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Abstract

We consider the problem of minimizing a sum of n functions via projected itera-
tions onto a convex parameter set C C RP, where n > p > 1. In this regime,
algorithms which utilize sub-sampling techniques are known to be effective. In
this paper, we use sub-sampling techniques together with low-rank approximation
to design a new randomized batch algorithm which possesses comparable con-
vergence rate to Newton’s method, yet has much smaller per-iteration cost. The
proposed algorithm is robust in terms of starting point and step size, and enjoys
a composite convergence rate, namely, quadratic convergence at start and linear
convergence when the iterate is close to the minimizer. We develop its theoretical
analysis which also allows us to select near-optimal algorithm parameters. Our
theoretical results can be used to obtain convergence rates of previously proposed
sub-sampling based algorithms as well. We demonstrate how our results apply to
well-known machine learning problems. Lastly, we evaluate the performance of
our algorithm on several datasets under various scenarios.

1 Introduction

We focus on the following minimization problem,
1 n
inimi 0) = — (), 1.1
minimize f(6) n;f( ) (L.1)

where f; : RP — R. Most machine learning models can be expressed as above, where each function
fi corresponds to an observation. Examples include logistic regression, support vector machines,
neural networks and graphical models.

Many optimization algorithms have been developed to solve the above minimization problem
[Bis95, BV04, Nes04]. For a given convex set C C RP, we denote the Euclidean projection onto this
set by Pc. We consider the updates of the form

01 = Pe (0" = mQ'Vaf(0)) (1.2)

where 7; is the step size and Q! is a suitable scaling matrix that provides curvature information.
Updates of the form Eq. (1.2) have been extensively studied in the optimization literature (for sim-
plicity, we assume C = RP throughout the introduction). The case where Q! is equal to identity
matrix corresponds to Gradient Descent (GD) which, under smoothness assumptions, achieves lin-
ear convergence rate with O(np) per-iteration cost. More precisely, GD with ideal step size yields

68 — 6,2 < £§7GDHét — 0|2, where, as lim; o £ 6o = 1 — (A5/A]), and A} is the i-th largest
eigenvalue of the Hessian of f(6) at minimizer 6.,.
Second order methods such as Newton’s Method (NM) and Natural Gradient Descent (NGD)

[Ama98] can be recovered by taking Q? to be the inverse Hessian and the Fisher information evalu-
ated at the current iterate, respectively. Such methods may achieve quadratic convergence rates with



O(np? + p?) per-iteration cost [Bis95, Nes04]. In particular, for ¢ large enough, Newton’s method

yields [|0F1 — 6,2 < E2.xm|0" — 6.]3, and it is insensitive to the condition number of the Hessian.
However, when the number of samples grows large, computing Q? becomes extremely expensive.

A popular line of research tries to construct the matrix Q° in a way that the update is compu-
tationally feasible, yet still provides sufficient second order information. Such attempts resulted in
Quasi-Newton methods, in which only gradients and iterates are utilized, resulting in an efficient up-
date on Q!. A celebrated Quasi-Newton method is the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm which requires O(np + p?) per-iteration cost [Bis95, Nes04].

An alternative approach is to use sub-sampling techniques, where scaling matrix Q' is based on
randomly selected set of data points [Marl0, BCNN11, VP12, Erd15]. Sub-sampling is widely
used in the first order methods, but is not as well studied for approximating the scaling matrix. In
particular, theoretical guarantees are still missing.

A key challenge is that the sub-sampled Hessian is close to the actual Hessian along the directions
corresponding to large eigenvalues (large curvature directions in f(#)), but is a poor approximation
in the directions corresponding to small eigenvalues (flatter directions in f(#)). In order to overcome
this problem, we use low-rank approximation. More precisely, we treat all the eigenvalues below
the r-th as if they were equal to the (r + 1)-th. This yields the desired stability with respect to the
sub-sample: we call our algorithm NewSamp. In this paper, we establish the following:

1. NewSamp has a composite convergence rate: quadratic at start and linear near the mini-
mizer, as illustrated in Figure 1. Formally, we prove a bound of the form ||0AtJrl — 0.2 <
41|16 — 6, ||2 + £L]|6" — 6. |3 with coefficient that are explicitly given (and are computable
from data).

2. The asymptiotic behavior of the linear convergence coefficient is lim; oo &8 = 1 —

(Ay/Ar41) + 9, for 6 small. The condition number (A} /Ay) which controls the conver-

gence of GD, has been replaced by the milder (A;,;/A;). For datasets with strong spectral

features, this can be a large improvement, as shown in Figure 1.

The above results are achived without tuning the step-size, in particular, by setting 1, = 1.

The complexity per iteration of NewSamp is O(np + |S|p?) with | S| the sample size.

. Our theoretical results can be used to obtain convergence rates of previously proposed sub-

sampling algorithms.

Db

The rest of the paper is organized as follows: Section 1.1 surveys the related work. In Section 2,
we describe the proposed algorithm and provide the intuition behind it. Next, we present our theo-
retical results in Section 3, i.e., convergence rates corresponding to different sub-sampling schemes,
followed by a discussion on how to choose the algorithm parameters. Two applications of the al-
gorithm are discussed in Section 4. We compare our algorithm with several existing methods on
various datasets in Section 5. Finally, in Section 6, we conclude with a brief discussion.

1.1 Related Work

Even a synthetic review of optimization algorithms for large-scale machine learning would go be-
yond the page limits of this paper. Here, we emphasize that the method of choice depends crucially
on the amount of data to be used, and their dimensionality (i.e., respectively, on the parameters n
and p). In this paper, we focus on a regime in which n and p are large but not so large as to make
gradient computations (of order np) and matrix manipulations (of order p®) prohibitive.

Online algorithms are the option of choice for very large n since the computation per update is
independent of n. In the case of Stochastic Gradient Descent (SGD), the descent direction is formed
by a randomly selected gradient. Improvements to SGD have been developed by incorporating the
previous gradient directions in the current update equation [SRB13, Bot10, DHS11].

Batch algorithms, on the other hand, can achieve faster convergence and exploit second order infor-
mation. They are competitive for intermediate n. Several methods in this category aim at quadratic,
or at least super-linear convergence rates. In particular, Quasi-Newton methods have proven effec-
tive [Bis95, Nes04]. Another approach towards the same goal is to utilize sub-sampling to form an
approximate Hessian [Mar10, BCNN11, VP12, Erd15]. If the sub-sampled Hessian is close to the
true Hessian, these methods can approach NM in terms of convergence rate, nevertheless, they enjoy



Algorithm 1 NewSamp

Input: 69,7, ¢, {n; }:,t = 0.
1. Define: P¢(6) = argming || — 0'||2 is the Euclidean projection onto C,
[Ug, Ag] = TruncatedSVDy (H) is rank-k truncated SVD of H with A;; = A,.
2. while [|§t+1 — ||, < e do
Sub-sample a set of indices S; C [n].

LetHs, = g7 Xics, V2fi(0Y), and [U,;1, A, 1] = TruncatedSVD,(Hg,),
Q' =X 1L + U, (A = A LTL) UT
01 = Pe (0" = Qo (8),
tt+1.
3. end while

Output: §°.

much smaller complexity per update. No convergence rate analysis is available for these methods:
this analysis is the main contribution of our paper. To the best of our knowledge, the best result in
this direction is proven in [BCNN11] that estabilishes asymptotic convergence without quantitative
bounds (exploiting general theory from [GNS09]).

On the further improvements of the sub-sampling algorithms, a common approach is to use Conju-
gate Gradient (CG) methods and/or Krylov sub-spaces [Mar10, BCNN11, VP12]. Lastly, there are
various hybrid algorithms that combine two or more techniques to increase the performance. Ex-
amples include, sub-sampling and Quasi-Newton [BHNS14], SGD and GD [FS12], NGD and NM
[LRF10], NGD and low-rank approximation [LRMBOS].

2 NewSamp : Newton-Sampling method via rank thresholding

In the regime we consider, n > p, there are two main drawbacks associated with the classical
second order methods such as Newton’s method. The dominant issue is the computation of the Hes-
sian matrix, which requires O(npz) operations, and the other issue is inverting the Hessian, which
requires O(p?) computation. Sub-sampling is an effective and efficient way of tackling the first is-
sue. Recent empirical studies show that sub-sampling the Hessian provides significant improvement
in terms of computational cost, yet preserves the fast convergence rate of second order methods
[Mar10, VP12]. If a uniform sub-sample is used, the sub-sampled Hessian will be a random matrix
with expected value at the true Hessian, which can be considered as a sample estimator to the mean.
Recent advances in statistics have shown that the performance of various estimators can be signifi-
cantly improved by simple procedures such as shrinkage and/or thresholding [CCS10, DGJ13]. To
this extent, we use low-rank approximation as the important second order information is generally
contained in the largest few eigenvalues/vectors of the Hessian.

NewSamp is presented as Algorithm 1. At iteration step ¢, the sub-sampled set of indices, its size and
the corresponding sub-sampled Hessian is denoted by S;, |S¢| and Hg, , respectively. Assuming that
the functions f;’s are convex, eigenvalues of the symmetric matrix Hg, are non-negative. Therefore,
SVD and eigenvalue decomposition coincide. The operation TruncatedSVD(Hg,) = [Ug, Ag]
is the best rank-%k approximation, i.e., takes Hg, as input and returns the largest k eigenvalues
A}, € RF*E with the corresponding k eigenvectors U, € RP*F. This procedure requires O(kp?)
computation [HMT11]. Operator P¢ projects the current iterate to the feasible set C using Euclidean
projection. We assume that this projection can be done efficiently. To construct the curvature matrix
[Qf]~1, instead of using the basic rank-r approximation, we fill its O eigenvalues with the (r + 1)-th
eigenvalue of the sub-sampled Hessian which is the largest eigenvalue below the threshold. If we
compute a truncated SVD with k = r 4+ 1 and A;; = )\;, the described operation results in

Q' =)L +U, (A = ALI) U 2.1)
which is simply the sum of a scaled identity matrix and a rank-r matrix. Note that the low-rank
approximation that is suggested to improve the curvature estimation has been further utilized to
reduce the cost of computing the inverse matrix. Final per-iteration cost of NewSamp will be
O (np+ (|S¢| +7)p*) = O (np+|S:[p?). NewSamp takes the parameters {r;,[S;|}; and 7 as
inputs. We discuss in Section 3.4, how to choose them optimally, based on the theory in Section 3.
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Figure 1: Left plot demonstrates convergence rate of NewSamp , which starts with a quadratic rate and transi-
tions into linear convergence near the true minimizer. The right plot shows the effect of eigenvalue thresholding
on the convergence coefficients up to a scaling constant. z-axis shows the number of kept eigenvalues. Plots
are obtained using Covertype dataset.

By the construction of Q!, NewSamp will always be a descent algorithm. It enjoys a quadratic
convergence rate at start which transitions into a linear rate in the neighborhood of the minimizer.
This behavior can be observed in Figure 1. The left plot in Figure 1 shows the convergence behavior
of NewSamp over different sub-sample sizes. We observe that large sub-samples result in better
convergence rates as expected. As the sub-sample size increases, slope of the linear phase decreases,
getting closer to that of quadratic phase. We will explain this phenomenon in Section 3, by Theorems
3.2 and 3.3. The right plot in Figure 1 demonstrates how the coefficients of two phases depend on
the thresholded rank. Coefficient of the quadratic phase increases with the rank threshold, whereas
for the linear phase, relation is reversed.

3 Theoretical results

In this section, we provide the convergence analysis of NewSamp based on two different sub-
sampling schemes:

S1: Independent sub-sampling: At each iteration ¢, S; is uniformly sampled from [n] =
{1,2,...,n}, independently from the sets {5 } <, with or without replacement.

S2: Sequentially dependent sub-sampling: At each iteration ¢, S; is sampled from [n], based
on a distribution which might depend on the previous sets {S; },<¢, but not on any ran-
domness in the data.

The first sub-sampling scheme is simple and commonly used in optimization. One drawback is
that the sub-sampled set at the current iteration is independent of the previous sub-samples, hence
does not consider which of the samples were previously used to form the approximate curvature
information. In order to prevent cycles and obtain better performance near the optimum, one might
want to increase the sample size as the iteration advances [Marl0], including previously unused
samples. This process results in a sequence of dependent sub-samples which falls into the sub-
sampling scheme S2. In our theoretical analysis, we make the following assumptions:

Assumption 1 (Lipschitz continuity). For any subset S C [n], 3M|g| depending on the size of S,
such that V0, 6" € C,
[Hs(6) — Hs(0) ]|, < Mys) |6 = 6']|2.
Assumption 2 (Bounded Hessian). Vi € [n], V3 f;(6) is upper bounded by a constant K, i.e.,
wax [V3£(0)], < K.

3.1 Independent sub-sampling

In this section, we assume that S; C [n] is sampled according to the sub-sampling scheme S1. In
fact, many stochastic algorithms assume that S; is a uniform subset of [n], because in this case the
sub-sampled Hessian is an unbiased estimator of the full Hessian. That is, V € C, E [Hg, (0)] =
H,,(0), where the expectation is over the randomness in .S;. We next show that for any scaling
matrix Q° that is formed by the sub-samples S, iterations of the form Eq. (1.2) will have a composite
convergence rate, i.e., combination of a linear and a quadratic phases.



Lemma 3.1. Assume that the parameter set C is convex and Sy C [n] is based on sub-sampling
scheme S1 and sufficiently large. Further, let the Assumptions 1 and 2 hold and 0, € C. Then, for an
absolute constant ¢ > 0, with probability at least 1 — 2/p, the updates of the form Eq. (1.2) satisfy

167" = 0,12 < E1110" — O]l + 51107 — 013,
for coefficients ¢ and & defined as

log(p)
|ISt|

Remark 1. If the initial point 69 is close to 0., the algorithm will start with a quadratic rate of
convergence which will transform into linear rate later in the close neighborhood of the optimum.

R M,
&= HI - n:Q"Hg, (0) &= =5~ Q-

) +necK HQtHQ

The above lemma holds for any matrix Q. In particular, if we choose Qf = Hgtl, we obtain a

bound for the simple sub-sampled Hessian method. In this case, the coefficients ¢! and &5 depend
on [|Q*||2 = 1/A} where A} is the smallest eigenvalue of the sub-sampled Hessian. Note that A}
can be arbitrarily small which might blow up both of the coefficients. In the following, we will see
how NewSamp remedies this issue.

Theorem 3.2. Let the assumptions in Lemma 3.1 hold. Denote by \., the i-th eigenvalue of Hg, (ét)
where 0% is given by NewSamp at iteration step t. If the step size satisfies

_ .1
< 1+At/m1’ 3.1)

then we have, with probability at least 1 — 2/p,
16+ = 6,12 < €1110" — 8. l2 + €5]16° — 6|13,

for an absolute constant ¢ > 0, for the coefficients ¢ and €5 are defined as

AL cK  [log(p) M,
g=1-n->+n & =m—.
YIRS UNR A o,

NewSamp has a composite convergence rate where ¢ and &£ are the coefficients of the linear and the
quadratic terms, respectively (See the right plot in Figure 1). We observe that the sub-sampling size
has a significant effect on the linear term, whereas the quadratic term is governed by the Lipschitz
constant. We emphasize that the case 1, = 1 is feasible for the conditions of Theorem 3.2.

3.2 Sequentially dependent sub-sampling

Here, we assume that the sub-sampling scheme S2 is used to generate {S;},>1. Distribution of
sub-sampled sets may depend on each other, but not on any randomness in the dataset. Examples
include fixed sub-samples as well as sub-samples of increasing size, sequentially covering unused
data. In addition to Assumptions 1-2, we assume the following.

Assumption 3 (i.i.d. observations). Lef z1, 23, ..., 2, € Z be i.i.d. observations from a distribution
D. For a fixed 6 € RP and Vi € [n], we assume that the Sunctions { f;}7_ satisfy f;(0) = ©(z;,0),
for some function ¢ : 7. x RP — R,

Most statistical learning algorithms can be formulated as above, e.g., in classification problems, one
has access to i.i.d. samples {(y;,2;)}?; where y; and z; denote the class label and the covariate,
and ¢ measures the classification error (See Section 4 for examples). For sub-sampling scheme S2,
an analogue of Lemma 3.1 is stated in Appendix as Lemma B.1, which leads to the following result.
Theorem 3.3. Assume that the parameter set C is convex and Sy C [n] is based on the sub-sampling
scheme S2. Further, let the Assumptions 1, 2 and 3 hold, almost surely. Conditioned on the event
E = {0, € C}, if the step size satisfies Eq. 3.1, then for gt given by NewSamp at iteration t, with
probability at least 1 — cg e P for cg = ¢/P(E), we have

107 = O.]l2 < €1116" — O]l + €5116" — 6.[13,
for the coefficients £ and £ defined as

d1am(C)2 (M, + Ms,))* |5] M,
gt =1- Tt + n \/ ‘ )7 Et: Mot
! *)‘i-ﬁ—l f r+1 | K 2 t2)‘£+1

where c,c > 0 are absolute constants and )\f denotes the i-th eigenvalue of Hg, (ét)



Compared to the Theorem 3.2, we observe that the coefficient of the quadratic term does not change.
This is due to Assumption 1. However, the bound on the linear term is worse, since we use the
uniform bound over the convex parameter set C.

3.3 Dependence of coefficients on ¢ and convergence guarantees

The coefficients & and &4 depend on the iteration step which is an undesirable aspect of the above
results. However, these constants can be well approximated by their analogues £ and &5 evaluated
at the optimum which are defined by simply replacing /\§- with A in their definition, where the latter
is the j-th eigenvalue of full-Hessian at 6,. For the sake of simplicity, we only consider the case
where the functions 8 — f;(6) are quadratic.

Theorem 3.4. Assume that the functions f;(0) are quadratic, Sy is based on scheme SI and 1, = 1.
Let the full Hessian at 0, be lower bounded by k. Then for sufficiently large |S:| and absolute

constants c1, ca, with probability 1 — 2/p
_ ek /iog@)/[S]
 k(k = c2K \/log(p)/IS:])

Theorem 3.4 implies that, when the sub-sampling size is sufficiently large, & will concentrate
around ;. Generalizing the above theorem to non-quadratic functions is straightforward, in which
case, one would get additional terms involving the difference [|0* — 6, 2. In the case of scheme S2,
if one uses fixed sub-samples, then the coefficient £! does not depend on ¢. The following corollary
gives a sufficient condition for convergence. A detailed discussion on the number of iterations until
convergence and further local convergence properties can be found in [Erd15, EM15].

& — &

Corollary 3.5. Assume that & and &4 are well-approximated by & and &5 with an error bound of
S, ie, & < & + 0 fori = 1,2, as in Theorem 3.4. For the initial point 6°, a sufficient condition for
convergence is N

1-¢& -9

40
16° — 6.2 < & 1o
3.4 Choosing the algorithm parameters
Step size: Let v = O(log(p)/|St|). We suggest the following step size for NewSamp at iteration ¢,
B 2
LA/
Note that 7;(0) is the upper bound in Theorems 3.2 and 3.3 and it minimizes the first component
of 4. The other terms in &} and & linearly depend on 7. To compensate for that, we shrink 7;(0)
towards 1. Contrary to most algorithms, optimal step size of NewSamp is larger than 1. A rigorous
derivation of Eq. 3.2 can be found in [EM15].

e (7) (3.2)

Sample size: By Theorem 3.2, a sub-sample of size O((K/)%)?log(p)) should be sufficient to ob-

tain a small coefficient for the linear phase. Also note that sub-sample size |S;| scales quadratically
with the condition number.

Rank threshold: For a full-Hessian with effective rank R (trace divided by the largest eigenvalue), it
suffices to use O(Rlog(p)) samples [Ver10]. Effective rank is upper bounded by the dimension p.
Hence, one can use plog(p) samples to approximate the full-Hessian and choose a rank threshold
which retains the important curvature information.

4 Examples
4.1 Generalized Linear Models (GLM)
Maximum likelihood estimation in a GLM setting is equivalent to minimizing the negative log-
likelihood £(6), 1
minimize f(0) = — Y [®((2:,0)) — y;(2:,0)] , 4.1
n

gecC
€ i=1

n

where ® is the cumulant generating function, x; € RP denote the rows of design matrix X € R"*?,
and 6 € RP is the coefficient vector. Here, (x, ) denotes the inner product between the vectors x,
6. The function ® defines the type of GLM, i.e., ®(z) = 22 gives ordinary least squares (OLS) and
®(z) = log(1 + e*) gives logistic regression (LR). Using the results from Section 3, we perform a
convergence analysis of our algorithm on a GLM problem.



Corollary 4.1. Let S; C [n] be a uniform sub-sample, and C = R? be the parameter set. Assume
that the second derivative of the cumulant generating function, ®2) is bounded by 1, and it is
Lipschitz continuous with Lipschitz constant L. Further, assume that the covariates are contained

in a ball of radius /Ry, i.e. maxX;e[y) ||2i]|2 < /Ry Then, for 6! given by NewSamp with constant
step size n; = 1 at iteration t, with probability at least 1 — 2/p, we have

167 — 0.2 < 1116 — 0.2 + E5116° — 6.3,

for constants £ and &b defined as

(| M cRe [log(p) . LRY?
51 - /\t + )\t S ’ 52 - 2)\t ’
r+1 r+1 ‘ t| r+1

where ¢ > 0 is an absolute constant and \. is the ith eigenvalue of Hg, (ét)

4.2 Support Vector Machines (SVM)

A linear SVM provides a separating hyperplane which maximizes the margin, i.e., the distance
between the hyperplane and the support vectors. Although the vast majority of the literature focuses
on the dual problem [SS02], SVMs can be trained using the primal as well. Since the dual problem
does not scale well with the number of data points (some approaches get O(n3) complexity) the
primal might be better-suited for optimization of linear SVMs [Cha07]. The primal problem for the
linear SVM can be written as

o Lo 1O
ml%lel}’:llle f() = §||9H2 + 5();4(%, (0,2:)) 4.2)

where (y;, z;) denote the data samples, 0 defines the separating hyperplane, C' > 0 and ¢ could
be any loss function. The most commonly used loss functions include Hinge-p loss, Huber loss
and their smoothed versions [Cha07]. Smoothing or approximating such losses with more stable
functions is sometimes crucial in optimization. In the case of NewSamp which requires the loss
function to be twice differentiable (almost everywhere), we suggest either smoothed Huber loss, or
Hinge-2 loss [Cha07]. In the case of Hinge-2 loss, i.e., £(y, (8, 2)) = max{0,1 — y(0,z)}>, by
combining the offset and the normal vector of the hyperplane into a single parameter vector 6, and
denoting by SV the set of indices of all the support vectors at iteration ¢, we may write the Hessian,

2 _ 1 T I R t
V2f(0) = W{H oie%; ] } where SV, = {i:y;(0',2;) < 1).

When |SV;| is large, the problem falls into our setup and can be solved efficiently using NewSamp.
Note that unlike the GLM setting, Lipschitz condition of our Theorems do not apply here. However,
we empirically demonstrate that NewSamp works regardless of such assumptions.

S Experiments

In this section, we validate the performance of NewSamp through numerical studies. We experi-
mented on two optimization problems, namely, Logistic Regression (LR) and SVM. LR minimizes
Eq. 4.1 for the logistic function, whereas SVM minimizes Eq. 4.2 for the Hinge-2 loss. In the
following, we briefly describe the algorithms that are used in the experiments:

1. Gradient Descent (GD), at each iteration, takes a step proportional to negative of the full
gradient evaluated at the current iterate. Under certain regularity conditions, GD exhibits a
linear convergence rate.

2. Accelerated Gradient Descent (AGD) is proposed by Nesterov [Nes83], which improves
over the gradient descent by using a momentum term.

3. Newton’s Method (NM) achieves a quadratic convergence rate by utilizing the inverse Hes-
sian evaluated at the current iterate.

4. Broyden-Fletcher-Goldfarb-Shanno (BFGS) is the most popular and stable Quasi-Newton
method. Q? is formed by accumulating the information from iterates and gradients.

5. Limited Memory BFGS (L-BFGS) is a variant of BFGS, which uses only the recent iterates
and gradients to construct Qf, providing improvement in terms of memory usage.

6. Stochastic Gradient Descent (SGD) is a simplified version of GD where, at each iteration,
arandomly selected gradient is used. We follow the guidelines of [Bot10] for the step size.
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Figure 2: Performance of several algorithms on different datasets. NewSamp is represented with red color .

7. Adaptive Gradient Scaling (AdaGrad) uses an adaptive learning rate based on the previous
gradients. AdaGrad significantly improves the performance and stability of SGD [DHS11].

For batch algorithms, we used constant step size and for all the algorithms, the step size that provides
the fastest convergence is chosen. For stochastic algorithms, we optimized over the parameters that
define the step size. Parameters of NewSamp are selected following the guidelines in Section 3.4.

We experimented over various datasets that are given in Table 1. Each dataset consists of a design
matrix X € R™*P and the corresponding observations (classes) y € R™. Synthetic data is generated
through a multivariate Gaussian distribution. As a methodological choice, we selected moderate val-
ues of p, for which Newton’s method can still be implemented, and nevertheless we can demonstrate
an improvement. For larger values of p, comparison is even more favorable to our approach.

The effects of sub-sampling size |S;| and rank threshold are demonstrated in Figure 1. A thorough
comparison of the aforementioned optimization techniques is presented in Figure 2. In the case of
LR, we observe that stochastic methods enjoy fast convergence at start, but slows down after several
epochs. The algorithm that comes close to NewSamp in terms of performance is BFGS. In the case
of SVM, NM is the closest algorithm to NewSamp . Note that the global convergence of BFGS is not
better than that of GD [Nes04]. The condition for super-linear rate is y , [0 — 6. |2 < oo for which,
an initial point close to the optimum is required [DM77]. This condition can be rarely satisfied
in practice, which also affects the performance of other second order methods. For NewSamp,
even though rank thresholding provides a level of robustness, we found that initial point is still an
important factor. Details about Figure 2 and additional experiments can be found in Appendix C.

Dataset n p r Reference
CT slices 53500 | 386 | 60 | [GKST1I, Licl3]
Covertype || 581012 | 54 | 20 [BD99, Licl3]
MSD 515345 | 90 | 60 [MEWL, Licl3]
Synthetic 500000 | 300 | 3 —

Table 1: Datasets used in the experiments.

6 Conclusion

In this paper, we proposed a sub-sampling based second order method utilizing low-rank Hessian
estimation. The proposed method has the target regime n > p and has O (np + 5] p2) complexity
per-iteration. We showed that the convergence rate of NewSamp is composite for two widely used
sub-sampling schemes, i.e., starts as quadratic convergence and transforms to linear convergence
near the optimum. Convergence behavior under other sub-sampling schemes is an interesting line
of research. Numerical experiments demonstrate the performance of the proposed algorithm which
we compared to the classical optimization methods.
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