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Abstract

A market scoring rule (MSR) – a popular tool for designing algorithmic prediction
markets – is an incentive-compatible mechanism for the aggregation of probabilis-
tic beliefs from myopic risk-neutral agents. In this paper, we add to a growing
body of research aimed at understanding the precise manner in which the price
process induced by a MSR incorporates private information from agents who de-
viate from the assumption of risk-neutrality. We first establish that, for a myopic
trading agent with a risk-averse utility function, a MSR satisfying mild regular-
ity conditions elicits the agent’s risk-neutral probability conditional on the latest
market state rather than her true subjective probability. Hence, we show that a
MSR under these conditions effectively behaves like a more traditional method of
belief aggregation, namely an opinion pool, for agents’ true probabilities. In par-
ticular, the logarithmic market scoring rule acts as a logarithmic pool for constant
absolute risk aversion utility agents, and as a linear pool for an atypical budget-
constrained agent utility with decreasing absolute risk aversion. We also point out
the interpretation of a market maker under these conditions as a Bayesian learner
even when agent beliefs are static.

1 Introduction

How should we combine opinions (or beliefs) about hidden truths (or uncertain future events) fur-
nished by several individuals with potentially diverse information sets into a single group judgment
for decision or policy-making purposes? This has been a fundamental question across disciplines
for a long time (Surowiecki [2005]). One simple, principled approach towards achieving this end is
the opinion pool (OP) which directly solicits inputs from informants in the form of probabilities (or
distributions) and then maps this vector of inputs to a single probability (or distribution) based on
certain axioms (Genest and Zidek [1986]). However, this technique abstracts away from the issue
of providing proper incentives to a selfish-rational agent to reveal her private information honestly.
Financial markets approach the problem differently, offering financial incentives for traders to sup-
ply their information about valuations and aggregating this information into informative prices. A
prediction market is a relatively novel tool that builds upon this idea, offering trade in a financial se-
curity whose final monetary worth is tied to the future revelation of some currently unknown ground
truth. Hanson [2003] introduced a family of algorithms for designing automated prediction markets
called the market scoring rule (MSR) of which the Logarithmic Market Scoring Rule (LMSR) is
arguably the most widely used and well-studied. A MSR effectively acts as a cost function-based
market maker always willing to take the other side of a trade with any willing buyer or seller, and
re-adjusting its quoted price after every transaction.

One of the most attractive properties of a MSR is its incentive-compatibility for a myopic risk-neutral
trader. But this also means that, every time a MSR trades with such an agent, the updated market
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price is reset to the subjective probability of that agent; the market mechanism itself does not play an
active role in unifying pieces of information gleaned from the entire trading history into its current
price. Ostrovsky [2012] and Iyer et al. [2014] have shown that, with differentially informed Bayesian
risk-neutral and risk-averse agents respectively, trading repeatedly, “information gets aggregated” in
a MSR-based market in a perfect Bayesian equilibrium. However, if agent beliefs themselves do not
converge, can the price process emerging out of their interaction with a MSR still be viewed as an
aggeragator of information in some sense? Intuitively, even if an agent does not revise her belief
based on her inference about her peers’ information from market history, her conservative attitude
towards risk should compel her to trade in such a way as to move the market price not all the way
to her private belief but to some function of her belief and the most recent price; thus, the evolving
price should always retain some memory of all agents’ information sequentially injected into the
market. Therefore, the assumption of belief-updating agents may not be indispensable for providing
theoretical guarantees on how the market incorporates agent beliefs. A few attempts in this vein
can be found in the literature, typically embedded in a broader context (Sethi and Vaughan [2015],
Abernethy et al. [2014]), but there have been few general results; see Section 1.1 for a review.

In this paper, we develop a new unified understanding of the information aggregation characteristics
of a market with risk-averse agents mediated by a MSR, with no regard to how the agents’ beliefs are
formed. In fact, we demonstrate an equivalence between such MSR-mediated markets and opinion
pools. We do so by first proving, in Section 3, that for any MSR interacting with myopic risk-averse
traders, the revised instantaneous price after every trade equals the latest trader’s risk-neutral proba-
bility conditional on the preceding market state. We then show that this price update rule satisfies an
axiomatic characterization of opinion pooling functions from the literature, establishing the equiva-
lence. In Sections 3.1, and 3.2, we focus on a specific MSR, the commonly used logarithmic variety
(LMSR). We demonstrate that a LMSR-mediated market with agents having constant absolute risk
aversion (CARA) utilities is equivalent to a logarithmic opinion pool, and that a LMSR-mediated
market with budget-constrained agents having a specific concave utility with decreasing absolute
risk aversion is equivalent to a linear opinion pool. We also demonstrate how the agents’ utility
function parameters acquire additional significance with respect to this pooling operation, and that
in these two scenarios the market maker can be interpreted as a Bayesian learning algorithm even
if agents never update beliefs. Our results are reminiscent of similar findings about competitive
equilibrium prices in markets with rational, risk-averse agents (Pennock [1999], Beygelzimer et al.
[2012], Millin et al. [2012] etc.), but those models require that agents learn from prices and also
abstract away from any consideration of microstructure and the dynamics of actual price formation
(how the agents would reach the equilibrium is left open). By contrast, our results do not presuppose
any kind of generative model for agent signals, and also do not involve an equilibrium analysis –
hence they can be used as tools to analyze the convergence characteristics of the market price in
non-equilibrium situations with potentially fixed-belief or irrational agents.

1.1 Related Work

Given the plethora of experimental and empirical evidence that prediction markets are at least as ef-
fective as more traditional means of belief aggregation (Wolfers and Zitzewitz [2004], Cowgill and
Zitzewitz [2013]), there has been considerable work on understanding how such a market formu-
lates its own consensus belief from individual signals. An important line of research (Beygelzimer
et al. [2012], Millin et al. [2012], Hu and Storkey [2014], Storkey et al. [2015]) has focused on a
competitive equilibrium analysis of prediction markets under various trader models, and found an
equivalence between the market’s equilibrium price and the outcome of an opinion pool with the
same agents. Seminal work in this field was done by Pennock [1999] who showed that linear and
logarithmic opinion pools arise as special cases of the equilibrium of his intuitive model of securities
markets when all agents have generalized logarithmic and negative exponential utilities respectively.
Unlike these analyses that abstract away from the microstructure, Ostrovsky [2012] and Iyer et al.
[2014] show that certain market structures (including market scoring rules) satisfying mild condi-
tions perform “information aggregation” (i.e. the market’s belief measure converges in probability
to the ground truth) for repeatedly trading and learning agents with risk-neutral and risk-averse util-
ities respectively. Our contribution, while drawing inspiration from these sources, differs in that
we delve into the characteristics of the evolution of the price rather than the properties of prices
in equilibrium, and examine the manner in which the microstructure induces aggregation even if
the agents are not Bayesian. While there has also been significant work on market properties in
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continuous double auctions or markets mediated by sophisticated market-making algorithms (e.g.
Cliff and Bruten [1997], Farmer et al. [2005], Brahma et al. [2012] and references therein) when the
agents are “zero intelligence” or derivatives thereof (and therefore definitely not Bayesian), this line
of literature has not looked at market scoring rules in detail, and analytical results have been rare.

In recent years, the literature focusing on the market scoring rule (or, equivalently, the cost function-
based market maker) family has grown substantially. Chen and Vaughan [2010] and Frongillo et al.
[2012] have uncovered isomorphisms between this type of market structure and well-known ma-
chine learning algorithms. We, on the other hand, are concerned with the similarities between price
evolution in MSR-mediated markets and opinion pooling methods (see e.g. Garg et al. [2004]). Our
work comes close to that of Sethi and Vaughan [2015] who show analytically that the price sequence
of a cost function-based market maker with budget-limited risk-averse traders is “convergent under
general conditions”, and by simulation that the limiting price of LMSR with multi-shot but myopic
logarithmic utility agents is approximately a linear opinion pool of agent beliefs. Abernethy et al.
[2014] show that a risk-averse exponential utility agent with an exponential family belief distribu-
tion updates the state vector of a generalization of LMSR that they propose to a convex combination
of the current market state vector and the natural parameter vector of the agent’s own belief distri-
bution (see their Theorem 5.2, Corollary 5.3) – this reduces to a logarithmic opinion pool (LogOP)
for classical LMSR. The LMSR-LogOP connection was also noted by Pennock and Xia [2011] (in
their Theorem 1) but with respect to an artificial probability distribution based on an agent’s ob-
served trade that the authors defined instead of considering traders’ belief structure or strategies. We
show how results of this type arise as special cases of a more general MSR-OP equivalence that we
establish in this paper.

2 Model and definitions

Consider a decision-maker or principal interested in the “opinions” / ”beliefs” / “forecasts” of a
group of n agents about an extraneous random binary event X ∈ {0, 1}, expressed in the form of
point probabilities πi ∈ (0, 1), i = 1, 2, . . . , n, i.e. πi is agent i’s subjective probability Pr(X = 1).
X can represent a proposition such as “A Republican will win the next U.S. presidential election”
or “The favorite will beat the underdog by more than a pre-determined point spread in a game of
football” or “The next Avengers movie will hit a certain box office target in its opening week.” In this
section, we briefly describe two approaches towards the aggregation of such private beliefs: (1) the
opinion pool, which disregards the problem of incentivizing truthful reports, and focuses simply on
unifying multiple probabilistic reports on a topic, and (2) the market scoring rule, an incentive-based
mechanism for extracting honest beliefs from selfish-rational agents.

2.1 Opinion Pool (OP)

This family of methods takes as input the vector of probabilistic reports pi, i = 1, 2, · · · , n submitted
by n agents, also called experts in this context, and computes an aggregate or consensus operator
p̂ = f(p1, p2, · · · , pn) ∈ [0, 1]. Garg et al. [2004] identified three desiderata for an opinion pool
(other criteria are also recognized in the literature, but the following are the most basic and natural):

1. Unanimity: If all experts agree, the aggregate also agrees with them.

2. Boundedness: The aggregate is bounded by the extremes of the inputs.

3. Monotonicity: If one expert changes her opinion in a particular direction while all other
experts’ opinions remain unaltered, then the aggregate changes in the same direction.

Definition 1. We call p̂ = f(p1, p2, · · · , pn) a valid opinion pool for n probabilistic reports if it
possesses properties 1, 2, and 3 listed above.

It is easy to derive the following result for recursively defined pooling functions that will prove
useful for establishing an equivalence between market scoring rules and opinion pools. The proof is
in Section 1 of the Supplementary Material.

Lemma 1. For a two-outcome scenario, if f2(r1, r2) and fn−1(q1, q2, . . . , qn−1) are valid opinion
pools for two probabilistic reports r1, r2 and n−1 probabilistic reports q1, q2, . . . , qn−1 respectively,
then f(p1, p2, . . . , pn) = f2(fn−1(p1, p2, . . . , pn−1), pn) is also a valid opinion pool for n reports.
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Two popular opinion pooling methods are the Linear Opinion Pool (LinOP) and the Logarithmic
Opinion Pool (LogOP) which are essentially a weighted average (or convex combination) and a
renormalized weighted geometric mean of the experts’ probability reports respectively.

LinOP(p1, p2, · · · , pn)=
∑n
i=1 ω

lin
i pi,

LogOP(p1, p2, · · · , pn)=
∏n
i=1 p

ωlog
i
i

/[∏n
i=1 p

ωlog
i
i +

∏n
i=1(1− pi)ω

log
i

]
,

for a two-outcome scenario, where ωlin
i , ωlog

i ≥ 0 ∀i = 1, 2, . . . , n,
∑n
i=1 ω

lin
i = 1,

∑n
i=1 ω

log
i = 1.

2.2 Market Scoring Rule (MSR)

In general, a scoring rule is a function of two variables s(p, x) ∈ R ∪ {−∞,∞}, where p is an
agent’s probabilistic prediction (density or mass function) about an uncertain event, x is the realized
or revealed outcome of that event after the prediction has been made, and the resulting value of s
is the agent’s ex post compensation for prediction. For a binary event X , a scoring rule can just be
represented by the pair (s1(p), s0(p)) which is the vector of agent compensations for {X = 1} and
{X = 0} respectively, p ∈ [0, 1] being the agent’s reported probability of {X = 1} which may or
may not be equal to her true subjective probability, say, π = Pr(X = 1). A scoring rule is defined
to be strictly proper if it is incentive-compatible for a risk-neutral agent, i.e. an agent maximizes
her subjective expectation of her ex post compensation by reporting her true subjective probability:
π = argmaxp∈[0,1] [πs1(p) + (1− π)s0(p)], ∀π ∈ [0, 1].

In addition, a two-outcome scoring rule is regular if sj(·) is real-valued except possibly that s0(1)
or s1(0) is −∞; any regular strictly proper scoring rule can written in the following form (Gneiting
and Raftery [2007]):

sj(p) = G(p) +G′(p)(j − p), j ∈ {0, 1}, p ∈ [0, 1], (1)

G : [0, 1]→ R is a strictly convex function with G′(·) as a sub-gradient which is real-valued expect
possibly that −G′(0) or G′(1) is∞; if G(·) is differentiable in (0, 1), G′(·) is simply its derivative.

A classic example of a regular strictly proper scoring rule is the logarithmic scoring rule:

s1(p) = b ln p; s0(p) = b ln(1− p), where b > 0 is a free parameter. (2)

Hanson [2003] introduced an extension of a scoring rule wherein the principal initiates the process
of information elicitation by making a baseline report p0, and then elicits publicly declared reports
pi sequentially from n agents; the ex post compensation cx(pi, pi−1) received by agent i from the
principal, where x is the realized outcome of event X , is the difference between the scores assigned
to the reports made by herself and her predecessor:

cx(pi, pi−1) , sx(pi)− sx(pi−1), x ∈ {0, 1}. (3)

If each agent acts non-collusively, risk-neutrally, and myopically (as if her current interaction with
the principal is her last), then the incentive compatibility property of a strictly proper score still holds
for the sequential version. Moreover, it is easy to show that the principal’s worst-case payout (loss)
is bounded regardless of agent behavior. In particular, for the binary-outcome logarithmic score, the
loss bound for p0 = 1/2 is b ln 2; b can be referred to as the principal’s loss parameter.

A sequentially shared strictly proper scoring rule of the above form can also be interpreted as a
cost function-based prediction market mechanism offering trade in an Arrow-Debreu (i.e. (0, 1)-
valued) security written on the event X , hence the name “market scoring rule”. The cost function
is a strictly convex function of the total outstanding quantity of the security that determines all
execution costs; its first derivative (the cost per share of buying or the proceeds per share from
selling an infinitesimal quantity of the security) is called the market’s “instantaneous price”, and can
be interpreted as the market maker’s current risk-neutral probability (Chen and Pennock [2007]) for
{X = 1}, the starting price being equal to the principal’s baseline report p0. Trading occurs in
discrete episodes 1, 2, . . . , n, in each of which an agent orders a quantity of the security to buy or
sell given the market’s cost function and the (publicly displayed) instantaneous price. Since there is
a one-to-one correspondence between agent i’s order size and pi, the market’s revised instantaneous
price after trading with agent i, an agent’s “action” or trading decision in this setting is identical to
making a probability report by selecting a pi ∈ [0, 1]. If agent i is risk-neutral, then pi is, by design,
her subjective probability πi (see Hanson [2003], Chen and Pennock [2007] for further details).
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Definition 2. We call a market scoring rule well-behaved if the underlying scoring rule is regular
and strictly proper, and the associated convex function G(·) (as in (1)) is continuous and thrice-
differentiable, with 0 < G′′(p) <∞ and |G′′′(p)| <∞ for 0 < p < 1.

3 MSR behavior with risk-averse myopic agents

We first present general results on the connection between sequential trading in a MSR-mediated
market with risk-averse agents and opinion pooling, and then give a more detailed picture for two
representative utility functions without and with budget constraints respectively. Please refer to
Section 2 of the Supplementary Material for detailed proofs of all results in this section.

Suppose that, in addition to a belief πi = Pr(X = 1), each agent i has a continuous utility function
of wealth ui(c), where c ∈ [cmin

i ,∞] denotes her (ex post) wealth, i.e. her net compensation from
the market mechanism after the realization of X defined in (3), and cmin

i ∈ [−∞, 0] is her minimum
acceptable wealth (a negative value suggests tolerance of debt); ui(·) satisfies the usual criteria of
non-satiation i.e. u′i(c) > 0 except possibly that u′i(∞) = 0, and risk aversion, i.e. u′′i (c) < 0
except possibly that u′′i (∞) = 0, through out its domain (Mas-Colell et al. [1995]); in other words
ui(·) is strictly increasing and strictly concave. Additionally, we require its first two derivatives to
be finite and continuous on [cmin

i ,∞] except that we tolerate u′i(c
min
i ) =∞, u′′i (c

min
i ) = −∞. Note

that, by choosing a finite lower bound cmin
i on the agent’s wealth, we can account for any starting

wealth or budget constraint that effectively restricts the agent’s action space.
Lemma 2. If |cmin

i | < ∞, then there exist lower and upper bounds, pmin
i ∈ [0, pi−1] and pmax

i ∈
[pi−1, 1] respectively, on the feasible values of the price pi to which agent i can drive the market
regardless of her belief πi, where pmin

i = s−11 (cmin
i + s1(pi−1)) and pmax

i = s−10 (cmin
i + s0(pi−1)).

Since the latest price pi−1 can be viewed as the market’s current “state” from myopic agent i’s
perspective, the agent’s final utility depends not only on her own action pi and the extraneously
determined outcome x but also on the current market state pi−1 she encounters, her rational action
being given by pi = argmaxp∈[0,1] [πiui(c1(p, pi−1)) + (1− πi)ui(c0(pi, pi−1))]. This leads us
to the main result of this section.
Theorem 1. If a well-behaved market scoring rule for an Arrow-Debreu security with a starting
instantaneous price p0 ∈ (0, 1) trades with a sequence of n myopic agents with subjective probabil-
ities π1, . . . , πn ∈ (0, 1) and risk-averse utility functions of wealth u1(·), . . . , un(·) as above, then
the updated market price pi after every trading episode i ∈ {1, 2, . . . , n} is equivalent to a valid
opinion pool for the market’s initial baseline report p0 and the subjective probabilities π1, π2, . . . , πi
of all agents who have traded up to (and including) that episode.

Proof sketch. For every trading epsiode i, by setting the first derivative of agent i’s expected
utility to zero, and analyzing the resulting equation, we can arrive at the following lemmas.
Lemma 3. Under the conditions of Theorem 1, if pi−1 ∈ (0, 1), then the revised price pi after agent
i trades is the unique solution in (0, 1) to the fixed-point equation:

pi =
πiu
′
i(c1(pi, pi−1))

πiu′i(c1(pi, pi−1)) + (1− πi)u′i(c0(pi, pi−1))
. (4)

Since p0 ∈ (0, 1), and πi ∈ (0, 1) ∀i, pi is also confined to (0, 1) ∀i, by induction.
Lemma 4. The implicit function pi(pi−1, πi) described by (4) has the following properties:

1. pi = πi (or pi−1) if and only if πi = pi−1.

2. 0 < min{pi−1, πi} < pi < max{pi−1, πi} < 1 whenever πi 6= pi−1, 0 < πi, pi−1 < 1.

3. For any given pi−1 (resp. πi), pi is a strictly increasing function of πi (resp. pi−1).

Evidently, properties 1, 2, and 3 above correspond to axioms of unanimity, boundedness, and mono-
tonicity respectively, defined in Section 2. Hence, pi(pi−1, πi) is a valid opinion pooling function for
pi−1, πi. Finally, since (4) defines the opinion pool pi recursively in terms of pi−1 ∀i = 1, 2, . . . , n,
we can invoke Lemma 1 to obtain the desired result. �
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There are several points worth noting about this result. First, since the updated market price pi is
also equivalent to agent i’s action (Section 2.2), the R.H.S. of (4) is agent i’s risk-neutral probability
(Pennock [1999]) of {X = 1}, given her utility function, her action, and the current market state.
Thus, Lemma 3 is a natural extension of the elicitation properties of a MSR. MSRs, by design, elicit
subjective probabilities from risk-neutral agents in an incentive compatible manner; we show that, in
general, they elicit risk-neutral probabilities when they interact with risk-averse agents. Lemma 3 is
also consistent with the observation of Pennock [1999] that, for all belief elicitation schemes based
on monetary incentives, an external observer can only assess a participant’s risk-neutral probability
uniquely; she cannot discern the participant’s belief and utility separately. Second, observe that
this pooling operation is accomplished by a MSR even without direct revelation. Finally, notice
the presence of the market maker’s own initial baseline p0 as a component in the final aggregate;
however, for the examples we study below, the impact of p0 diminishes with the participation of
more and more informed agents, and we conjecture that this is a generic property.

In general, the exact form of this pooling function is determined by the complex interaction between
the MSR and agent utility, and a closed form of pi from (4) might not be attainable in many cases.
However, given a paticular MSR, we can venture to identify agent utility functions which give rise
to well-known opinion pools. Hence, for the rest of this paper, we focus on the logarithmic market
scoring rule (LMSR), one of the most popular tools for implementing real-world prediction markets.

3.1 LMSR as LogOP for constant absolute risk aversion (CARA) utility

Theorem 2. If myopic agent i, having a subjective belief πi ∈ (0, 1) and a risk-averse utility func-
tion satisfying our criteria, trades with a LMSR market with parameter b and current instantaneous
price pi−1, then the market’s updated price pi is identical to a logarithmic opinion pool between the
current price and the agent’s subjective belief, i.e.

pi = παi
i p

1−αi
i−1

/ [
παi
i p

1−αi
i−1 + (1− πi)αi(1− pi−1)1−αi

]
, αi ∈ (0, 1), (5)

if and only if agent i’s utility function is of the form

ui(c) = τi (1− exp (−c/τi)) , c ∈ R ∪ {−∞,∞}, constant τi ∈ (0,∞), (6)

the aggregation weight being given by αi =
τi/b

1+τi/b
.

The proof is in Section 2.1 of the Supplementary Material. Note that (6) is a standard formulation
of the CARA (or negative exponential) utility function with risk tolerance τi; smaller the value of
τi, higher is agent i’s aversion to risk. The unbounded domain of ui(·) indicates a lack of budget
constraints; risk aversion comes about from the fact that the range of the function is bounded above
(by its risk tolerance τi) but not bounded below.

Moreover, the LogOP equation (5) can alternatively be expressed as a linear update in terms of
log-odds ratios, another popular means of formulating one’s belief about a binary event:

l(pi) = αil(πi) + (1− αi)l(pi−1), l(p) = ln
(

p
1−p
)
∈ [−∞,∞] for p ∈ [0, 1]. (7)

Aggregation weight and risk tolerance: Since αi is an increasing function of an agent’s risk
tolerance relative to the market’s loss parameter (the latter being, in a way, a measure of how much
risk the market maker is willing to take), identity (7) implies that the higher an agent’s risk tolerance,
the larger is the contribution of her belief towards the changed market price, which agrees with
intuition. Also note the interesting manner in which the market’s loss parameter effectively scales
down an agent’s risk tolerance, enhancing the inertia factor (1− αi) of the price process.

Bayesian interpretation: The Bayesian interpretation of LogOP in general is well-known (Bordley
[1982]); we restate it here in a form that is more appropriate for our prediction market setting. We

can recast (5) as pi = pi−1

(
πi

pi−1

)αi / [
pi−1

(
πi

pi−1

)αi

+ (1− pi−1)
(

1−πi

1−pi−1

)αi
]
. This shows

that, over the ith trading episode ∀i, the LMSR-CARA agent market environment is equivalent
to a Bayesian learner performing inference on the point estimate of the probability of the forecast
event X , starting with the common-knowledge prior Pr(X = 1) = pi−1, and having direct access
to πi (which corresponds to the “observation” for the inference problem), the likelihood function

associated with this observation being L (X = x|πi) ∝
∣∣∣ 1−x−πi

1−x−pi−1

∣∣∣αi

, x ∈ {0, 1}.
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Sequence of one-shot traders: If all n agents in the system have CARA utilities with potentially
different risk tolerances, and trade with LMSR myopically only once each in the order 1, . . . , n, then
the “final” market log-odds ratio after these n trades, on unfolding the recursion in (7), is given by
l(pn) = α̃n0 l(p0)+

∑n
i=1 α̃

n
i l(πi). This is a LogOP where α̃n0 =

∏n
i=1(1−αi) determines the inertia

of the market’s initial price, which diminishes as more and more traders interact with the market, and
α̃nj , j ≥ 1 quantifies the degree to which an individual trader impacts the final (aggregate) market
belief; α̃nj = αj

∏n
i=j+1 (1− αi), j = 1, . . . , n − 1, and α̃nn = αn. Interestingly, the weight of an

agent’s belief depends not only on her own risk tolerance but also on those of all agents succeeding
her in the trading sequence (lower weight for a more risk tolerant successor, ceteris paribus), and is
independent of her predecessors’ utility parameters. This is sensible since, by the design of a MSR,
trader i’s belief-dependent action influences the action of each of (rational) traders i + 1, i + 2, . . .
so that the action of each of these successors, in turn, has a role to play in determining the market
impact of trader i’s belief. In particular, if τj = τ > 0 ∀j ≥ 1, then the aggregation weights satisfy
the inequalities α̃nj+1/α̃

n
j = 1+ τ/b > 1 ∀j = 1, · · · , n−1, i.e. LMSR assigns progessively higher

weights to traders arriving later in the market’s lifetime when they all exhibit identical constant risk
aversion. This seems to be a reasonable aggregation principle in most scenarios wherein the amount
of information in the world improves over time. Moreover, in this situation, α̃n1/α̃

n
0 = τ/b which

indicates that the weight of the market’s baseline belief in the aggregate may be higher than those of
some of the trading agents if the market maker has a comparatively high loss parameter. This strong
effect of the trading sequence on the weights of agents’ beliefs is a significant difference between the
one-shot trader setting and the market equilibrium setting where each agent’s weight is independent
of the utility function parameters of her peers.

Convergence: If agents’ beliefs are themselves independent samples from the same distribution P
over [0, 1], i.e. πi ∼i.i.d. P ∀i, then by the sum laws of expectation and variance,

E [l(pn)] = α̃n0 l(p0) + (1− α̃n0 )Eπ∼P [l(π)] ; Var [l(pn)] = Varπ∼P [l(π)]
∑n
i=1(α̃

n
i )

2.

Hence, using an appropriate concentration inequality (Boucheron et al. [2004]) and the properties of
the α̃ni ’s, we can show that, as n increases, the market log-odds ratio l(pn) converges to Eπ∼P [l(π)]
with a high probability; this convergence guarantee does not require the agents to be Bayesian.

3.2 LMSR as LinOP for an atypical utility with decreasing absolute risk aversion

Theorem 3. If myopic agent i, having a subjective belief πi ∈ (0, 1) and a risk-averse utility func-
tion satisfying our criteria, trades with a LMSR market with parameter b and current instantaneous
price pi−1, then the market’s updated price pi is identical to a linear opinion pool between the
current price and the agent’s subjective belief, i.e.

pi = βiπi + (1− βi)pi−1, for some constant βi ∈ (0, 1), (8)

if and only if agent i’s utility function is of the form

ui(c) = ln(exp((c+Bi)/b)− 1), c ≥ −Bi, (9)

where Bi > 0 represents agent i’s budget, the aggregation weight being βi = 1− exp(−Bi/b).

The proof is in Section 2.2 of the Supplementary Material. The above atypical utility function has
its domain bounded below, and possesses a positive but strictly decreasing Arrow-Pratt absolute
risk aversion measure (Mas-Colell et al. [1995]) Ai(c) = −u′′i (c)/u′i(c) = 1

b(exp((c+Bi)/b)−1) for
any b, Bi > 0. It shares these characteristics with the well-known logarithmic utility function.
Moreover, although this function is approximately linear for large (positive) values of the wealth c,
it is approximately logarithmic when (c+Bi)� b.

Theorem 3 is somewhat surprising since it is logarithmic utility that has traditionally been found to
effect a LinOP in a market equilibrium (Pennock [1999], Beygelzimer et al. [2012], Storkey et al.
[2015], etc.). Of course in this paper, we are not in an equilibrium / convergence setting, but in light
of the above similarities between utility function (9) and logarithmic utility, it is perhaps not unrea-
sonable to ask whether the logarithmic utility-LinOP connection is still maintained approximately
for LMSR price evolution under some conditions. We have extensively explored this idea, both an-
alytically and by simulations, and have found that a small agent budget compared to the LMSR loss
parameter b seems to produce the desired result (see Section 3 of the Supplementary Material).
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Note that, unlike in Theorem 2, the equivalence here requires the agent utility function to depend on
the market maker’s loss parameter b (the scaling factor in the exponential). Since the microstructure
is assumed to be common knowledge, as in traditional MSR settings, the consideration of an agent
utility that takes into account the market’s pricing function is not unreasonable.

Since the domain of utility function (9) is bounded below, we can derive πi-independent bounds on
possible values of pi from Lemma 2: pmin

i = (1 − βi)pi−1, pmax
i = βi + (1 − βi)pi−1. Hence,

equation (8) becomes pi = πip
max
i + (1 − πi)pmin

i , i.e. the revised price is a linear interpolation
between the agent’s price bounds, her subjective probability itself acting as the interpolation factor.

Aggregation weight and budget constraint: Evidently, the aggregation weight of agent i’s be-
lief, βi = (1 − exp(−Bi/b)), is an increasing function of her budget normalized with respect to
the market’s loss parameter; it is, in a way, a measure of her relative risk tolerance. Thus, broad
characteristics analogous to the ones in Section 3.1 apply to these aggregation weights as well, with
the log-odds ratio replaced by the actual market price.

Bayesian interpretation: Under the mild technical assumption that agent i’s belief πi ∈ (0, 1) is
rational, and her budgetBi > 0 is such that βi ∈ (0, 1) is also rational, it is possible to obtain positive
integers ri, Ni and a positive rational numbermi−1 such that πi = ri/Ni and βi = Ni/(mi−1+Ni).
Then, we can rewrite the LinOP equation (8) as pi =

ri+pi−1mi−1

mi−1+Ni
, which is equivalent to the poste-

rior expectation of a beta-binomial Bayesian inference procedure described as follows: The forecast
event X is modeled as the (future) final flip of a biased coin with an unknown probability of heads.
In episode i, the principal (or aggregator) has a prior distribution BETA(µi−1, νi−1) over this prob-
ability, with µi−1 = pi−1mi−1, νi−1 = (1 − pi−1)mi−1. Thus, pi−1 is the prior mean and mi−1
the corresponding “pseudo-sample size” parameter. Agent i is non-Bayesian, and her subjective
probability πi, accessible to the aggregator, is her maximum likelihood estimate associated with the
(binomial) likelihood of observing ri heads out of a private sample of Ni independent flips of the
above coin (Ni is common knowledge). Note that mi−1, Ni are measures of certainty of the aggre-
gator and the trading agent respectively, and the latter’s normalized budgetBi/b = ln(1+Ni/mi−1)
becomes a measure of her certainty relative to the aggregator’s current state in this interpretation.

Sequence of one-shot traders and convergence: If all agents have utility (9) with potentially
different budgets, and trade with LMSR myopically once each, then the final aggregate market
price is given by pn = β̃n0 p0 +

∑n
i=1 β̃

n
i πi, which is a LinOP where β̃n0 =

∏n
i=1(1 − αi), β̃nj =

βj
∏n
i=j+1 (1− βi) ∀j = 1, . . . , n − 1, β̃nn = βn. Again, all intuitions about α̃nj from Section 3.1

carry over to β̃nj . Moreover, if πi ∼i.i.d. P ∀i, then we can proceed exactly as in Section 3.1 to show
that, as n increases, pn converges to Eπ∼P [π] with a high probability.

4 Discussion and future work

We have established the correspondence of a well-known securities market microstructure to a class
of traditional belief aggregation methods and, by extension, Bayesian inference procedures in two
important cases. An obvious next step is the identification of general conditions under which a MSR
and agent utility combination is equivalent to a given pooling operation. Another research direction
is extending our results to a sequence of agents who trade repeatedly until “convergence”, taking into
account issues such as the order in which agents trade when they return, the effects of the updated
wealth after the first trade for agents with budgets, etc.
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Stéphane Boucheron, Gábor Lugosi, and Olivier Bousquet. Concentration inequalities. In Advanced
Lectures on Machine Learning, pages 208–240. Springer, 2004.

Aseem Brahma, Mithun Chakraborty, Sanmay Das, Allen Lavoie, and Malik Magdon-Ismail. A
Bayesian market maker. In Proc. ACM Conference on Electronic Commerce, pages 215–232.
ACM, 2012.

Yiling Chen and David M. Pennock. A utility framework for bounded-loss market makers. In Proc.
UAI-07, 2007.

Yiling Chen and Jennifer Wortman Vaughan. A new understanding of prediction markets via no-
regret learning. In Proc. ACM Conference on Electronic Commerce, pages 189–198. ACM, 2010.

Dave Cliff and Janet Bruten. Zero is not enough: On the lower limit of agent intelligence for
continuous double auction markets. Technical report, HPL-97-141, Hewlett-Packard Laboratories
Bristol. 105, 1997.

Bo Cowgill and Eric Zitzewitz. Corporate prediction markets: Evidence from Google, Ford, and
Koch industries. Technical report, Working paper, 2013.

J. Doyne Farmer, Paolo Patelli, and Ilija I. Zovko. The predictive power of zero intelligence in
financial markets. PNAS, 102(6):2254–2259, 2005.

Rafael M. Frongillo, Nicolas D. Penna, and Mark D. Reid. Interpreting prediction markets: A
stochastic approach. In Proc. NIPS, pages 3266–3274, 2012.

Ashutosh Garg, T.S. Jayram, Shivakumar Vaithyanathan, and Huaiyu Zhu. Generalized opinion
pooling. In Proc. 8th Intl. Symp. on Artificial Intelligence and Mathematics. Citeseer, 2004.

Christian Genest and James V. Zidek. Combining probability distributions: A critique and an anno-
tated bibliography. Statistical Science, pages 114–135, 1986.

Tilmann Gneiting and Adrian E. Raftery. Strictly proper scoring rules, prediction, and estimation.
Journal of the American Statistical Association, 102(477):359–378, 2007.

Robin D. Hanson. Combinatorial information market design. Information Systems Frontiers, 5(1):
107–119, 2003.

Jinli Hu and Amos J. Storkey. Multi-period trading prediction markets with connections to machine
learning. Proc. ICML, 2014.

Krishnamurthy Iyer, Ramesh Johari, and Ciamac C. Moallemi. Information aggregation and alloca-
tive efficiency in smooth markets. Management Science, 60(10):2509–2524, 2014.

Andreu Mas-Colell, Michael D. Whinston, and Jerry R. Green. Microeconomic theory, volume 1.
New York: Oxford University Press, 1995.

Jono Millin, Krzysztof Geras, and Amos J. Storkey. Isoelastic agents and wealth updates in machine
learning markets. In Proc. ICML, pages 1815–1822, 2012.

Michael Ostrovsky. Information aggregation in dynamic markets with strategic traders. Economet-
rica, 80(6):2595–2647, 2012.

David M. Pennock. Aggregating probabilistic beliefs: Market mechanisms and graphical represen-
tations. PhD thesis, The University of Michigan, 1999.

David M. Pennock and Lirong Xia. Price updating in combinatorial prediction markets with
Bayesian networks. In Proc. UAI, pages 581–588, 2011.

Rajiv Sethi and Jennifer Wortman Vaughan. Belief aggregation with automated market makers.
Computational Economics, Forthcoming, 2015. Available at SSRN 2288670.

Amos J Storkey, Zhanxing Zhu, and Jinli Hu. Aggregation under bias: Rényi divergence aggregation
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