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Abstract

Multi-output Gaussian processes provide a convenient framework for multi-task
problems. An illustrative and motivating example of a multi-task problem is
multi-region electrophysiological time-series data, where experimentalists are in-
terested in both power and phase coherence between channels. Recently, Wilson
and Adams (2013) proposed the spectral mixture (SM) kernel to model the spec-
tral density of a single task in a Gaussian process framework. In this paper, we
develop a novel covariance kernel for multiple outputs, called the cross-spectral
mixture (CSM) kernel. This new, flexible kernel represents both the power and
phase relationship between multiple observation channels. We demonstrate the
expressive capabilities of the CSM kernel through implementation of a Bayesian
hidden Markov model, where the emission distribution is a multi-output Gaus-
sian process with a CSM covariance kernel. Results are presented for measured
multi-region electrophysiological data.

1 Introduction
Gaussian process (GP) models have become an important component of the machine learning liter-
ature. They have provided a basis for non-linear multivariate regression and classification tasks, and
have enjoyed much success in a wide variety of applications [16].

A GP places a prior distribution over latent functions, rather than model parameters. In the sense
that these functions are defined for any number of sample points and sample positions, as well
as any general functional form, GPs are nonparametric. The properties of the latent functions are
defined by a positive definite covariance kernel that controls the covariance between the function
at any two sample points. Recently, the spectral mixture (SM) kernel was proposed by Wilson and
Adams [24] to model a spectral density with a scale-location mixture of Gaussians. This flexible
and interpretable class of kernels is capable of recovering any composition of stationary kernels
[27, 9, 13]. The SM kernel has been used for GP regression of a scalar output (i.e., single function, or
observation “task”), achieving impressive results in extrapolating atmospheric CO2 concentrations
[24]; image inpainting [25]; and feature extraction from electrophysiological signals [21].

However, the SM kernel is not defined for multiple outputs (multiple correlated functions). Multi-
output GPs intersect with the field of multi-task learning [4], where solving similar problems jointly
allows for the transfer of statistical strength between problems, improving learning performance
when compared to learning all tasks individually. In this paper, we consider neuroscience appli-
cations where low-frequency (< 200 Hz) extracellular potentials are simultaneously recorded from
implanted electrodes in multiple brain regions of a mouse [6]. These signals are known as local field
potentials (LFPs) and are often highly correlated between channels. Inferring and understanding
that interdependence is biologically significant.
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A multi-output GP can be thought of as a standard GP (all observations are jointly normal) where the
covariance kernel is a function of both the input space and the output space (see [2] and references
therein for a comprehensive review); here “input space” means the points at which the functions are
sampled (e.g., time), and the “output space” may correspond to different brain regions. A particular
positive definite form of this multi-output covariance kernel is the sum of separable (SoS) kernels,
or the linear model of coregionalization (LMC) in the geostatistics literature [10], where a separable
kernel is represented by the product of separate kernels for the input and output spaces.

While extending the SM kernel to the multi-output setting via the LMC framework (i.e., the SM-
LMC kernel) provides a powerful modeling framework, the SM-LMC kernel does not intuitively
represent the data. Specifically, the SM-LMC kernel encodes the cross-amplitude spectrum (square
root of the cross power spectral density) between every pair of channels, but provides no cross-
phase information. Together, the cross-amplitude and cross-phase spectra form the cross-spectrum,
defined as the Fourier transform of the cross-covariance between the pair of channels.

Motivated by the desire to encode the full cross-spectra into the covariance kernel, we design a novel
kernel termed the cross-spectral mixture (CSM) kernel, which provides an intuitive representation
of the power and phase dependencies between multiple outputs. The need for embedding the full
cross-spectrum into the covariance kernel is illustrated by a recent surge in neuroscience research
discovering that LFP interdependencies between regions exhibit phase synchrony patterns that are
dependent on frequency band [11, 17, 18].

The remainder of the paper is organized as follows. Section 2 provides a summary of GP regression
models for vector-valued data, and Section 3 introduces the SM, SM-LMC, and novel CSM covari-
ance kernels. In Section 4, the CSM kernel is incorporated in a Bayesian hidden Markov model
(HMM) [14] with a GP emission distribution as a demonstration of its utility in hierarchical model-
ing. Section 5 provides details on inverting the Bayesian HMM with variational inference, as well
as details on a fast, novel GP fitting process that approximates the CSM kernel by its representation
in the spectral domain. Section 6 analyzes the performance of this approximation and presents re-
sults for the CSM kernel in the neuroscience application, considering measured multi-region LFP
data from the brain of a mouse. We conclude in Section 7 by discussing how this novel kernel can
trivially be extended to any time-series application where GPs and the cross-spectrum are of interest.

2 Review of Multi-Output Gaussian Process Regression

A multi-output regression task estimates samples from C output channels, yn = [yn1, . . . , ynC ]T

corresponding to the n-th input point xn (e.g., the n-th temporal sample). An unobserved latent
function f(x) = [f1(x), . . . , fC(x)]T is responsible for generating the observations, such that yn ∼
N (f(xn),H−1), whereH = diag(η1, . . . , ηC) is the precision of additive Gaussian noise.

A GP prior on the latent function is formalized by f(x) ∼ GP(m(x),K(x, x′)) for arbitrary
input x, where the mean function m(x) ∈ RC is set to equal 0 without loss of generality, and
the covariance function (K(x, x′))c,c′ = kc,c

′
(x, x′) = cov(fc(x), fc′(x

′)) creates dependencies
between observations at input points x and x′, as observed on channels c and c′. In general, the input
space x could be vector valued, but for simplicity we here assume it to be scalar, consistent with our
motivating neuroscience application in which x corresponds to time.

A convenient representation for multi-output kernel functions is to separate the kernel into the prod-
uct of a kernel for the input space and a kernel for the interactions between the outputs. This is
known as a separable kernel. A sum of separable kernels (SoS) representation [2] is given by

kc,c
′
(x, x′) =

Q∑
q=1

bq(c, c
′)kq(x, x

′), or K(x, x′) =

Q∑
q=1

Bqkq(x, x
′), (1)

where kq(x, x′) is the input space kernel for component q, bq(c, c′) is the q-th output interaction
kernel, and Bq ∈ RC×C is a positive semi-definite output kernel matrix. Note that we have a dis-
crete set of C output spaces, c ∈ {1, . . . , C}, where the input space x is continuous, and discretely
sampled arbitrarily in experiments. The SoS formulation is also known as the linear model of core-
gionalization (LMC) [10] and Bq is termed the coregionalization matrix. When Q = 1, the LMC
reduces to the intrinsic coregionalization model (ICM) [2], and when rank(Bq) is restricted to equal
1, the LMC reduces to the semiparametric latent factor model (SLFM) [19].
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Any finite number of latent functional evaluations f = [f1(x), . . . , fC(x)]T at locations x =
[x1, . . . , xN ]T has a multivariate normal distribution N (f ; 0,K), such that K is formed through
the block partitioning

K =

 k1,1(x,x) · · · k1,C(x,x)
...

. . .
...

kC,1(x,x) · · · kC,C(x,x)

 =

Q∑
q=1

Bq ⊗ kq(x,x), (2)

where each kc,c
′
(x,x) is an N ×N matrix and ⊗ symbolizes the Kronecker product.

A vector-valued dataset consists of observations y = vec([y1, . . . ,yN ]T ) ∈ RCN at the respective
locations x = [x1, . . . , xN ]T such that the first N elements of y are from channel 1 up to the last N
elements belonging to channel C. Since both the likelihood p(y|f ,x) and distribution over latent
functions p(f |x) are Gaussian, the marginal likelihood is conveniently represented by

p(y|x) =

∫
p(y|f ,x)p(f |x)df = N (0,Γ), Γ = K +H−1 ⊗ IN , (3)

where all possible functions f have been marginalized out.

Each input-space covariance kernel is defined by a set of hyperparameters, θ. This conditioning was
removed for notational simplicity, but will henceforth be included in the notation. For example, if
the squared exponential kernel is used, then kSE(x, x′;θ) = exp(− 1

2 ||x − x
′||2/`2), defined by a

single hyperparameter θ = {`}. To fit a GP to the dataset, the hyperparameters are typically chosen
to maximize the marginal likelihood in (3) via gradient ascent.

3 Expressive Kernels in the Spectral Domain
This section first introduces the spectral mixture (SM) kernel [24] as well as a multi-output extension
of the SM kernel within the LMC framework. While the SM-LMC model is capable of represent-
ing complex spectral relationships between channels, it does not intuitively model the cross-phase
spectrum between channels. We propose a novel kernel known as the cross-spectral mixture (CSM)
kernel that provides both the cross-amplitude and cross-phase spectra of multi-channel observations.
Detailed derivations of each of these kernels is found in the Supplemental Material.

3.1 The Spectral Mixture Kernel
A spectral Gaussian (SG) kernel is defined by an amplitude spectrum with a single Gaussian distri-
bution reflected about the origin,

SSG(ω;θ) =
1

2
[N (ω;−µ, ν) +N (ω;µ, ν)] , (4)

where θ = {µ, ν} are the kernel hyperparameters, µ represents the peak frequency, and the variance
ν is a scale parameter that controls the spread of the spectrum around µ. This spectrum is a function
of angular frequency. The Fourier transform of (4) results in the stationary, positive definite auto-
covariance function

kSG(τ ;θ) = exp(−1

2
ντ2) cos(µτ), (5)

where stationarity implies dependence on input domain differences k(τ ;θ) = k(x, x′;θ) with τ =

x−x′. The SG kernel may also be derived by considering a latent signal f(x) =
√

2 cos(ω(x+φ))
with frequency uncertainty ω ∼ N (µ, ν) and phase offset ωφ. The kernel is the auto-covariance
function for f(x), such that kSG(τ ;θ) = cov(f(x), f(x+τ)). When computing the auto-covariance,
the frequency ω is marginalized out, providing the kernel in (5) that includes all frequencies in the
spectral domain with probability 1.

A weighted, linear combination of SG kernels gives the spectral mixture (SM) kernel [24],

kSM(τ ;θ) =

Q∑
q=1

aqkSG(τ ;θq), SSM(ω;θ) =

Q∑
q=1

aqSSG(ω;θq), (6)

where θq = {aq, νq, µq} and θ = {θq} has 3Q degrees of freedom. The SM kernel may be derived
as the Fourier transform of the spectral density SSM(ω;θ) or as the auto-covariance of latent func-
tions f(x) =

∑Q
q=1

√
2aq cos(ωq(x+φq)) with uncertainty in angular frequency ωq ∼ N (µq, νq).
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Figure 1: Latent functions drawn for two channels f1(x) (blue) and f2(x) (red) using the CSM kernel (left)
and rank-1 SM-LMC kernel (center). The functions are comprised of two SG components centered at 4 and 5
Hz. For the CSM kernel, we set the phase shift ψc′,2 = π. Right: the cross-amplitude (purple) and cross-phase
(green) spectra between f1(x) and f2(x) are shown for the CSM kernel (solid) and SM-LMC kernel (dashed).
The ability to tune phase relationships is beneficial for kernel design and interpretation.

The moniker for the SM kernel in (6) reflects the mixture of Gaussian components that define the
spectral density of the kernel. The SM kernel is able to represent any stationary covariance kernel
given large enoughQ; to name a few, this includes any combination of squared exponential, Matèrn,
rational quadratic, or periodic kernels [9, 16, 24].

3.2 The Cross-Spectral Mixture Kernel
A multi-output version of the SM kernel uses the SG kernel directly within the LMC framework:

KSM-LMC(τ ;θ) =

Q∑
q=1

BqkSG(τ ;θq), (7)

where Q SG kernels are shared among the outputs via the coregionalization matrices {Bq}Qq=1. A
generalized, non-stationary version of this SM-LMC kernel was proposed in [23] using the Gaussian
process regression network (GPRN) [26]. The marginal distribution for any single channel is simply
a Gaussian process with a SM covariance kernel. While this formulation is capable of providing
a full cross-amplitude spectrum between two channels, it contains no information about a cross-
phase spectrum. Specifically, each channel is merely a weighted sum of

∑
q Rq latent functions

whereRq = rank(Bq). Whereas these functions are shared exactly across channels, our novel CSM
kernel shares phase-shifted versions of these latent functions across channels.
Definition 3.1. The cross-spectral mixture (CSM) kernel takes the form

kc,c
′

CSM(τ ;θ) =

Q∑
q=1

Rq∑
r=1

√
arcqa

r
c′q exp(−1

2
νqτ

2) cos
(
µq
(
τ + φrc′q − φrcq

))
, (8)

where θ = {νq, µq, {arq,φ
r
q, φ

r
1q , 0}Rq

r=1}
Q
q=1 has 2Q +

∑Q
q=1Rq(2C − 1) degrees of freedom,

and arcq and φrcq respectively represent the amplitude and shift in the input space for latent functions
associated with channel c. In the LMC framework, the CSM kernel is

KCSM(τ ;θ) = Re

{
Q∑
q=1

Bqk̃SG(τ ;θq)

}
, Bq =

Rq∑
r=1

βrq(β
r
q)
†,

k̃SG(τ ;θq) = exp(−1

2
νqτ

2 + jµqτ), βrcq =
√
arcq exp(−jψrcq),

where k̃SG(τ,θq) is phasor notation of the SG kernel, Bq is rank-Rq , {βrcq} are complex scalar
coefficients encoding amplitude and phase, and ψrcq , µqφ

r
cq is an alternative phase representation.

We use complex notation where j =
√
−1, Re{·} returns the real component of its argument, and

β† represents the complex conjugate of β.

Both the CSM and SM-LMC kernels force the marginal distribution of data from a single chan-
nel to be a Gaussian process with a SM covariance kernel. The CSM kernel is derived in the
Supplemental Material by considering functions represented by phase-shifted sinusoidal signals,
fc(x) =

∑Q
q=1

∑Rq

r=1

√
2arcq cos(ωrq(x + φrcq)), where each ωrq

iid∼ N (µq, νq). Computing the
cross-covariance function cov(fc(x), fc′(x+ τ)) provides the CSM kernel.

A comparison between draws from Gaussian processes with CSM and SM-LMC kernels is shown
in Figure 1. The utility of the CSM kernel is clearly illustrated by its ability to encode phase
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information, as well as its powerful functional form of the full cross-spectrum (both amplitude
and phase). The amplitude function Ac,c′(ω) and phase function Φc,c′(ω) are obtained by rep-
resenting the cross-spectrum in phasor notation, i.e., Γc,c′(ω; Θ) =

∑
q(Bq)c,c′SSG(ω;θq) =

Ac,c′(ω) exp(jΦc,c′(ω)). Interestingly, while the CSM and SM-LMC kernels have identical
marginal amplitude spectra for shared {µq, νq,aq}, their cross-amplitude spectra differ due to the
inherent destructive interference of the CSM kernel (see Figure 1, right).

4 Multi-Channel HMM Analysis
Neuroscientists are interested in examining how the network structure of the brain changes as an-
imals undergo a task, or various levels of arousal [15]. The LFP signal is a modality that allows
researchers to explore this network structure. In the model provided in this section, we cluster seg-
ments of the LFP signal into discrete “brain states” [21]. Each brain state is represented by a unique
cross-spectrum provided by the CSM kernel. The use of the full cross-spectrum to define brain states
is supported by previous work discovering that 1) the power spectral density of LFP signals indicate
various levels of arousal states in mice [7, 21], and 2) frequency-dependent phase synchrony patterns
change as animals undergo different conditions in a task [11, 17, 18] (see Figure 2).

The vector-valued observations fromC channels are segmented intoW contiguous, non-overlapping
windows. The windows are common across channels, such that the C-channel data for window
w ∈ {1, . . . ,W} are represented by ywn = [ywn1, . . . , y

w
nC ]T at sample location xwn . Given data, each

window consists of Nw temporal samples, but the model is defined for any set of sample locations.

We model the observations {ywn } as emissions from a hidden Markov model (HMM) with L hidden,
discrete states. State assignments are represented by latent variables ζw ∈ {1, . . . , L} for each win-
dow w ∈ {1, . . . ,W}. In general, L is a set upper bound of the number of states (brain states [21],
or “clusters”), but the model can shrink down and infer the number of states needed to fit the data.
This is achieved by defining the dynamics of the latent states according to a Bayesian HMM [14]:

ζ1 ∼ Categorical(ρ0), ζw ∼ Categorical(ρζw−1
) ∀w ≥ 2, ρ0,ρ` ∼ Dirichlet(ν),

where the initial state assignment is drawn from a categorical distribution with probability vector ρ0
and all subsequent states assignments are drawn from the transition vector ρζw−1

. Here, ρ`h is the
probability of transitioning from state ` to state h. The vectors {ρ0,ρ1, . . . ,ρL} are independently
drawn from symmetric Dirichlet distributions centered around ν = [1/L, . . . , 1/L] to impose spar-
sity on transition probabilities. In effect, this allows the model to learn the number of states needed
for the data (i.e., fewer than L) [3].

Each cluster ` ∈ {1, . . . , L} is assigned GP parameters θ`. The latent cluster assignment ζw for
window w indicates which set of GP parameters control the emission distribution of the HMM:

ywn ∼ N (fw(xwn ),H−1
ζw

), fw(x) ∼ GP(0,K(x, x′;θζw)), (9)

where (K(x, x′;θ`))c,c′ = kc,c
′

CSM(x, x′;θ`) is the CSM kernel, and the cluster-dependent precision
Hζw = diag(ηζw) generates independent Gaussian observation noise. In this way, each window w
is modeled as a stochastic process with a multi-channel cross-spectrum defined by θζw .
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Figure 2: A short segment of LFP data recorded from the basolateral amygdala and infralimbic cortex is
shown on the left. The cross-amplitude and phase spectra are produced using Welch’s averaged periodogram
method [22] for several consecutive 5 second windows of LFP data. Frequency dependent phase synchrony lags
are consistently present in the cross-phase spectrum, motivating the CSM kernel. This frequency dependency
aligns with preconcieved notions of bands, or brain waves (e.g., 8-12 Hz alpha waves).
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5 Inference

A convenient notation vectorizes all observations within a window, yw = vec([yw1 , . . . ,y
w
Nw

]T ),
where vec(A) is the vectorization of matrix A; i.e., the first Nw elements of yw are observations
from channel 1, up to the last Nw elements of yw belonging to channel C. Because samples are
obtained on an evenly spaced temporal grid, we fix Nw = N and align relative sample locations
within a window to an oracle xw = x = [x1, . . . , xN ]T for all w.

The model in Section 4 generates the set of observations Y = {yw}Ww=1 at aligned sample locations
x given kernel hyperparameters Θ = {θ`,η`}L`=1 and model variables Ω = {{ρ`}L`=0, {ζw}Ww=1}.
The latent variables Ω are inverted using mean-field variational inference [3], obtaining an approxi-
mate posterior distribution q(Ω) = q(ζ1:W )

∏L
`=0 Dir(ρ`;α`). The approximate posterior is chosen

to minimize the KL divergence to the true posterior distribution p(Ω|Y ,Θ,x) using the standard
variational EM method detailed in Chapter 3 of [3].

During each iteration of the variational EM algorithm, the kernel hyperparameters Θ are chosen to
maximize the expected marginal log-likelihood Q =

∑W
w=1

∑L
`=1 q(ζw = `) logN (yw; 0,Γ`)via

gradient ascent, where q(ζw = `) is the marginal posterior probability that window w is assigned
to brain state `, and Γ` = Re{Γ̃`} is the CSM kernel matrix for state ` with the complex form
Γ̃` =

∑
qB

`
q ⊗ k̃SG(x,x;θ`) + H−1

` ⊗ IN . Performing gradient ascent requires the derivatives
∂Q
∂Θj

= 1
2

∑
w,` tr((α`wαT`w − Γ−1

` ) ∂Γ`

∂Θj
) where α`w = Γ−1

` y
w [16]. A naı̈ve implementation of

this gradient requires the inversion of Γ`, which has complexityO(N3C3) and storage requirements
O(N2C2) since a simple method to invert a sum of Kronecker products does not exist.

A common trick for GPs with evenly spaced samples (e.g., a temporal grid) is to use the discrete
Fourier transform (DFT) to approximate the inverse of Γ` by viewing this as an approximately
circulant matrix [5, 12]. These methods can speed up inference because circulant matrices are diag-
onalizable by the DFT coefficient matrix. Adjusting these methods to the multi-output formulation,
we show how the DFT of the marginal covariance matrices retains the cross-spectrum information.

Proposition 5.1. Let yw ∼ N (0,Γζw) represent the marginal likelihood of circularly-symmetric
[8] real-valued observations in window w, and denote the concatenation of the DFT of each channel
as zw = (IC ⊗ U)†yw where U is the N × N unitary DFT matrix. Then, zw is shown in the
Supplemental Material to have the complex normal distribution [8]:

zw ∼ CN (0, 2Sζw), S` = δ−1

Q∑
q=1

B`
q ⊗W

`
q +H−1

` ⊗ IN , (10)

where δ = xi+1 − xi for all i = 2, . . . , N , and W `
q ≈ diag([SSG(ω;θ`q),0]) is approximately

diagonal. The spectral density SSG(ω;θ) = [SSG(ω1;θ), . . . , SSG(ωbN+1
2 c;θ)] is found via (4) at

angular frequencies ω = 2π
Nδ

[
0, 1, . . . ,

⌊
N
2

⌋]
, and 0 = [0, . . . , 0] is a row vector of

⌊
N−1

2

⌋
zeros.

The hyperparameters of the CSM kernels Θ may now be optimized from the expected marginal
log-likelihood of Z = {zw}Ww=1 instead of Y . Conceptually, the only difference during the fitting
process is that, with the latter, derivatives of the covariance kernel are used, while, with the for-
mer, derivatives of the power spectral density are used. Computationally, this method improves the
naı̈ve O(N3C3) complexity of fitting the standard CSM kernel to O(NC3) complexity. Memory
requirements are also reduced fromO(N2C2) toO(NC2). The reason for this improvement is that
S` is now represented as N independent C × C blocks, reducing the inversion of S` to inverting a
permuted block-diagonal matrix.

6 Experiments
Section 6.1 demonstrates the performance of the CSM kernel and the accuracy of the DFT approx-
imation In Section 6.2, the DFT approximation for the CSM kernel is used in a Bayesian HMM
framework to cluster time-varying multi-channel LFP data based on the full cross-spectrum; the
HMM states here correspond to states of the brain during LFP recording.
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Figure 3: Time-series data is drawn from a Gaussian process with
a known CSM covariance kernel, where the domain restricted to a
fixed number of seconds. A Gaussian process is then fitted to this
data using the DFT approximation. The KL-divergence of the fitted
marginal likelihood from the true marginal likelihood is shown.

Table 1: The mean and standard de-
viation of the difference between the
AIC value of a given model and the
AIC value of the rank-2 CSM model.
Lower values are better.

Rank Model ∆ AIC

1 SE-LMC 4770 (993)
1 SM-LMC 512 (190)
1 CSM 109 (110)
2 SE-LMC 5180 (1120)
2 SM-LMC 325 (167)
2 CSM 0 (0)
3 SE-LMC 5550 (1240)
3 SM-LMC 412 (184)
3 CSM 204 (71.7)

6.1 Performance and Inference Analysis

The performance of the CSM kernel is compared to the SM-LMC kernel and SE-LMC (squared
exponential) kernel. Each of these models allow Q=20, and the rank of the coregionalization ma-
trices is varied from rank-1 to rank-3. For a given rank, the CSM kernel always obtains the largest
marginal likelihood for a window of LFP data, and the marginal likelihood always increases for
increasing rank. To penalize the number of kernel parameters (e.g., a rank-3, Q=20 CSM kernel for
7 channels has 827 free parameters to optimize), the Akaike information criterion (AIC) is used for
model selection [1]. For this reason, we do not test rank greater than 3. Table 1 shows that a rank-2
CSM kernel is selected using this criterion, followed by a rank-1 CSM kernel. To show the rank-2
CSM kernel is consistently selected as the preferred model we report means and standard deviations
of AIC value differences across 30 different randomly selected 3-second windows of LFP data.

Next, we provide numerical results for the conditions required when using the DFT approximation
in (10). This allows for one to define details of a particular application in order to determine if the
DFT approximation to the CSM kernel is appropriate. A CSM kernel is defined for two outputs
with a single Gaussian component, Q = 1. The mean frequency and variance for this component
are set to push the limits of the application. For example, with LFP data, low frequency content is
of interest, namely greater than 1 Hz; therefore, we test values of µ̃1 ∈ { 1

2 , 1, 3} Hz. We anticipate
variances at these frequencies to be around ν̃1 = 1 Hz2. A conversion to angular frequency gives
µ1 = 2πµ̃1 and ν1 = 4π2ν̃1. The covariance matrix Γ in (3) is formed using these parameters, a
fixed noise variance, and N observations on a time grid with sampling rate of 200 Hz. Data y are
drawn from the marginal likelihood with covariance Γ.

A new CSM kernel is fit to y using the DFT approximation, providing an estimate Γ̂. The KL
divergence of the fitted marginal likelihood from the true marginal likelihood is

KL(p(y|Γ̂)||p(y|Γ)) =
1

2

[
log
|Γ|
|Γ̂|
−N + tr(Γ−1Γ̂)

]
,

where | · | and tr(·) are the determinant and trace operators, respectively. Computing
1
N KL(p(y|Γ̂)||p(y|Γ)) for various values of µ̃1 and N provides the results in Figure 3. This plot
shows that the DFT approximation struggles to resolve low frequency components unless the se-
ries length is sufficiently long. Due to the approximation error, when using the DFT approximation
on LFP data we a priori filter out frequencies below 1.5 Hz and perform analyses with a series
length of 3 seconds. This ensures the DFT approximation represents the true covariance matrix. The
following application of the CSM kernel uses these settings.

6.2 Including the CSM Kernel in a Bayesian Hierarchical Model

We analyze 12 hours of LFP data of a mouse transitioning between different stages of sleep [7, 21].
Observations were recorded simultaneously from 4 channels [6], high-pass filtered at 1.5 Hz, and
subsampled to 200 Hz. Using 3 second windows provides N = 600 and W = 14, 400. The HMM
was implemented with the number of kernel components Q = 15 and the number of states L = 7.
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Figure 4: A subset of results from the Bayesian HMM analysis of brain states. In the upper left, the full cross-
spectrum for an arbitrary state (state 7) is plotted. In the upper right, the amplitude (top) and phase (bottom)
functions for the cross-spectrum between the Dorsomedial Striatum (DMS) and Hippocampus (DHipp) are
shown for all seven states. On the bottom, the maximum likelihood state assignments are shown and compared
to the state assignments from [7]. The same colors between the CSM state assignments and the phase and
amplitude functions correspond to the same state. These colors are alligned to the [7] states, but there is no
explicit relationship between the colors of the two state sequences.

This was chosen because sleep staging tasks categorize as many as seven states: various levels of
rapid eye movement, slow wave sleep, and wake [20]. Although rigorous model selection on L
is necessary to draw scientific conclusions from the results, the purpose of this experiment is to
illustrate the utility of the CSM kernel in this application.

An illustrative subset of the results are shown in Figure 4. The full cross-spectrum is shown for
a single state (state 7), and the cross-spectrum between the Dorsomedial Striatum and the Dorsal
Hippocampus are shown for all states. Furthermore, we show the progression of these brain state
assignments over 3 hours and compare them to states from the method of [7], where statistics of the
Hippocampus spectral density were clustered in an ad hoc fashion. To the best of our knowledge,
this method represents the most relevant and accurate results for sleep staging from LFP signals in
the neuroscience literature. From these results, it is apparent that our clusters pick up sub-states of
[7]. For instance, states 3, 6, and 7 all appear with high probability when the method from [7] infers
state 3. Observing the cross-phase function of sub-state 7 reveals striking differences from other
states in the theta wave (4-7 Hz) and the alpha wave (8-15 Hz). This cross-phase function is nearly
identical for states 2 and 5, implying that significant differences in the cross-amplitude spectrum
may have played a role in identifying the difference between these two brain states.

Many more of these interesting details exist due to the expressive nature of the CSM kernel. As a
full interpretation of the cross-spectrum results is not the focus of this work, we contend that the
CSM kernel has the potential to have a tremendous impact in fields such as neuroscience, where the
dynamics of cross-spectrum relationships of LFP signals are of great interest.

7 Conclusion
This work introduces the cross-spectral mixture kernel as an expressive kernel capable of extracting
patterns for multi-channel observations. Combined with the powerful nonparametric representation
of a Gaussian process, the CSM kernel expresses a functional form for every pairwise cross-spectrum
between channels. This is a novel approach that merges Gaussian processes in the machine learning
community to standard signal processing techniques. We believe the CSM kernel has the potential
to impact a broad array of disciplines since the kernel can trivially be extended to any time-series
application where Gaussian processes and the cross-spectrum are of interest.
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