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Abstract

We study the restless bandit problem where arms are associated with stationary
(p-mixing processes and where rewards are therefore dependent: the question that
arises from this setting is that of carefully recovering some independence by ‘ig-
noring’ the values of some rewards. As we shall see, the bandit problem we tackle
requires us to address the exploration/exploitation/independence trade-off, which
we do by considering the idea of a waiting arm in the new Remix—-UCB algo-
rithm, a generalization of Improved-UCB for the problem at hand, that we
introduce. We provide a regret analysis for this bandit strategy; two noticeable
features of Remix—UCB are that i) it reduces to the regular Improved-UCB
when the ¢-mixing coefficients are all 0, i.e. when the i.i.d scenario is recovered,
and ii) when ¢(n) = O(n~%), it is able to ensure a controlled regret of order

e) (A,(ka&)/ *log!/® T) , where A, encodes the distance between the best arm

and the best suboptimal arm, even in the case when o < 1, i.e. the case when the
(p-mixing coefficients are not summable.

1 Introduction

Bandit with mixing arms. The bandit problem consists in an agent who has to choose at each step
between K arms. A stochastic process is associated to each arm, and pulling an arm produces a
reward which is the realization of the corresponding stochastic process. The objective of the agent
is to maximize its long term reward. In the abundant bandit literature, it is often assumed that the
stochastic process associated to each arm is a sequence of independently and identically distributed
(i.i.d) random variables (see, e.g. [12]). In that case, the challenge the agent has to address is the
well-known exploration/exploitation problem: she has to simultaneously make sure that she collects
information from all arms to try to identify the most rewarding ones—this is exploration—and to
maximize the rewards along the sequence of pulls she performs—this is exploitation. Many algo-
rithms have been proposed to solve this trade-off between exploration and exploitation [2} 3} 16} [12]].
We propose to go a step further than the i.i.d setting and to work in the situation where the process
associated with each arm is a stationary -mixing process: the rewards are thus dependent from one
another, with a strength of dependence that weakens over time. From an application point of view,
this is a reasonable dependence structure: if a user clicks on some ad (a typical use of bandit algo-
rithms) at some point in time, it is very likely that her choice will have an influence on what she will
click in the close future, while it may have a (lot) weaker impact on what ad she will choose to view
in a more distant future. As it shall appear in the sequel, working with such dependent observations
poses the question of how informative are some of the rewards with respect to the value of an arm
since, because of the dependencies and the strong correlation between close-by (in time) rewards,
they might not reflect the true ‘value’ of the arms. However, as the dependencies weaken over time,
some kind of independence might be recovered if some rewards are ignored, in some sense. This



actually requires us to deal with a new tradeoff, the exploration/exploitation/independence tradeoff,
where the usual exploration/exploitation compromise has to be balanced with the need for some
independence. Dealing with this new tradeoff is the pivotal feature of our work.

Non i.i.d bandit. A closely related setup that addresses the bandit problem with dependent rewards
is when they are distributed according to Markov processes, such as Markov chains and Markov
decision process (MDP) [16l [22]], where the dependences between rewards are of bounded range,
which is what distinguishes those works with ours. Contributions in this area study two settings:
the rested case, where the process attached to an arm evolves only when the arm is pulled, and the
restless case, where all processes simultaneously evolve at each time step. In the present work, we
will focus on the restless setting. The adversarial bandit setup (see e.g. [l 4} [19]) can be seen as
a non i.i.d setup as the rewards chosen by the adversary might depend on the agent’s past actions.
However, even if the algorithms developed for this framework can be used in our setting, they might
perform very poorly as they are not designed to take advantage of any mixing structure. Finally, we
may also mention the bandit scenario where the dependencies are between the arms instead being
within-arm time-dependent (e.g., [[17]); this is orthogonal to what we propose to study here.

Mixing Processes. Mixing process theory is hardly new. One of the seminal works on the study of
mixing processes was done by Bernstein [5] who introduced the well-known block method, central
to prove results on mixing processes. In statistical machine learning, one of the first papers on
estimators for mixing processes is [23]. More recent works include the contributions of Mohri and
Rostamizadeh [[14, [15]], which address the problem of stability bound and Rademacher stability for
- and [-mixing processes; Kulkarni et al [11] establish the consistency of regularized boosting
algorithms learning from F-mixing processes, Steinwart et al [21] prove the consistency of support
vector machines learning from a-mixing processes and Steinwart and Christmann [20] establish a
general oracle inequality for generic regularized learning algorithms and a-mixing observations. As
far as we know, it is the first time that mixing processes are studied in a multi-arm bandit framework.

Contribution. Our main result states that a strategy based on the improved Upper Confidence
Bound (or Improved-UCB, in the sequel) proposed by Auer and Ortner [2], allows us to achieve a
controlled regret in the restless mixing scenario. Namely, our algorithm, Remix—-UCB (which stands

for Restless Mixing UCB), achieves a regret of the form G)(Aia_Q)/ « logl/ *T), where A, encodes
the distance between the best arm and the best suboptimal arm, « encodes the rate of decrease
of the ¢ coefficients, i.e. p(n) = O(n®), and O is a O-like notation (that neglects logarithmic
dependencies, see Section [2.2). It is worth noticing that all the results we give hold for o < 1, i.e.
when the dependencies are no longer summable. When the mixing coefficients at hand are all zero,
i.e. in the i.i.d case, the regret of our algorithm naturally reduces to the classical Improved-UCB.
Remix—UCB uses the assumption about known (convergence rates of) ¢-mixing coefficients, which
is a classical standpoint that has been used by most of the papers studying the behavior of machine
learning algorithms in the case of mixing processes (see e.g. 9,14} 15,18} 121} 23]]). The estimation
of the mixing coefficients poses a learning problem on its own (see e.g. [L3] for the estimation of
(B-mixing coefficients) and is beyond the scope of this paper.

Structure of the paper. Section 2] defines our setup: -mixing processes are recalled, together with
a relevant concentration inequality for such processes [[L0, [15]; the notion of regret we focus on is
given. Section [3|is devoted to the presentation of our algorithm, Remix—UCB, and to the statement
of our main result regarding its regret. Finally, Section 4] discusses the obtained results.

2 Overview of the Problem

2.1 Concentration of Stationary ¢-mixing Processes

Let (2, F7,P) be a probability space. We recall the notions of stationarity and (p-mixing processes.

Definition 1 (Stationarity). A sequence of random variables X = {X;}1cy is stationary if, for any
t,m>0,s>0 (X¢y..., Xepm) and (Xigs, . - ., Xe4m+s) are identically distributed.

Definition 2 (o-mixing process). Let X = {X}}iez be a stationary sequence of random variables.
For any i,j € Z U {—o00,+00}, let o] denote the o-algebra generated by {X, : i <t < j}. Then,



Sor any positive n, the p-mixing coefficient p(n) of the stochastic process X is defined as

¢(n) = sup |P[A|B] —P[A]]. (1)

t,Acof> Beot _P(B)>0

X is p-mixing if ¢(n) — 0. X is algebraically mixing if 3pg > 0, > 0 so that p(n) = pon=“.

As we recall later, concentration inequalities are the pivotal tools to devise multi-armed bandits
strategy. Hoeffding’s inequality [7, 8] is, for instance, at the root of a number of UCB-based methods.
This inequality is yet devoted to characterize the deviation of the sum of independent variables from
its expected value and cannot be used in the framework we are investigating. In the case of stationary
(p-mixing distributions, there however is the following concentration inequality, due to [[10]] and [[15]].

Theorem 1 ([10} [15]). Let v, : U™ — R be a function defined over a countable space U, and X
be a stationary p-mixing process. If V., is {-Lipschitz wrt the Hamming metric for some { > 0, then

2
e > 0, P [, (X) ~ B (0] > o] < 2030 | -5 . @

where Ay, =142 (1) and ¥, (X) = (X0, - -, Xim)-

Here, we do not have to use this concentration inequality in its full generality as we will restrict
to the situation where ¢y, is the mean of its arguments, i.. ¥ (X, ..., Xy,) = =57 X, ,
which is obviously 1/m-Lipschitz provided that the X;’s have range [0; 1]—which will be one of
our working assumptions. If, with a slight abuse of notation, A, is now used to denote

m

Am(t) =1+2)  o(ti — t), 3)

=2
for an increasing sequence t = (¢;)™, of times steps, then, the concentration inequality that will
serve our purpose is given in the next corollary.

Corollary 1 ([10,!15]). Let X be a stationary p mixing process. The following holds: for all e > 0
and all m-sequence t = (t;)1", witht; < ... <tp,

%thi —EX;

=1

2

> €:| < 2exp {f%} . 4)

]P){Xt}tet |:

(Thanks to the stationarity of { X, },c7 and the linearity of the expectation, E>""" | X;, = mEX,,.)
Remark 3. According to Kontorovitch’s paper [I0], the function A,, should be
max; {1 +23 7" it — tj)} . However, when the time lag between two consecutive

time steps t; and t; 11 is non-decreasing, which will be imposed by the Remix—UCB algorithm
(see below), and the mixing coefficients are decreasing, which is a natural assumption that simply
says that the amount of dependence between Xy and Xy reduces when |t — t'| increases, then A,
reduces to the more compact expression given by (3).

Note that when there is independence, then ¢(7) = 0, for all 7, A,, = 1 and, as a consequence,
Equation (@) reduces to Hoeffing’s inequality: the precise values of the time instants in ¢ do not
impact the value of the bound and the length m of ¢ is the central parameter that matters. This
is in clear contrast with what happens in the dependent setting, where the bound on the deviation
of Z:L X, /m from its expectation directly depends on the timepoints ¢; through A,,. For two
sequences t = (¢;)™, and t' = (t,)™, of m timepoints, Y .-, X, /m may be more sharply con-
centrated around EX; than )", Xy /m provided A,,, (t) < A,,(¢'), which can be a consequence
of a more favorable spacing of the points in ¢ than in ¢'.

2.2 Problem: Minimize the Expected Regret

We may now define the multi-armed bandit problem we consider and the regret we want to control.

Restless p-mixing Bandits. We study the problem of sampling from a K -armed ¢-mixing bandit.
In our setting, pulling arm k at time ¢ provides the agent with a realization of the random variable X,



where the family { X/}, _ satisfies the following assumptions: (A) Vk, (X[);ez is a stationary -

mixing process with decreasing mixing coefficients o, and (B) Vk, XV takes its values in a discrete
finite set (by stationarity, the same holds for any X[, with ¢ # 1) included in [0; 1].

Regret The regret we want to bound is the classical pseudo-regret which, after 7" pulls, is given by
T

R(T)=Tyu" —E Z o, %)
t=1

where p, = ]EX{“, w* = maxy g, and I; is the index of the arm selected at time ¢t. We want to
devise a strategy is capable to select, at each time ¢, the arm I; so that the obtained regret is minimal.

Bottleneck. The setting we assume entails the possibility of long-term dependencies between the
rewards output by the arms. Hence, as evoked earlier, in order to choose which arm to pull, the agent
is forced to address the exploration/exploitation/independence trade-off where independence may
be partially recovered by taking advantage of the observation regarding spacings of timepoints that
induce sharper concentration of the empirical rewards than others. As emphasized later, targetting
good spacing in the bandit framework translates into the idea of ignoring the rewards provided by
some pulls to compute the empirical averages: this idea is carried by the concept of a waiting arm,
which is formally defined later on. The questions raised by the waiting arm that we address with
the Remix—-UCB algorithm are a) how often should the waiting arm be pulled so the concentration
of the empirical means is high enough to be relied on (so the usual exploration/exploitation tradeoff
can be tackled) and b) from the regret standpoint, how hindering is it to pull the waiting arm?

Oand © analysis. In the analysis of Remix—UCB that we provide, just as is the case for most, if not
all, analyses that exist for bandit algorithms, we will focus in the order of the regret and we will not
be concerned about the precise constants involved in the derived results. We will therefore naturally

heavily rely on the usual O notation and on the © notation, that bears the following meaning.

Definition 4 (é notation). For any two functions f, g from R to R, we say that f = @(g) if there
exist o, 3 > 0 50 that | f|log® | f| < |gl, and |g|log® |g] < |f|.

3 Remix-UCB: a UCB Strategy for Restless Mixing Bandits

This section contains our main contributions: the Remix—-UCB algorithm. From now on, we use
a Vb (resp. a A b) for the maximum (resp. minimum) of two elements a and b. We consider that
the processes attached to the arms are algebraically mixing and for arm k, the exponent is a, > 0:
there exist ¢y, o such that ¢ (t) = @y ot~ “*—this assumption is not very restrictive as considering
rates such as t~** are appropriate/natural to capture and characterize the decreasing behavior of the
convergent sequence (g (t));. Also, we will sometimes say that arm % is faster (resp. slower) than
arm k' for k # k', to convey the fact that ay, > ayr (resp. o < o).

For any & and any increasing sequence 7 = (7(n))!,_; of ¢ timepoints, the empirical reward i} of

k given T is iy = 1 22:1 Xf(n). The subscripted notation 75, = (75(n))1<n<¢ is used to denote
the sequence of timepoints at which arm %k was selected. Finally, we define A] in a similar way as

in (@), the difference with the former notation being the subscript &, as

t

ATF =142 pn(ri(n) — (1)) ©

n=1

We feel important to discuss when Improved-UCB may be robust to the mixing process scenario.

3.1 Robustness of Improved—-UCB to Restless o-Mixing Bandits

We will not recall the Improved-UCB algorithm [2] in its entirety as it will turn out to be a special
case of our Remix—UCB algorithm, but it is instructive to identify its distinctive features that make
it a relevant base algorithm for the handling of mixing processes. First, it is essential to keep in mind
that Improved-UCB is designed for the i.i.d case and that it achieves an optimal O(log T") regret.
Second, it is an algorithm that works in successive rounds/epochs, at the end of each of which a
number of arms are eliminated because they are identified (with high probability) as being the least



promising ones, from a regret point of view. More precisely, at each round, the same number of
consecutive pulls is planned for each arm: this number is induced by Hoeffding’s inequality [8] and
devised in such a way that all remaining arms share the same confidence interval for their respective
expected gains, the y, = EXF, for k in the set of remaining arms at the current round. From a
technical standpoint, this is what makes it possible to draw conclusions on whether an arm is useless
(i.e. eliminated) or not. It is enlightening to understand what are the favorable and unfavorable
setups for Improved—-UCB to keep working when facing restless mixing bandits. The following
Proposition depicts the favorable case.

Proposition 5. If Y, ¢i(t) < +oo, Vk, then the classical Improved-UCB run on the restless
p-mixing bandit preserves its O(logT') regret.

Proof. Straightforward. Given the assumption on the mixing coefficients, it exists M > 0 such that
MaXge(1,... K} Dy>0 Pk(t) < M. Therefore, from Theorem for any arm k, and any sequence T

2
of || consecutive timepoints, P (|, — if| > ¢) < 2exp ( L) , which is akin to Hoeffd-

T 2(1+2M)2
ing’s inequality up to the multiplicative (1 + 2M)? constant in the exponential. This, and the lines
to prove the O(log T') regret of Improved-UCB [2] directly give the desired result. O

In the general case where ), ¢ (t) < +oo does not hold for every k, then nothing ensures for
Improved-UCB to keep working, the idea of consecutive pulls being the essential culprit. To
illustrate the problem, suppose that Vk, i (n) = n~'/4. Then, after a sequence T = (t; + 1,1 +
2,...,t1 + t) of ¢t consecutive time instances where k was selected, simple calculations give that
A7 = O(t3/*) and the concentration inequality from Corollaryfor QT reads as

P(|lpr — fir| > ¢€) < 2exp (—Cg2t’1/2) @

where C' is some strictly positive constant. The quality of the confidence interval that can be derived
from this concentration inequality degrades when additional pulls are performed, which counters
the usual nature of concentration inequalities and prevents the obtention of a reasonable regret for
Improved-UCB. This is a direct consequence of the dependency of the ¢-mixing variables. In-
deed, if p(n) decreases slowly, taking the average over multiple consecutive pulls may move the
estimator away from the mean value of the stationary process.

Another way of understanding the difference between the i.i.d. case and the restless mixing case is
to look at the sizes of the confidence intervals around the true value of an arm when the time ¢ to the
next pull increases. Given Corollary (1} Improved-UCB run in the restless mixing scenario would
advocate a pulling strategy based on the lengths «j, of the confidence intervals given by

VE, mi(t) = el T2 2(AT 4 20kt - 7(1)))2 log(t) @)

where ¢ is the overall time index. This shows that working in the i.i.d. case or in the mixing case
can imply two different behaviors for the lengths of the confidence interval: in the i.i.d. scenario,
ki, has the same form as the classical UCB term (as ¢, = 0 and A7* = 1) and is an increasing
function of ¢ while in the w-mixing scenario the behavior may be non-monotonic with a decreasing
confidence interval up to some point after which the confidence interval becomes increasingly larger.
As the purpose of exploration is to tighten the confidence interval as much as possible, the mixing
framework points to carefully designed strategies. For instance, when an arm is slow, it is beneficial
to wait between two successive pulls of this arm.

By alternating the pulls of the different arms, it is possible to wait up to K unit of time between
two consecutive pulls of the same arm. However, it is not sufficient to recover enough independence
between the two observed values. For instance, in the case described in , after a sequence T =
(t1,t1 + K, ..., t; + tK), simple calculations give that AT = O((Kt)3/*) and the concentration
inequality from Corollaryfor Lf reads as P(|pup — 17| > ¢) < 2exp (fCK3/252t*1/2) which
entails the same problem.

The problem exhibited above is that if the decrease of the ¢y, is too slow, pulling an arm in the
traditional way, with consecutive pulls, and updating the value of the empirical estimator may lower
the certainty with which the estimation of the expected gain is performed. To solve this problem
and reduce the confidence interval that are computed for each arm, a better independence between



Algorithm 1 Remix-UCB, with parameter K, (a;)i=1...x, T, G defined in (TT)

Bo+ {1, ,K},a + 1 Aminjep, aj, it < 0, nfy + 0, ,k=1,...,K,i* 1
fors=1,...,|G}(T)] do
Select arm : If | B;| > 1, then until total time T = [G(s)] pull each arm 7 € By at time 7;(+)
defined in (T0). If no arm is ready to be pulled, pull the waiting arm i* instead.
Update :
1.  Update the empirical mean /i’ and the number of pulls n; for each arm i € B,.
2. Obtain B, by eliminating from B, each arm ¢ such that

. 14237 0i(1i(4)))2 log(T2—25
ﬁ1+\/2( TiL e (n@) log(T2=>)
[ kEBs

ng

% (1+2 0%, on(mi(4)))? log(T2-2)

3. update

(:(4)))? log(T272¢)

Uz

. ) (142370 s
a+ 1A min a;, and i eargmaxﬂlJr\/Z =17
i€Bg41 i€Bgq1

end for

the values observed from a given arm is required. This can only be achieved by waiting for the
time to pass by. Since an arm must be pulled at each time ¢, simulating the time passing by may be
implemented by the idea to pull an arm but not to update the empirical mean [i;, of this arm with
the observed reward. At the same time, it is important to note that even if we do not update the
empirical mean of the arm, the resort to the waiting arm may impact the regret. It is therefore crucial
to ensure that we pull the best possible arm to limit the resulting regret, whence the arm with the
best optimistic value, being used as the waiting arm. Note that this arm may change over time. For
the rest of the paper, 7 will only refer to significant pulls of an arm, that is, pulls that lead to an
update of the empirical value of the arm.

3.2 Algorithm and Regret bound

We may now introduce Remix—UCB, depicted in Algorithm[I} As Improved-UCB, Remix-UCB
works in epochs and eliminates, at each epoch, the significantly suboptimal arms.

High-Level View. Let (6,)scn be a decreasing sequence of R and (J,)sen € RY. The main idea
promoted by Remix—UCB is to divide the time available in epochs 1,.. ., s;,4, (the outer loop of
the algorithm), such that at the end of each epoch s, for all the remaining arms & the following holds,
P(ip* > pi +65) VP(I" < pp — 0s) < 05, where 7, identifies the time instants up to current
time ¢ when arm & was selected. Using (@), this means that, for all k, with high probability:

Ans — ikl < ni ™24 /2(AT)2 log(6s). ©

Thus, at the end of epoch s we have, with high probability, a uniform control of the uncertainty
with which the empirical rewards ji;* approximate their corresponding rewards j;,. Based on
this, the algorithm eliminates the arms that appear significantly suboptimal (step 2 of the update
of Remix-UCB). Just as in Improved—-UCB, the process is re-iterated with parameters J, and 60,
adjusted as 6, = 1/(T0?) and 6, = 1/2°, where T is the time budget; the modifications of the d
and 6, values makes it possible to gain additional information, through new pulls, on the quality of
the remaining arms, so arms associated with close-by rewards can be distinguished by the algorithm.

Policy for pulling arms at epoch s. The objective of the policy is to obtain a uniform control of the
uncertainty/confidence intervals (9) of all the remaining arms. For some arm % and fixed time budget

Ts)\2
T, such a policy could be obtained as the solution of min,  ,)ns In, such that n(il Jr)ns < € where

the times of pulls ¢;’s must be increasing and greater than ¢, the last element of T75_1, 75 = T5_1 U
(t1,...tp,) and ns_; (the number of times this arm has already been pulled), €, 7,_; are given. This
conveys our aim to obtain as fast and efficiently the targetted confidence interval. However, this
problem does not have a closed-form solution and, even if it could be solved efficiently, we are more
interested in assessing whether it is possible to devise relevant sequences of timepoints that induce a
controlled regret, even if they do not solve the optimization problem. To this end, we only focus on




the best sampling rate of the arms, which is an approximation of the previous minimization problem:
for each k, we search for sampling schemes of the form 73, (n) = t,, = O(n”) for 3 > 1. For the
case where the ;, are not summable ( o, < 1), we have the following result.

Proposition 6. Ler oy, € (0; 1] (recall that i (n) = n=*). The optimal sampling rate Ty, for arm
kis mi(n) = ©(n'/x),

Proof. The idea of the proof is that if the sampling is too frequent (i.e. 3 close to 1), then the
dependency between the values of the arm reduces the information obtained by taking the average.
In other words, . ¢ (7% (n)) increases too quickly. On the other hand, if the sampling is too scarce
(i.e. [ is very large), the information obtained at each pull is important, but the total amount of pulls
in a given time 7T is approximately 7"/# and thus is too low. The optimal solution to this trade-off
is to take 5 = 1/«, which directly comes from the fact that this is the point where > o5 (7(n))
becomes logarithmic. The complete proof is available in the supplementary material. O

If o, < 1, for all k, this result means that the best policy (with a sampling scheme of the form
O(n?)) should update the empirical means associated with each arm k at a rate O(n'/**); contrary
to the i.i.d case it is therefore not relevant to try and update the empirical rewards at each time step.
There henceforth must be gaps between updates of the means: this is precisely the role of the waiting
arm to make this gaps possible. As seen in the depiction of Remix—UCB, when pulled, the waiting
arm provides a reward that will count for the cumulative gains of the agent and help her control her
regret, but that will not be used to update any empirical mean.

As for a precise pulling strategy to implement given Proposition [f] it must be understood that it
is the slowest arm that determines the best uniform control possible, since it is the one which will
be selected the least number of times: it is unnecessary to pull the fastest arms more often than
the slowest arm. Therefore, if 41, ..., are the ks remaining arms at epoch s, and @ = 1 A
mile {4,y } a then an arm selection strategy based on the rate of the slowest arm suggests to

pull arm %, and update ﬂ::lm for the n-th time at time instants

{ (i (n = 1) + ko) V [n/*] ifm=1

Ti(n)+m—1 otherwise (10)

(i.e. all arms are pulled at the same (’)(nl/‘“‘) frequency) and to pull the waiting arm while waiting.

Time budget per epoch. In the Remix-UCB algorithm, the function G defines the size of the
rounds. The definition of G is rather technical: we have G(s) = maxiep, Gi(s) where

Gr(s) =inf {t € N*,2(A7)? log(1/ds) < t0s} (an

where the 74 (n) are defined above. In other words, Gy encodes the minimum amount of time
necessary to reach the aimed length of confidence interval by following the aforementioned policy.
But the most interesting property of G is that G(s) = ©((05 2 log(5,))'/*). This is the key element
which will be used in the proof of the regret bound which can be found in Theorem [2] below.

Putting it all together. At epoch s, the Remix—~UCB algorithm starts by selecting the best empirical
arm and flags it as the waiting arm. It then determines the speed « of the slowest arm, after which it
computes a time budget Ts = G(s). Then, until this time horizon is reached, it pulls arms following
the policy described above. Finally, after the time budget is reached, the algorithm eliminates the
arms whose empirical mean is significantly lower than the best available empirical mean.

Note that when all the ¢, are summable, we have o = 1, and thus the algorithm never pulls the
waiting arm: Remix—-UCB mainly differs from Improved-UCB by its strategy of alternate pulls.
The result below provides an upper bound for the regret of the Remix—UCB algorithm:

Theorem 2. For all arm k, let 1 > ap > 0 and pp(n) = n~*. Let & = minge(y,... x} o and
A, = mingeqy,... gk} {Ar > 0}. If a < 1, the regret of Remix~UCB is bounded in order by

) (AS:HW log(T)l/a) . (12)

'Since 1/a encodes the rate of sampling, it cannot be greater than 1.



Proof. The proof follows the same line as the proof of the upper bound of the regret of the
Improved-UCB algorithm. The important modification is the sizes of the blocks, which depend
in the mixing case of the ¢ mixing coefficient, and might grow arbitrary large, and the waiting arm,
which does not exist in the i.i.d. setting. The dominant term in the regret mentioned in Theorem 2]
is related to the pulls of the waiting arm. Indeed, the waiting arm is pulled with an always increas-
ing frequency, but the quality of the waiting arm tends to increase over time, as the arms with the
smallest values are eliminated. The complete proof is available in the supplementary material. [

4 Discussion and Particular Cases

We here discuss Theorem 2] and some of its variations for special cases of p-mixing processes.

First, in the i.i.d case, the regret of Improved-UCB is upper bounded by O (A;*log(T)) [2).
Observe that comes down to this bound when « tends to 1. Also, note that it is an upper bound
of the regret in the algebraically mixing case. It reflects the fact that in this particular case, it is
possible to ignore the dependency of the mixing process. It also implies that, even if a < 1, i.e.
even if the dependency cannot be ignored, by properly using the ¢ mixing property of the different
stationary processes, it is possible to obtain an upper bound of polynomial logarithmic order.

Another question is to see what happens when a, = 1, which is an important threshold in our study.
Indeed, if oy = 1 the ¢, are not summable, but from Proposition[6] we have that 75, (n) ~ O(n), i.e.
the arms should be sampled as often as possible. Theorem [2] states that the regret is upper bounded
in this case by @(A Llog T). However, it is not possible to know if this bound is comparable to
that of the i.i.d case due to the ©. Still, from the proof of Theoreml 2| we get the following result:

Corollary 2. Forall armk, let 1 > ay > 0 and ¢p(n) = n~=“. Let & = mingeyy,... iy Q. Then
if « = 1, the regret for Algorlthm[Z] is upper bounded in order by

O (A" Ga(log(T))) (13)
where A, = mingeqy,... g3{Ar > 0} and G is solution of G (x) = x* /(log(x))?.

Although we do not have an explicit formula for the regret in the case o = 1, it is interesting to note
that (T3) is strictly negligible with respect to (I2) Yoo < 1, but strictly dominates O (A;l log(T ))
This comes from that while in the case o« = 1 the waiting arm is no longer used, the time budget
necessary to complete step s is still higher that in the i.i.d case.

When ¢(n) decreases at a logarithmic speed (p(n) ~ 1/log(n)® for some a: > 0), it is still possible
to apply the same reasoning as the one developed in this paper. But in this case, Remix-UCB
will only achieve a regret of © (exp [(T//A,)**]), which is no longer logarithmic in 7. In other
words, if the  mixing coefficients decrease too slowly, the information given by the concentration
inequality in Theorem [I]is not sufficient to deduce interesting information about the mean value of
the arms. In this case, the successive values of the ¢-mixing processes are too dependent, and the
randomness in the sequence of values is almost negligible; an adversarial bandit algorithm such as
Exp4 [4] may give better results than Remix—UCB.

5 Conclusion

We have studied an extension of the multi-armed bandit problem to the stationary -mixing frame-
work in the restless case, by providing a functional algorithm and an upper bound of the regret in a
general framework. Future work might include a study of a lower bound for the regret in the mixing
process case: our first findings on the issue are that the analysis of the worst-case scenario in the
mixing framework bears significant challenges. Another interesting point would be the study of the
more difficult case of S-mixing processes. A rather different, but very interesting question that we
may address in the future is the possibility to exploit a possible structure of the correlation between
rewards over time. For instance, in the case wher the correlation of an arm with the close past is
much higher than the correlation with the distant past, it might be interesting to see if the analysis
done in [16] can be extended to exploit this correlation structure.
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