysis of
Birgé and Massart [3] for functionals of one distribution. This establishes minimax optimality of the
DS/LOO estimators for functionals of two distributions when s > d/2. However, when s < d/2
there is a gap between our upper and lower bounds. It is natural to ask if it is possible to improve
on our rates in this regime. A series of work [3, 11, 14] shows that, for integral functionals of one
distribution, one can achieve the n~! rate when s > d/4 by estimating the second order term in the
functional Taylor expansion. This second order correction was also done for polynomial functionals
of two distributions with similar statistical gains [12]. While we believe this is possible here, these
estimators are conceptually complicated and computationally expensive — requiring O(n3 + m?)
running time compared to the O(n? 4+ m?) running time for our estimator. The first order estimator
has a favorable balance between statistical and computational efficiency. Further, not much is known
about the limiting distribution of second order estimators.
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Figure 1: Comparison of DS/LOO estimators against alternatives on different functionals. The y-axis is the

error |1A“ — T(f, g)| and the z-axis is the number of samples. All curves were produced by averaging over 50
experiments. Discretisation in hyperparameter selection may explain some of the unsmooth curves.

S Comparison with Other Approaches

Estimation of statistical functionals under nonparametric assumptions has received considerable at-
tention over the last few decades. A large body of work has focused on estimating the Shannon
entropy— Beirlant et al. [1] gives a nice review of results and techniques. More recent work in the
single-distribution setting includes estimation of Rényi and Tsallis entropies [17, 24]. There are also
several papers extending some of these techniques to divergence estimation [10, 12, 26, 27, 37].

Many of the existing methods can be categorised as plug-in methods: they are based on estimating
the densities either via a KDE or using k-Nearest Neighbors (k-NN) and evaluating the functional
on these estimates. Plug-in methods are conceptually simple but unfortunately suffer several draw-
backs. First, they typically have worse convergence rate than our approach, achieving the parametric
rate only when s > d as opposed to s > d/2 [19, 32]. Secondly, using either the KDE or k-NN,
obtaining the best rates for plug-in methods requires undersmoothing the density estimate and we
are not aware for principled approaches for selecting this smoothing parameter. In contrast, the
bandwidth used in our estimators is the optimal bandwidth for density estimation so we can select
it using a number of approaches, e.g. cross validation. This is convenient from a practitioners per-
spective as the bandwidth can be selected automatically, a convenience that other estimators do not
enjoy. Secondly, plugin methods based on the KDE always require computationally burdensome
numeric integration. In our approach, numeric integration can be avoided for many functionals of
interest (See Table 1).

Another line of work focuses more specifically on estimating f-Divergences. Nguyen et al. [22]
estimate f-divergences by solving a convex program and analyse the method when the likelihood
ratio of the densities belongs to an RKHS. Comparing the theoretical results is not straightforward
as it is not clear how to port the RKHS assumption to our setting. Further, the size of the convex
program increases with the sample size which is problematic for large samples. Moon and Hero [21]
use a weighted ensemble estimator for f-divergences. They establish asymptotic normality and the
parametric convergence rate only when s > d, which is a stronger smoothness assumption than is
required by our technique. Both these works only consider f-divergences, whereas our method has
wider applicability and includes f-divergences as a special case.

6 Experiments

We compare the estimators derived using our methods on a series of synthetic examples. We com-
pare against the methods in [8, 20, 23, 26-29, 33]. Software for the estimators was obtained either
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directly from the papers or from Szabé [34]. For the DS/LOO estimators, we estimate the density
via a KDE with the smoothing kernels constructed using Legendre polynomials [35]. In both cases
and for the plug in estimator we choose the bandwidth by performing 5-fold cross validation. The
integration for the plug in estimator is approximated numerically.

We test the estimators on a series of synthetic datasets in 1 — 4 dimension. The specifics of the
densities used in the examples and methods compared to are given in Appendix G. The results are
shown in Figures 1 and 2. We make the following observations. In most cases the LOO estimator
performs best. The DS estimator approaches the LOO estimator when there are many samples but
is generally inferior to the LOO estimator with few samples. This, as we have explained before is
because data splitting does not make efficient use of the data. The k-NN estimator for divergences
[28] requires choosing a k. For this estimator, we used the default setting for £ given in the software.
As performance is sensitive to the choice of k, it performs well in some cases but poorly in other
cases. We reiterate that the hyper-parameter of our estimator (bandwidth of the kernel) can be
selected automatically using cross validation.

Next, we test the DS and LOO estimators for asymptotic normality on a 4-dimensional Hellinger
divergence estimation problem. We use 4000 samples for estimation. We repeat this experiment 200

times and compare the empiriical asymptotic distribution (i.e. the v/ 4000(f —T(f,9)/ S values

where S is the estimated asymptotic variance) to a A/(0, 1) distribution on a QQ plot. The results in
Figure 2 suggest that both estimators are asymptotically normal.

Image clustering: We demonstrate the use of our nonparametric divergence estimators in an image
clustering task on the ETH-80 datset [16]. Using our Hellinger divergence estimator we achieved an
accuracy of 92.47% whereas a naive spectral clustering approach achieved only 70.18%. When we
used a k-NN estimator for the Hellinger divergence [28] we achieved 90.04% which attests to the
superiority of our method. Since this is not the main focus of this work we defer this to Appendix G.

7 Conclusion

We generalise existing results in Von Mises estimation by proposing an empirically superior LOO
technique for estimating functionals and extending the framework to functionals of two distributions.
We also prove a lower bound for the latter setting. We demonstrate the practical utility of our
technique via comparisons against other alternatives and an image clustering application. An open
problem arising out of our work is to derive the limiting distribution of the LOO estimator.
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